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Abstract
An independent velocity field is introduced via Legendre transformation of the kinetic en-
ergy of a geometrically-exact beam, leading to a first-order system of twice as many gov-
erning equations as a one-field formulation. Nevertheless, the new field does not have to be
assembled across elements and can be eliminated at the element level, so that the assembled
system has the same size as a one-field formulation. Furthermore, because the new field does
not have to satisfy the compatibility equations that the original velocity field is subjected to,
its finite-element discretization is simpler and leads to simplified inertial forces.

Keywords Geometrically-exact beam finite element · Legendre transformation · Mechanics
on Lie group · Generalized-α for first-order ODE

1 Introduction

Geometrically-exact beam theory is a popular approach for the modeling of slender struc-
tural components having one of their dimensions much larger than the other two [1, 2]. The
resulting kinematic description of such component reduces to the position field of a three-
dimensional reference curve along the beam, on which a rotation field describes the orienta-
tion of the beam cross-sections. Rotations form a Lie group, namely the special orthogonal
group SO(3), for which the appropriate mathematical framework has been studied exten-
sively. Because the position field and the rotation field of a beam are inherently coupled, the
kinematics is best described under the special Euclidean group SE(3) [3–5]. The governing
equations of geometrically-exact beams are typically obtained by variational principles and
take the form of six non-linear partial differential equations with second-order derivatives in
time and space.
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The finite-element method is typically used to discretize spatially geometrically-exact
beams and assemble them into complex flexible multibody systems [6–8]. Nevertheless, the
standard finite-element tools are not capable of handling consistently the coupled kinematics
and the non-commutative nature of the rotation group. In particular, several issues such as
shear locking and objectivity plagued early finite-element discretizations of geometrically-
exact beams. Novel developments have been carried out successfully towards their mitiga-
tion, see e.g. [5, 9–12].

Standard finite-element procedures were readily applied early on to the velocity field
and seem to lead to satisfactory finite-element discretizations of the inertial forces. Such
techniques are however geometrically inconsistent because the resulting discretized veloc-
ity field cannot satisfy the Lie bracket with a discretized strain field, namely non-trivial
compatibility equations due to the Lie group structure of rotations. In contrast, the inter-
polation formulas that produce a compatible, discretized velocity field are fairly involved
and configuration-dependent. It appears nonetheless that these geometric inconsistencies
decrease under mesh refinement and affect the numerical results in a less noticeable manner
than those of the strains [13].

Motivated by recent developments by the second author [14, 15], we consider here a
two-field formulation of the inertial forces of a geometrically-exact beam. It consists of in-
troducing an additional velocity field by Legendre transformation of the kinetic energy. The
resulting governing equations are 12 partial non-linear differential equations with the same
second-order in space as the one-field formulation, but first-order derivatives in time. First-
order formulation in time offers some practical advantages in contrast to typical second-
order formulation in time, such that the use of standard first-order time-integration methods,
real-valued eigenvalue computation including velocity effects, and the enforcement of kine-
matic constraints at velocity level.

From the finite-element point of view, several practical advantages result from the use of
the additional velocity field. First, because it is an independent vector field, the additional
velocity field can be discretized using standard finite element interpolation functions. This
leads to a simpler expression of the inertial forces, because the use of the complicated in-
terpolation functions of the velocity field required for the compatibility equations is partly
circumvented. Secondly, the additional velocity field can be discontinuous across elements.
Consequently, it can be treated as a field internal to the finite elements and eliminated by
condensation (Schur complement). Furthermore, a degree of interpolation that is lower than
the one used for the configuration can be used, which opens the door for further computa-
tional savings.

The paper is structured as follows. The geometrically-exact beam formulation is reviewed
in Sect. 2 and the Legendre transformation of the kinetic energy is used to introduce an inde-
pendent velocity field. A finite-element discretization is discussed in Sect. 3 and a solution
strategy for the two-field formation is derived in Sect. 4. Benchmark examples are discussed
in Sect. 5. The papers closes with some conclusions and perspectives in Sect. 6.

