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Abstract
Motion reconstruction for rigid bodies and rigid-body frames using data from inertial mea-
surement units (IMUs) is a challenging task. Position and orientation determination by
means of IMUs is erroneous, as deterministic and stochastic errors accumulate over time.
The former of which errors can be minimized by standard calibration approaches, however,
sensor calibration with respect to a common reference coordinate system to correct mis-
alignment, has not been fully addressed yet. The latter stochastic errors are mostly reduced
using sensor fusion. In this paper, we present a novel motion-reconstruction method utilizing
optimization to correct measured IMU data by means of correction polynomials to minimize
the deviation of motion constraints. In addition, we perform gyrometer and accelerometer
calibration with an industrial manipulator to address deterministic IMU errors, especially
misalignment. To evaluate the performance of the novel methods, two types of experiments,
one at constant orientation and another with simultaneous translation and rotation, were con-
ducted utilizing the manipulator. The experiments were repeated for five individual IMUs
successively. Application of the calibration and optimization methods yielded an average
decrease of 95% in the maximum position error compared to the results of common mo-
tion reconstruction. Moreover, the average position error over the measurement duration
decreased by nearly 90%. The proposed method is applicable to velocity, position, and ori-
entation constraints for every experiment that starts and ends at standstill.

Keywords Multibody system dynamics · Measurement unit · Optimization · Strapdown
inertial navigation · Orientation estimation · Sensor calibration

1 Introduction

Reconstruction of rigid-body motion by means of measurement data acquired with a low-
cost strapdown inertial measurement unit (IMU) is limited to measurements with a short
time duration, as position errors due to sensor drifts and erroneous sensor axes increase
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quadratically with time [1]. Thus, a trend toward sensor fusion has emerged to address sen-
sor drifts in recent years. In addition, various calibration approaches to correct the sensor
axes were proposed. However, little research has investigated the potential of constraints
in the context of motion reconstruction. This paper contributes a novel method for motion
reconstruction utilizing motion constraints to optimize measured quantities, such that the
deviation in computed position and orientation is minimized.

Conventional strapdown IMUs are cheap and therefore applied in many fields for mo-
tion tracking, e.g., medicine [2], robotics [3], and sports [4]. In addition, IMUs are utilized
in life-threatening natural hazards to measure the internal dynamics, e.g., rockfalls [5] and
snow avalanches [6, 7]. Conventional IMUs are composed of three sensors; an accelerome-
ter, a gyrometer, and a magnetometer, measuring spatial translational acceleration, angular
velocity, and magnetic-flux density, respectively. Each sensor measures with respect to an
individual coordinate system defined by three unit vectors (x, y, z) that are mutually perpen-
dicular to one another in the right-hand sense. Ideally, the three coordinate systems coincide,
such that there is a common origin, and the individual x-, y-, and z-axes are parallel, point
in the same direction, and are of equal length. However, this assumption is not valid due
to deterministic errors, which are nonorthogonality, misalignment, and wrong scaling of the
sensor axes.

Nevertheless, there are calibration approaches to minimize deterministic errors. For ac-
celerometer calibration, there is the well-established, so-called six-position calibration, e.g.,
used in [8, 9], which denotes calibration in six defined orientations. Syed et al. proposed
an attempt, where 18 positions are used for calibration, which had no significant advantage
compared to the six-position calibration [10]. Gyrometer calibration is performed through
defined rotations and differs in the calibration domain, which is either angle or angular ve-
locity. In the former domain, computed angles from IMU measurements are compared with
a reference angle from an experiment with a known angle of rotation. In the latter domain,
the measured angular velocity is compared with a reference angular velocity from an exper-
iment with constant angular velocity. However, few researchers have proposed calibration
methods in the angular-velocity domain, as it requires special equipment to provide constant
angular velocity. The misalignment of the individual sensors is a still-existing problem in
the field of IMU calibration. Zhang et al. mention that the misalignment of the individual
sensors can be corrected if the calibration of all sensors is performed by means of a single
system (e.g., a robot [11]), which, however, was not addressed in their work [12].