2 Geometrically exact beam

2.1 Beam kinematics

A reference, undeformed configuration of a beam is described by x0(α) ∈ R
3, the co-

ordinates of a reference curve of length L parameterized by coordinate α ∈ [0,L], and
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R0(α) ∈ SO(3), a field of rotation matrices that accounts for the orientation of the beam-
cross sections. In the current, possibly deformed configuration, the beam is described by
positions x(α, t) ∈ R

3 and orientations R(α, t) ∈ SO(3), where t ∈ R is the time coordi-
nate.

The kinematics of a geometrically-exact beam can be conveniently described by a frame

field H(α, t) :
(
x(α, t), R(α, t)

)
∈ SE(3), which couples position and orientation [3–5, 8].

Among other possibilities, elements of SE(3) can be represented as 4 × 4 homogeneous-
transformation matrices:

H(α, t) =
[
R(α, t) x(α, t)

0T 1

]
. (1)

The deformation field of the beam is measured by comparison of the spatial gradient of
the frame field of the current configuration with that of the reference configuration:

E(α, t) = F(α, t) − F 0(α) =
[

RT dαx −
(
R0

)T

dαx
0

κ − κ0

]
∈R

6 (2)

where κ(α, t) ∈ R
3 is the axial vector field associated with κ̃(α, t) = RT dαR ∈ so(3) and

F(α, t) is the axial vector field associated with F̃ (α, t) = H−1dαH ∈ se(3). To ease the
notation, differentiation with respect to space is often denoted with a prime: dα• = •′. The
velocity field of the beam is denoted V (α, t) ∈ R

6 and defined as the time derivative of the
current configuration of the frame field:

Ṽ (α, t) = H−1dtH ∈ se(3). (3)

To ease the notation, differentiation with respect to time is often denoted with an upper dot:
dt• = •̇. Similarly, the variation operator is denoted dδ and the associated field

δ̃U(α, t) = H−1dδH ∈ se(3). (4)

To ease the notation, variations are often indicated by a δ in front of the quantity: dδ• = δ•.1

The commutativity of differentiation operation on the frame field, e.g. dt (dαH) =
dα(dtH), implies the following relationships

dαV − dtF = V̂ F (5)

dδF − dαδU = F̂ δU (6)

dδV − dtδU = V̂ δU (7)

where the right-hand sides of these relationships do not vanish because the composition
operation on SE(3) is not commutative, with

X̂ =
[
ỹ x̃

0 ỹ

]
, X ∈ R

6 =
[
x ∈R

3

y ∈R
3

]
. (8)

1Note, however, that δ̃U ∈ se(3) (with associated axial vector δU ∈ R
6) is not the variations of some Ũ ∈

se(3) (with associated axial vector U ∈ R
6).
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The following operator also appears in the subsequent development: •̂T
X = X̆•, where

X̆ =
[

0 x̃

x̃ ỹ

]
(9)

2.2 Strain energy

The strain energy V of the beam is defined as

V(E) = 1

2

∫ L

0
ET K E dα (10)

where K(α) is the 6 × 6 symmetric, positive-definite stiffness matrix.

2.3 Kinetic energy

2.3.1 One-field formulation

The kinetic energy K of the beam is defined as

K(V ) = 1

2

∫ L

0
V T M V dα (11)

where M(α) is the 6 × 6 symmetric, positive-definite mass matrix.

2.3.2 Two-field formulation

In order to treat the velocity field and the frame field as independent fields, a Legendre
transformation of the kinetic energy is now introduced:

K(V ,W) =
∫ L

0

(
WT M V − 1

2
WT M W

)
dα (12)

where W(α, t) ∈ R
6 is an independent velocity field introduced by relaxation of the kine-

matic relationship in time

W = V . (13)

2.4 Equations of motion

The equations of motion of the beam can be derived from Hamilton’s principle, which states
that the actual trajectory between two time instants ti and tf is such that the action functional
� is stationary for vanishing variations at ti and tf :

dδ� =
∫ tf

ti

dδLdt = 0 (14)

where L = K − V is the Lagrangian of the beam.
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With the help of relationship (6), the variations of the strain energy defined in Eq. (10)
reads

∫ tf

ti

dδV(E) dt =
∫ tf

ti

∫ L

0
dδET K E dα dt

=
∫ tf

ti

[
δUT K E

]L

0
dt

−
∫ tf

ti

∫ L

0
δUT

(
(K E)′ − F̂ T K E

)
dα dt. (15)

2.4.1 One-field formulation

With the help of relationship (7), the variations of the kinetic energy defined in Eq. (11)
reads

∫ tf

ti

dδK(V )dt =
∫ tf

ti

∫ L

0
dδV

T M V dα dt

=
[∫ L

0
δUT M V dα

]tf

ti

−
∫ tf

ti

∫ L

0
δUT

(
M V̇ − V̂ T M V

)
dα dt. (16)

Eventually, the six equilibrium equations that govern the frame field along the beam are the
following six second-order partial differential equations

(K E)′ − F̂ T K E −
(
M V̇ − V̂ T M V

)
= 0. (17)

2.4.2 Two-field formulation

With the help of relationship (7), taking the variations of the two-field kinetic energy in
Eq. (12) yields

∫ tf

ti

dδK(V ,W)dt =
∫ tf

ti

∫ L

0

(
dδV

T M W − dδW
T M

(
W − V

))
dα dt

=
[∫ L

0
δUT M W dα

]tf

ti

−
∫ tf

ti

∫ L

0
δUT

(
M Ẇ − V̂ T M W

)
dα dt

−
∫ tf

ti

∫ L

0
dδW

T M
(
W − V

)
dα dt. (18)

The first two terms on the right hand side define the two-field inertial forces (compare to
Eq. (16)) whereas the last term recovers the compatibility conditions (13) between the two
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velocity fields. Eventually, the governing equations for the two-field formulation are

(K E)′ − F̂ T K E −
(
M Ẇ − V̂ T M W

)
= 0 (19)

W − V = 0. (20)

These twelve differential equations involve second-order derivatives in space, namely E ′,
and first order derivatives in time, namely V and Ẇ .

3 Finite-element discretization

The beam is discretized in space according to the finite element method presented in [16].
The frame field in an element is approximated by an interpolation of a set of uniformly
distributed N > 1 nodal frames Hk(t) ∈ SE(3) according to the implicit formula

N∑
k=1

fk(η)�k(η, t) = 0, �k(η, t) = �
(
H−1(η, t)Hk(t)

)
(21)

where fk(η) are Lagrange’s polynomials of degree N − 1, � : SE(3) → R
6 is a minimal

parameterization of SE(3) [6], H(η, t) is the interpolated frame of the current configuration
and η ∈ [−1,1] are the finite element coordinates. The same interpolation formula is used

in the reference configuration, with �0
k(η) = �

(
(H 0(η))−1H 0

k

)
.

For convenience, we use bold fonts to refer to the whole set of a node-related quantity.
Accordingly, H denotes the set of all the nodal frames Hk’s. For vectorial quantities, the
bold notation refers to a 6N-dimensional finite-element array that stacks the nodal quantities,
which can then be used in standard matrix-array operations. This includes δU and V, which
stack all the nodal δU k’s and V k’s, respectively. With a slight abuse of notation, we also use
� when it is convenient to emphasize that the dependency on H is strictly on the relative
nodal transformation �k’s.