Regardless of IMU quality or calibration, methods for inertial-motion reconstruction
were developed. Specifically, methods to compute orientations via time integration of an-
gular velocities and to compute positions by double time integration of accelerations, which
are first transformed into a global frame by means of computed orientations. The first ap-
proaches of orientation estimation from strapdown inertial measurements were proposed by
Bortz [13]. Savage covers fundamental inertial-navigation concepts regarding orientation
and position estimation in [14, 15]. More recently, the computation of orientation is per-
formed utilizing Lie-group methods [1, 16]. Lie-group methods, combined with standard
time-integration schemes for the translational part, represent the state-of-the-art in motion
reconstruction, as they are free of singularities and result in high accuracy.

The deviations in computed position and orientation arise from deterministic and stochas-
tic errors in IMU measurement data. The former errors are addressed with the mentioned
calibrations. The latter errors, foremost sensor drift, remain, as the elimination is not possi-
ble due to its randomness [17]. Hence, numerous scholars have conducted research on sensor
fusion employing Kalman filters [18, 19]. On the one hand, there is the field of IMU sensor
fusion, where the estimated orientation derived from accelerometer and magnetometer data
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is utilized to correct orientation computed by means of measured angular velocities [20, 21].
On the other hand, multisensor fusion is studied, where, e.g., the computed position is cor-
rected utilizing a global navigation satellite system (GNSS) [22, 23]. As Kalman filtering
requires tuning of various parameters, Madgwick proposed an approach toward simplifica-
tion [24], further resulting in increased computational efficiency without accuracy loss [25].

A completely different, rarely investigated approach is based on optimization with con-
straints. There is a well-established approach in pedestrian tracking, known as zero-velocity
update [26, 27], where the fact that one foot is stationary at a time while walking is used as
a constraint. Recently, the authors of the present paper proposed a similar approach, where
acceleration is optimized, such that after time integration, the velocity at the end of motion
equals zero [16].

This paper contributes toward motion reconstruction by means of optimization with re-
spect to constraints and toward precise calibration. A novel method corrects measured accel-
erations and angular velocities by means of polynomial functions to minimize the deviation
in constraints of the derived velocity, position, and orientation. In addition, a precise cali-
bration for the accelerometer and gyrometer is performed, such that misalignment between
sensors is corrected by utilizing an industrial robot for manipulation during calibration mea-
surements. The motion reconstruction and optimization are applied to measurement data
from five individual IMUs of the same type. These five IMUs were successively clamped
onto the robot, calibrated, and then utilized to measure two different motions, i.e., a tra-
jectory with motion at constant orientation and another trajectory covering simultaneous
translation and rotation, with a duration of 23 seconds each. Results prior to the optimiza-
tion as well as optimized data are compared to a reference trajectory provided by the robot
controller to evaluate the performance of the methods.

The algorithms and methods developed in this paper can be applied to any situation
where velocity, position, and orientation at the start and end are either fully or partly known.
Nevertheless, the long-term objective of this work is the motion reconstruction of particles
in snow avalanches. However, in snow avalanches, there is no reference data to evaluate
the methods and algorithms presented in the following. Therefore, experiments utilizing an
industrial manipulator may be a good start to meet this long-term objective.

2 Motion reconstruction

In many fields, e.g., vehicle navigation or satellite-attitude estimation, motion reconstruc-
tion is utilized for real-time prediction of trajectories. In this work, however, trajectories
are computed as part of the postprocessing using IMU measurement data, which are trans-
lational acceleration, angular velocity, and magnetic-flux density. However, the magnetic
field is not considered in the present work. Note that all methods are applied to calibrated
accelerations and angular velocities. The latter calibrations are described in Sect. 4.

Motion reconstruction by means of IMU data can be split into a rotational part, comput-
ing rotation matrices, and a translational part, computing velocity and position, whereas the
entire equations describing motion are denoted as the equations of motion (EOM).

2.1 Frame transformations

Within motion-reconstruction, data is represented in different frames, indicated by left su-
perscripts. There is the sensor frame (S), which is attached to the IMU and thus to the mea-
suring system. Since the measuring system is moving and the acquired data is discretized,
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the pose of the measuring system is given by sensor frames (Si ) for n measured time steps i,
corresponding to time ti , with i ∈ {0,1,2, . . . , n}. Furthermore, there is the initial frame (I),
which corresponds to the initial sensor frame (S0). For coordinate transformation (passive
rotation) from the ith sensor frame (Si ) to the initial frame (I), we introduce the transforma-
tion

Iui = Ri
Si ui , (1)

where u is a placeholder for translational acceleration, velocity, or position and R is a rota-
tion matrix to perform the transformation. As Iu = S0 u, there is the special case of R0 = I3,
where I3 ∈R

3×3 denotes the identity matrix.

2.2 Computation of rotation

To obtain the orientation of the measuring system and to allow a transformation of transla-
tional data from the sensor frame to the initial frame, rotation matrices have to be computed
by means of measured angular velocities Sωωω ∈ R

3×n and a start orientation R0.
Thus, to determine the rotation matrix R ∈ SO(3), it is required to solve the kinematic

reconstruction equation [28, 29]

Ṙ = R Sω̃ωω, (2)

where Ṙ is the time derivative of R and Sω̃ωω ∈ so(3) describes the skew symmetric matrix of
angular velocities ωωω in the sensor fixed frame, such that ωωω × y = ω̃ωωy for ωωω,y ∈ R

3 [30]. To
derive a solution of Eq. (2), the well-established approach [31, 32]

Ri+1 = Ri exp(Si �̃��) (3)

is applied, with the terms incremental rotation vector Si���, see Eq. (6), and Euler–Rodrigues
formula [33]

exp(�̃��) = I3 + sinc(‖���‖)�̃�� + 1

2
sinc2

(‖���‖
2

)
�̃��

2
, (4)

with the cardinal sine function [34]

sinc(‖���‖) =
⎧⎨
⎩

1 if ‖���‖ = 0
sin‖���‖
‖���‖ else.

(5)

The Euler–Rodrigues formula, see Eq. (4), is a common approach to compute the exponen-
tial map, thus mapping elements of so(3) into SO(3). Hence, the exponential map in Eq. (3)
can be interpreted as an active rotation between two successive orientations, see Fig. 1. At
this point, other maps could be used instead of the exponential map, e.g., the Cayley map,
as proposed in [6]. The incremental rotation vector Si��� is given by [35]

Si��� = 1

2
�t (Siωωωi + Siωωωi+1), (6)

applying the trapezoidal integration rule to approximate Eq. (3) in Lie algebra. The time
step size �t for two consecutive time steps ti and ti+1 is defined by

�t = ti+1 − ti . (7)
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Fig. 1 Frames according to time
steps and transformation between
different coordinate systems is
shown on the inplane rotation
case. Utilizing the exponential
map on incremental rotations �̃��

derives the rotation between two
subsequent frames

Note that in Eq. (6), the angular velocities ωωωi and ωωωi+1 are represented in the common
frame Si . However, ωωωi+1 is measured in frame Si+1 and therefore needs to be transformed
into frame Si via

Siωωωi+1 = exp(Si �̃��) Si+1ωωωi+1. (8)

Thus, the rotation vector Si��� from Eq. (6) is computed iteratively, as substituting Eq. (8)
into Eq. (6) derives the implicit equation

Si���k+1 = 1

2
�t (Siωωωi + exp(Si �̃��k)

Si+1ωωωi+1) (9)

for k ∈ {0,1,2, . . . ,m} iterations. As the start value for Si���k=0 in Eq. (9),

Si���0 = 1

2
�t (Siωωωi + Si+1ωωωi+1) (10)

is applied. The number of iterations m is determined through the convergence criterion

‖Si���k+1 − Si���k‖1 < 1 · 10−15. (11)

For the experiments in this paper, iterations were in the range of 3–7 depending on the mag-
nitude of the measured angular velocities. This is consistent with the fact that higher angular
velocity leads to a larger difference in two subsequent orientations at constant sampling fre-
quency. Note that Eq. (10) generally provides a good approximation for Eq. (6) and can
therefore be used to speed up the computation at the cost of minor errors in the derived ro-
tations. Additionally, the algorithm could be initialized with Si���0 = [0 0 0]T to simplify the
algorithm at the cost of one additional iteration.