Spatial differentiation of interpolation formula (21) in the undeformed and current con-
figuration leads to the discretized gradients

F 0(�0) = A(�0)

N∑
k=1

f ′
k �0

k (22)

F(�) = A(�)

N∑
k=1

f ′
k �k (23)

where A(•) =
(∑N

k=1 fk T −1(−•k)
)−1

, with T the tangent operator associated with param-

eterization �. The discretized deformation measures are then obtained by evaluation of
Eq. (2):

E(�) = F(�) − F 0. (24)

Their variation leads to dδE = D(�)δU and the discretized internal forces are given by

∫ tf

ti

dδV(E) dt =
∫ tf

ti

δUT finternal dt (25)
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where the 6N -dimensional array of discretized internal forces reads

finternal(�) =
∫ L

0
DT K E dα. (26)

The linearization of the discretized internal forces around some �∗ reads

finternal ≈ finternal(�
∗) + KT �U (27)

where the tangent stiffness matrix is given by

KT (�∗) =
∫ L

0
DT K D dα +

∫ L

0
d�(DT )K E dα. (28)

Here, for simplicity, the contribution of the derivatives of the interpolation functions, i.e. the
second term on the right-hand side, is neglected.

3.1 One-field formulation

The consistent interpolation formula for the velocity field is obtained by differentiation with
respect to time of interpolation formula (21) and reads

V (η, t) = A

N∑
k=1

fk T −1(−�k)V k = QV (29)

where Q(�) is a 6 × 6N interpolation matrix. Similarly, the discretized field of variations

is given by δU = Q δU .

With these interpolation formulas, the variation of the kinetic energy in Eq. (16) becomes

∫ tf

ti

dδK(V )dt =
[
δUT M V

]tf

ti

−
∫ tf

ti

δUT finertial dt (30)

where the 6N -dimensional array of discretized inertial forces reads

finertial(�,V, V̇) = M V̇ + C V (31)

with

M(�) =
∫ L

0
QT M Qdα (32)

C(�,V) =
∫ L

0
QT

(
M dtQ − V̂ T M Q

)
dα. (33)

The evaluation of the discretized inertial forces requires a differentiation of Q with respect

to time. Furthermore, each occurrence of Q implies an explicit dependence on the frame

field itself. The linearization of the discretized inertial forces reads

finertial ≈ finertial

∣∣∗ + M�V̇ + CT �V (34)
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where

CT (�,V) = C −
∫ L

0
QT

(

M V Qdα. (35)

Contributions of derivatives of Q with respect to the frames are neglected, i.e. the contribu-

tion of the inertial forces to the tangent stiffness matrix is neglected.
The resulting 6N discretized governing equations for an element take the form

r(H, V, V̇) = finertial + finternal = 0. (36)

3.2 Two-field formulation

In the two-field formulation, the compatibility equations between W and V are enforced
weakly through the variational derivation. Like in the one-field formulation, V must be dis-
cretized according to Eq. (29) because it is the time derivative of the frame field interpolated
via Eq. (21). Velocity field W , however, is an independent field that can be discretized freely.
In particular, it can be discretized using standard interpolation formulas. Furthermore, it is
allowed to be discontinuous across element boundaries and treated as a field internal to an
element (see Sect. 4). Consequently, the following discretization of W is considered

W(η, t) =
M∑

k=1

fk(η)Wk(t) = N(η)W(t) (37)

where N(η) is a 6 × 6M interpolation matrix and Wk(t) are nodal values internal to the ele-
ment. Note that 1 � M � N , i.e. the number of nodal velocities W may be chosen lower than
that of V . In contrast to Eq. (29), Eq. (37) is configuration-independent; its differentiation is
thus trivial: Ẇ = N Ẇ, δW = N δW and �W = N �W.