2.3 Computation of velocity and position

In this section, translational velocities and positions are derived by means of time integration
of measured accelerations. Due to the technology of strapdown IMUs, measured accelera-
tions are the sum of accelerations from nongravitational forces and gravitational forces [14].
In contrast to measured accelerations of the moving measuring system, however, the gravity
vector is time invariant and therefore constant with respect to the initial frame. Apparently,
the gravity vector has to be eliminated to obtain accelerations, which describe the transla-
tional motion of the measuring system.

The most common way to eliminate gravity is to transform measured accelerations Sa ∈
R

3×n into the initial frame, where gravity is constant, and subtract gravity from accelerations
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Fig. 2 Overview of the motion
reconstruction that derives
position p from calibrated
acceleration a and angular
velocity ωωω, see Sect. 4 (Color
figure online)

Ia. This transformation can be performed utilizing the rotation matrices derived in Sect. 2.2,
yielding

Ia∗ = Ia − Ig = R Sa − Ig, (12)

where Ig is the gravity1 vector pointing toward the center of the earth. Time integration of
gravity-eliminated accelerations from Eq. (12) derives

Iv(t) =
∫

t

(
R(τ )Sa(τ ) − Ig

)
dτ, (13)

Ip(t) =
∫

t

(∫
τ2

(
R(τ1)

Sa(τ1) − Ig
)

dτ1

)
dτ2, (14)

defining translational velocity Iv and position Ip with respect to the initial frame (I), re-
spectively. Computation of the latter time integrals utilizing the well-known explicit Euler
method yields

Ivi+1 = Ivi + �t (Ri
Sai − Ig), (15)

Ipi+1 = Ipi + �t Ivi , (16)

for translational velocity and position, respectively.2

In summary, Sect. 2 derives the theoretical framework to compute velocity, position, and
orientation from measured acceleration and angular velocity. An overview of the motion-
reconstruction method, derived in this section, is shown in Fig. 2.

1In this work, Ig= 9.805531 m s−2, which is the gravitation for Innsbruck according to [36].
2In [16], the authors compared the explicit Euler method with the trapezoidal rule, and neither method had a
significant advantage over the other.
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3 Optimization of position and orientation

Although an IMU is calibrated, errors in computed positions are still increasing quadrat-
ically, foremost due to accelerometer sensor drifts. Thus, without addressing these errors,
only short-time IMU measurements are significant [37]. Fortunately, optimization is possi-
ble due to constraints, which, however, differ for various applications of IMUs, e.g., pedes-
trian trackers [27] and snow avalanches [16]. In this paper, we investigate motion that starts
and ends at standstill, resulting in physical constraints regarding translations and rotations.

The purpose of the optimization (specifically a minimization) presented in the following,
is to correct measured acceleration and angular velocity by means of polynomial functions
to derive velocity, position, and orientation, such that the error in constraints is minimized.
Hence, we do not utilize constrained optimization [38], but an optimization algorithm to
minimize errors in constraints seeking the optimal coefficients for the defined correction
polynomials. The degrees of freedom (DOF), and thus the number of polynomial terms, are
defined by the number of constraints, as one spatial constraint adds 3 DOF to the EOM.
In the case of simultaneous translation and rotation, the latter lead to nonlinear EOM, see
Eq. (14), which includes Eq. (3) and Eq. (4). To solve the nonlinear EOM we utilize the well-
known Nelder–Mead algorithm [39], which is available in Scipy [40], a common scientific
library for Python. Additionally, we investigate a simplified case and solve it analytically.
The simplified case results from pure translational motion at constant orientation, thus with-
out performing any rotations, yielding linear EOM. The analytical solution is further used to
validate the formulated minimization problem, see Sect. 6. It should be noted that applica-
tion of the following optimization method requires an initial solution for velocity, position,
and orientation derived from the motion-reconstruction method, see Sect. 2.

3.1 Constraints and correction polynomials

The measurements performed in this work always start and end at standstill, thus enabling
constraints for either measured or computed rotational and translational quantities. Neglect-
ing the Earth’s motion, a standstill IMU should solely measure gravitation by means of the
accelerometer and no angular velocity at all by means of the gyrometer. These constraints
are partially considered with a calibration, see Sect. 4. However, constraints on acceleration
and angular velocity level cannot be satisfied, as these quantities are subject to optimization,
to meet constraints on translational velocity, position, and orientation level, which will be
described in the following.

3.1.1 Rotational constraints

We already defined R0 = I3 in Sect. 2.1, as at time step i=0 no rotations were performed yet.
At time step i=n, however, the computed orientation Rn differs from a reference orientation
Rref,n due to integration errors and sensor errors. Hence,

�R = Rref,n Rn
T (17)

denotes the error in orientation. For minimization purposes, this error in orientation is further
expressed as an error in angles via the matrix logarithm [41], yielding

�θ̃θθ = log(�R). (18)
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To satisfy the constraint3

Rn
!= Rref,n, (19)

we seek the simplest spatial polynomial with three parameters, hence a constant correction
term ωc, which corrects angular velocity. In this work, the reference orientation Rref,n is
provided by means of the robot controller. However, in field experiments, orientation can be
determined with the help of an accelerometer and a magnetometer performing a so-called
Earth-frame transformation [42, 43].

3.1.2 Rotational correction polynomial

Correction of angular velocity, such that the computed rotation at time step n satisfies
Eq. (19), is performed by means of a constant term ωc, yielding

Siωωωopt,i = Siωωωi + ωc, ∀i ∈ {0,1,2, . . . , n}, (20)

where Siωωωopt and Siωωω are optimized and calibrated angular velocity, respectively.

3.1.3 Translational constraints

For a standstill IMU after a performed measurement we denote the constraint

Ivn
!= 0, (21)

as a nonmoving rigid body has zero velocity, yielding an error of �v at the end of motion,

�v = Ivn. (22)

Due to the known position by means of the robot controller (or GNSS in outdoor experi-
ments), a further constraint

Ipn
!= Ipref,n (23)

is introduced, since the calculated position pn must equal the position according to the ref-
erence pref,n provided by the robot controller (or GNSS in outdoor experiments). This leads
to a position error at the end of motion according to

�p = Ipn − Ipref,n. (24)

Of course, the constraints from Eq. (21) and Eq. (23) are also valid for IMU data prior to the
measurement. However, as sensor errors are zero due to a bias correction at the beginning
of the measurement, the constraints

Iv0
!= 0, (25)

Ip0
!= Ipref,0, (26)

are already met by proper calibration.

3Constraint definition is indicated by the (
!=) sign.
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3.1.4 Translational correction polynomial

To satisfy the constraints on translational velocity and position, respectively, Eq. (21) and
Eq. (23), we add a polynomial

aci = 0c + 1c ti , (27)

with six parameters to measured accelerations Sai , yielding optimized accelerations

Saopt,i = Sai + aci , ∀i ∈ {0,1,2, . . . , n}, (28)

where ac is the correction polynomial with a coefficient 0c for the constant term and 1c for
the linear term, respectively.

Note that as we derive a solution for Eq. (27) by means of a minimization, the constraints
from Eq. (21) and Eq. (23) are only satisfied to a certain extent, thus yielding a remain-
ing error in terminal velocity and position, see Sect. 6. The same applies to the rotational
constraint in Eq. (19). For mean values and standard deviations, derived for the conducted
experiments, of ωc, 0c, and 1c, see Appendix B.