With these interpolation formulas, the variation of the kinetic energy in Eq. (18) becomes

∫ tf

ti

dδK(V ,W)dt =
[
δUT MQN W

]tf

ti

−
∫ tf

ti

(δUT finertial − δWT g) dt (38)

where

finertial(�,V,W,Ẇ) = MQN Ẇ + CQQV (39)

g(�,V,W) = MNN W − MT
QN V (40)

with

MQN(�) =
∫ L

0
QT M N dα (41)

CQQ(�,W) = −
∫ L

0
QT

(

M W Qdα (42)

MNN =
∫ L

0
NT M N dα. (43)
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Note that in comparison to Eq. (31), Eq. (39) features one less Q and dtQ is not needed.

Equation (40) are the discretized compatibility equations, in which MNN is constant and
invertible. The linearization of the discretized inertial forces reads

finertial ≈ finertial

∣∣∗ + CQQ�V + MQN�Ẇ + CQN�W (44)

where

CQN(�,V) = −
∫ L

0
QT V̂

T
M N dα (45)

whereas the linearization of the discretized compatibility equations takes the form

g ≈ g
∣∣
∗ + MNN�W − MT

QN�V. (46)

Contributions of derivatives of Q with respect to the frames are neglected, i.e. the contribu-

tion of the inertial forces to the tangent stiffness matrix is neglected.
The resulting (6N + 6M) discretized governing equations for an element take the form

r(H, V, W, Ẇ) =
[

rH (H, V, W, Ẇ)

rW(H, V, W)

]
=

[
finertial + finternal

g

]
= 0. (47)

4 Solution strategy for the two-field formulation

The time integration of the two-field formulation can be achieved with the Generalized-α
method described in appendix B. The integration method is applied simultaneously to the
frames, i.e. H and the related velocities V, and to the independent velocity field, i.e. W and

the related time derivatives Ẇ:

q =
(

H
W

)
; v =

(
V
Ẇ

)
. (48)

For one element, the iteration problem to solve the (6N + 6M) governing equations (47) for
the corrective increments in Eq. (62) reads

[
CQQ + c8KT T MQN + c8CQN

−MT
QN c8MNN

][
�V
�Ẇ

]
= −

[
rH

rW

]
, (49)

where the following relationships between the increments due the integrator were used:
�U = c8�V and �W = c8�Ẇ. Because the independent velocity field is defined at the
element level and not assembled across elements, it can be eliminated from the solution
process by constructing the Schur complement (see appendix C) of the frame field:

�St�V = −r̄ (50)

where

�St = CQQ + c8KT T −
(

MQN + c8CQN

)
(c8MNN)−1

(
−MT

QN

)
(51)

r̄ = rH −
(

MQN + c8CQN

)
(c8MNN)−1 rW (52)
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and

�Ẇ = (c8MNN)−1
(
−rW − (−MT

QN)�V
)

. (53)

At each iteration, (i) the 6N -dimensional contributions (50) of each element are assembled
and the assembled system is solved for the velocity increments �V and (ii) the 6M incre-
ments �Ẇ are obtained subsequently by solving Eq. (53) in each element independently.

Eventually, the size of the assembled system is the same as in the one-field case. The
only additional cost of the procedure is in the construction the iteration matrix and of the
residuals at the element level.

5 Numerical examples

Two typical benchmark examples are reproduced here to validate the proposed formulation.
We use two-noded beam elements and Euler-Rodrigues parameterization [6]. Two versions
of the independent velocity field are considered: two nodes (linear interpolation functions)
and a single node (constant interpolation function). The results are compared to those ob-
tained with the one-field formulation integrated in time with the generalized-α.

5.1 Rotating beam

Wu and Haug [17] described a dynamic problem consisting of a cantilevered beam of length
L = 8 m connected to the ground via a revolute joint. The root rotation angle at the joint,
denoted φ, is prescribed with the following schedule,