3.2 Nelder–Mead algorithm

In this work, optimizations are performed by means of the fmin function from Scipy (ver-
sion 1.2.1), a package for scientific computing in Python [40]. The fmin function is an
implementation of the Nelder–Mead algorithm [39] with the purpose of minimizing an ob-
jective function

z = f (x) (29)

by variation of x. The minimization is initialized by an initial guess for x denoted as x0. The
minimization terminates if the absolute difference of two consecutive parameters xj−1 and
xj is less than or equal to a user-defined tolerance xtol

‖xj − xj−1‖1 ≤ xtol, (30)

and if consecutive objective function values zj−1 and zj meet the convergence criterion

‖zj − zj−1‖1 ≤ ftol. (31)

For the following, we define the tolerances

xtol = ftol = 1 × 10−9. (32)

If the minimization terminates, the evaluated parameters x that led to the smallest value of
z are denoted as optimal. However, the latter parameters could be local minima if the global
minimum was not found.

3.3 Correction of angular velocity

As orientation is required to compute translational velocity and position, see Fig. 2, it is thus
required to optimize rotations first. To derive a solution for ωc, see Eq. (20), a minimization
of the objective function f (ωc),

min
ωc ∈ R3

f (ωc) = ‖�θθθ(ωc)‖1, (33)



190 R. Neurauter, J. Gerstmayr

is performed, where �θθθ are angles describing the error in the terminal orientation Rn, de-
rived by means of the matrix logarithm. To initialize the minimization, the start values for
ωc are defined as

ωc0 = [
0 0 0

]T
. (34)

If minimization from Eq. (33) terminates, as Eq. (30) and Eq. (31) are satisfied, optimal
coefficients ωc are obtained. Therefore, the optimized angular velocity Siωωωopt from Eq. (20)
is utilized to compute the optimized incremental rotation vector S���opt following Eq. (6).
Further, the latter rotation vector is applied to Eq. (3), yielding optimized rotations

Ropt,i+1 = Ropt,i exp(S�̃��opt). (35)

Note that Eq. (33) can have multiple solutions that satisfy the constraint from Eq. (19).
Consider an experiment with a duration of 2 s and a rotation about a single axis. Then,
an angular velocity correction of ωc = π rad s−1 yields the same terminal orientation as
ωc = 0 rad s−1. Thus, we require that

‖ωc‖1 < 0.5
2π

tn
, (36)

as the expected deviation of rotations is considerably smaller than one full revolution. Note
that the minimization algorithm provides the option to include a second term in Eq. (33) in
future work, covering orientation derived from magnetometer and accelerometer investiga-
tions [24].

3.4 Correction of translational acceleration

To compute optimal accelerations, see Eq. (28), we seek a solution of the correction coeffi-
cients 0c and 1c, which are derived by minimization of the objective function f (ac),

min
0c,1c ∈ R3

f (ac) = ‖�v(ac)‖2
2 wv + ‖�p(ac)‖2

2 wp, (37)

where �v describes the error of velocity and �p is the error of the computed terminal posi-
tion compared to the reference position, see Eq. (22) and Eq. (24), respectively. In Eq. (37),
wv and wp denote weights that can be adjusted to compensate for different magnitude orders
of �v and �p, respectively. However, in this paper, the weights are equal,

wv = wp, (38)

as the orders of magnitudes are in the same range, see Appendix A. To initialize the mini-
mization from Eq. (37), the start values for 0c and 1c are defined as

0c0 = [
0 0 0

]T
, 1c0 = [

0 0 0
]T

. (39)

If the minimization from Eq. (37) terminates, optimal coefficients 0c, 1c are derived.
Thus, the optimized translational velocity and position can be derived by computation of
Eq. (13) and Eq. (14), respectively. However, optimized accelerations Saopt from Eq. (28)
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Fig. 3 Flowchart of the
optimization algorithm with the
purpose of minimizing velocity
and position errors by variation
of correction coefficients on
acceleration level (Color figure
online)

instead of measured acceleration Sa are used. In addition, a substitution of R by Ropt from
Eq. (35) is performed, yielding

Ivopt(t) =
∫ t

0

(
Ropt(τ ) Saopt(τ, ac) − Ig

)
dτ, (40)

Ipopt(t) =
∫ t

0

(∫ τ2

0

(
Ropt(τ1)

Saopt(τ1, ac) − Ig
)

dτ1

)
dτ2, (41)

for optimized velocity and position, respectively. A flowchart of the optimization is shown
in Fig. 3, covering the major steps.

3.4.1 Simplified correction without rotations

The purpose of simplification, such that the EOM rely solely on translational terms, is
twofold. First, the coefficients for the polynomial correction of accelerations can be de-
rived analytically. This further allows verification of the present optimization method from
Sect. 3.4 through comparison of solutions derived by the latter method with the analyti-
cal solutions. Secondly, investigating the influence of rotations by comparing solutions for
simultaneous translation and rotation with solutions for simplified motion is possible, see
Sect. 6.

Simplification of the general nonlinear EOM can be derived if the investigated system
has constant orientation. This leads to a linear EOM, as nonlinearity is caused by rotations.
Considering constant orientation, it follows that

Ri = I3, ∀i ∈ {0,1,2, . . . , n}, (42)
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where Ri is the rotation matrix that performs a transformation from sensor frame (S) to
initial frame (I) and I3 ∈ R

3×3 denotes the identity matrix. Thus, if orientation is constant
over time, the sensor frame (S) corresponds to the initial frame (I). Hence, the left upper
superscript is dropped in this section. By means of Eq. (42), the velocity from Eq. (40) and
the position from Eq. (41) take the simplified form of

vopt(t) =
∫

t

(a(τ ) + 0c + 1c τ − g)dτ, (43)

popt(t) =
∫

t

(∫
τ2

(a(τ1) + 0c + 1c τ1 − g)dτ1

)
dτ2, (44)

respectively. Considering Eq. (22), and comparing Eq. (13) with Eq. (43) derives

vopt,n = vn − �v

=
∫ tn

0
(a(τ ) − g)dτ +

∫ tn

0
(0c + 1c τ)dτ. (45)

Therefore,

−�v = 0c tn + 1c
t2
n

2

= 0c k0 + 1c k1. (46)

Analogous to Eqs. (45)-(46) we derive an analytical solution for �p by comparison of
Eq. (14) with Eq. (44) under consideration of Eq. (24) yielding

−�p = 0c
t2
n

2
+ 1c

t3
n

6

= 0c k2 + 1c k3. (47)

Rearranging Eq. (46) and Eq. (47) derives the system of equations in matrix form for com-
putation of the polynomial coefficients,

[
0cT

1cT

]
= 1

k0k3 − k1k2

[
k3 −k1

−k2 k0

][−�vT

−�pT

]
. (48)

4 Calibration

Calibration of low-cost IMUs is crucial, as uncalibrated IMU data can hardly be further
processed to yield consistent orientation and position [12]. Therefore, each utilized IMU is
subject to gyrometer and accelerometer calibration. The objective of the following calibra-
tions is to derive parameters that relate measured quantities to ideal (reference) quantities.
These parameters, in the form of matrices and vectors, can then be applied to raw IMU data
from any experiment to derive calibrated data. However, parameters for accelerometer and
gyrometer calibration are different and are derived from different experiments.
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4.1 Error model

This section deals with error modeling of IMUs, specifically 3-axis accelerometers and gy-
rometers. Most of these sensor errors can be classified as scaling S, nonorthogonality N,
misalignment M, and bias b, which are of a deterministic kind. A detailed description of
the latter deterministic errors can be found in [44]. Additionally, there is the stochastic noise
term r, which we, however, do not consider in the present calibration. Since some definitions
are identical for the different sensors, left-hand indices are introduced, denoting accelera-
tions (a) and angular velocities (ω).