φ(t) = ωT

{
τ 2/2 + (cos 2πτ − 1)/(2π)2, for τ < 1,

τ − 1/2, for τ � 1,
(54)

where T = 15 s, ω = 4 rad/s and τ = t/T . The motion is planar, characterized by geomet-
ric nonlinearities and dominated by the inertial forces (centrifugal effect). For τ < 1, the
root rotation undergoes a sharp angular acceleration. For τ � 1, the root rotation is driven
at a constant angular velocity and the motion is characterized by small amplitude vibrations
around the nominal rotational motion. The beam’s mechanical properties are as follows:
K = diag(EA,GA,GA,GJ,EI,EI) with axial stiffness EA = 5.03 MN, shear stiffness
GA = 1.94 MN, bending stiffness EI = 566 N·m2, and M = diag(m,m,m,m11,m22,m33)

with mass per unit length m = 0.201 kg/m, and moment of inertia m22 = m33 = 22.7 mg ·
m2/m (note that GJ and m11 are unimportant here because the motion is planar. The prob-

lem is simulated for 20 s with a constant time step size of 2 ms. The spectral radius of the
generalized-α scheme is set to 0.

The beam is discretized into 10 two-noded elements. Figure 1 shows the transverse and
axial components of the beam’s tip displacement resolved in a rotating frame attached at
the root of the beam. Clearly, both versions of the proposed two-field formulation match the
reference solution.

5.2 Lateral buckling of a thin beam

We consider the lateral buckling of a thin beam presented by Bauchau et al. [18], see Fig. 2.
A straight beam is clamped at one end and a transverse load is applied through a crank and
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Fig. 1 Axial and transverse displacement of the rotating beam. Reference: , two-node velocity: and
single-node velocity:

Fig. 2 Illustration of the
benchmark of lateral buckling of
a thin beam [18]

link mechanism at the other end. As the crank rotates, the beam tip is pushed up. When
the buckling load is reached, the beam snaps laterally and undergoes violent oscillations.
The crank and link are modeled by flexible beams connected by revolute joints. To simu-
late an initial imperfection of the system, the tip of the beam is connected to the spherical
joint via a rigid-body connection of length d = 0.1 mm. The plane of the crank and link
mechanism is offset from the plane of the beam by the same distance d. The main beam
has constant rectangular cross-section of width 10 mm and height 100 mm. The crank and
link have circular cross-sections of radius 12 mm and 24 mm, respectively. All components
are made of aluminum, whose mechanical characteristics are: mass density 2680 kg/m3,
Young’s modulus 73 GPa and Poisson’s ratio 0.3. The rotation of the crank is prescribed
as φ(t) = π(1 − cosπt/T )/2, for t � T and φ(t) = π for t > T , where T = 0.4 s. The
problem is simulated for 0.5 s with a constant time step size of 0.5 ms. The spectral radius
of the generalized-α scheme is set to 0.

The main beam is discretized into 20 two-noded beam elements. Figure 3 shows the
vertical displacement and the first component of the angular velocity, both at the beam’s
mid-span. The results of the two-field formulation are in good agreement with the reference
one-field formulation.
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Fig. 3 Results for the lateral buckling example for ρ = 0. Reference: , two-node velocity: and
single-node velocity:

6 Conclusion and perspectives

The two-field formulation of the inertial forces of a geometrically-exact beam presented
in this paper yields results that are in good agreement with a similar one-field formulation
of reference. While no significant improvement in computational efficiency was observed
in our implementation, several elements indicate that the formulation could open the door
to an improved framework thanks to the simplified expression of the inertial forces and the
discontinuous nature of the independent velocity field (whose elimination can be parallelized
over the elements). The use of standard, highly-optimized first-order integrators could bring
additional computational improvements. The formulation could also be beneficial for plate
and shell finite-element formulations.

Appendix A: Two-field formulation with momentum field

As an alternative to the two-field formulation presented in this paper, a Legendre transfor-
mation of the kinetic energy can be introduced as:

K(V ,P ) =
∫ L

0
V T P − 1

2
P T M−1 P dα (55)

where P (α, t) ∈ R
6 is an independent momentum field. With the help of relationship (7),

taking the variations yield

∫ tf

ti

dδK(V ,P )dt =
∫ tf

ti

∫ L

0
dδV

T P − dδP
T

(
M−1P − V

)
dα dt

=
[∫ L

0
δUT P dα

]tf

ti

−
∫ tf

ti

∫ L

0
δUT

(
dtP − V̂ T P

)
dα dt
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−
∫ tf

ti

∫ L

0
dδP

T
(
M−1P − V

)
dα dt. (56)

The first two terms on the right hand side define the two-field inertial forces (compare to
Eq. (16)), whereas the last term recovers the compatibility conditions between the velocity
and momentum fields. Eventually, the governing equations for the two-field formulation are

dα(K E) − F̂ T K E −
(
dtP − V̂ T P

)
= 0 (57)

M−1P − V = 0. (58)

These equations involve second-order derivatives in space, namely dαE , and first order
derivatives in time, namely V and dtP .

While this form of the two-field is equally applicable and could offer some computational
savings by circumventing some matrix products with the mass matrix, it is not adopted here
because momentum appears to be more complicated to manipulate outside the element.

Appendix B: Generalized-α for first-order differential equations

In this section, we describe a version of the generalized-α method for first-order differential
equations [19, 20] that is adapted to the Lie group setting with the same strategy as [21] to
adapt the scheme for second-other differential equations.

Let q(t) denote the time-dependent elements of a m-dimensional matrix Lie group G and
ṽ = q−1dtq ∈ g, the associated Lie algebra element for velocity, with v ∈R

m. The n govern-
ing equations to be integrated in time are expressed as r(q, v) = 0. The linearization of the
governing equations with respect to q and V yields m × m matrices K and M , respectively.

The algorithm computes N steps with constant time step size h and is conveniently cast
into a predictor-corrector scheme as

– Initialization: q0 given.

1. initialize velocities, i.e. solve r(q0, v0) = 0 for v̇0.
2. initialize algorithmic velocities, e.g. a0 = v0.

– Loop over the N time steps (n = 1...N ):

1. predictor:

qn = qn−1 qinc(Qn) with Qn = c1vn−1 + c2an−1 (59)

an = c5vn−1 + c6an−1 (60)

vn = 0 (61)

2. iterate while ‖r(qn, vn)‖ > tolerance:
(a) Solve for increments

ST �v = −r(qn, vn) (62)

where ST = M + c8K T is the iteration matrix with T (Qn) the tangent operator
associated with parameterization qinc .
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(b) corrector:

qn = qn−1 qinc(Qn) with Qn += c8�v (63)

vn += �v (64)

3. correct algorithmic velocities

an += c9vn (65)

The parameters used in the algorithm are

c5 = δf

1 − δm

; c6 = − δm

1 − δm

; c9 = 1 − δf

1 − δm

c1 = hθc5 ; c2 = h

(
1 − θ

1 − δm

)
; c8 = hθc9

(66)

and are specific combinations of the time step size and the basic parameters of the
generalized-α method

δm = 3ρ − 1

2(ρ + 1)
; δf = ρ

ρ + 1
; θ = 0.5 − δm + δf , (67)

which can be tuned to achieve a desired spectral radius ρ ∈ [0,1).

Remark For G = R
�, the composition operation of the group is the standard vector addition

and the trivial minimal parameterization produces the vector itself, such that T reduces to
the identity matrix. Accordingly, predictor step (59) and corrector step (63) reduce to

qn = qn−1 + Qn (68)

Appendix C: Schur complement

Consider the following system of linear equations

S X = r (69)

and the following partitioning

S =
[
A B

C D

]
; X =

[
x

y

]
; r =

[
rx

ry

]
. (70)

If matrix D is invertible, the system can be solved in two steps:

Ax = rx − B D−1 ry (71)

D y = ry − C x (72)

where A = A − B D−1C is the Schur complement of A. This procedure requires the inver-
sion of two matrices, D and A, that are smaller than S, the matrix of the full problem.
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