The error models for measured translational accelerations ā ∈ R
3×n and measured angu-

lar velocities ω̄ωω ∈R
3×n are defined for one time step i ∈ {0,1,2, . . . , n} as [45]

āi = aS aN aM ai + ab + ar, (49)

ω̄ωωi = ωS ωN ωM ωωωi + ωb + ωr, (50)

where a and ωωω are calibrated translational accelerations and calibrated angular velocities,
respectively. As calibrated values are of interest for application and noise is not considered
we define the calibration matrix

C = (SNM)−1 = M−1N−1S−1, (51)

then we drop the noise terms ar and ωr, and rearrange Eqs. (49)-(50), yielding

ai = aC(āi − ab), (52)

ωωωi = ωC(ω̄ωωi − ωb), ∀i ∈ {0,1,2, . . . , n}. (53)

Note that in the proposed calibration, we compute the calibration matrix C. If the individual
scaling S, nonorthogonality N, and misalignment M terms are of particular interest, the
reader may consider [45] where the Cholesky- and LU-decomposition are used to derive the
individual components.

4.2 Angle-domain gyrometer calibration

The angle-domain calibration [45, 46] relies on a comparison of computed angles with refer-
ence angles. The reference angles are derived from a calibration measurement sequence con-
taining three successive rotations about the reference axes, which correspond to the robot-
effector coordinate system.

In the context of calibration, we define two different coordinate systems. The coordinate
system ωF is related to the wrongly scaled, nonorthogonal, and misaligned coordinate triad
(x̄, ȳ, z̄). Moreover, there is the coordinate system F that is related to the reference triad
(x, y, z), see Fig. 4. For elimination of the latter errors, we seek a solution of the calibra-
tion matrix ωC, which corrects computed angles regarding scaling, nonorthogonality and
misalignment such that

� = ωC �̄, (54)

where

� = [
1φφφ 2φφφ 3φφφ

]
(55)
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contains predefined reference rotation vectors for three single measurements in columns.
The linear independent rotation vectors of � are defined as

1φφφ = [
α 0 0

]T
, 2φφφ = [

0 β 0
]T

, 3φφφ = [
0 0 γ

]T
, (56)

where α, β , and γ define the angle of rotation about the x-, y-, and z-axis, respectively.
Hence, we rotate the IMU about the x-axis by the angle α in the first measurement, rotate
about the y-axis by the angle β in the second measurement, and rotate about the z-axis by
the angle γ in the third measurement. The matrix

�̄ = [
1φ̄φφ 2φ̄φφ 3φ̄φφ

]
(57)

is computed from averaged, bias-corrected, measured local angular velocities from three
individual measurements. Hence, each column of Eq. (57) results from the multiplication of
the averaged angular velocity with the duration T = n�t , similar to [9],

φ̄φφ = T
1

2(n − 1)

n−1∑
i=0

(
(Si ω̄ωωi − ωb) + (Si ω̄ωωi+1 − ωb)

)
, (58)

utilizing the trapezoidal rule for averaging, in order to be consistent with the time integration,
see Eq. (6). Thus, �̄ represents rotations in ωF while rotating about the axes of F . Under the
assumption of small errors in the angular velocities, we assume that �̄ is regular. Therefore,
rearranging Eq. (54) gives the calibration matrix

ωC = � �̄
−1

. (59)

This calibration matrix can directly be applied to the measured angular velocities, see
Eq. (53). The bias ωb corresponds to the average angular velocity at standstill

ωb = 1

j

∑
j

ω̄ωωj , (60)

and is determined using j samples. Within this paper, the bias is determined at the begin-
ning of a measurement considering 400 samples (equals 1 second). In addition, the bias is
not only determined in the calibration measurements, but also in every other experiment,
which can easily be achieved by persisting at standstill for at least 1 second at the beginning
of a measurement. Note that nonorthogonality and misalignment errors are time invariant,
however, scaling and bias errors are time and temperature dependent [45]. Thus, the best
motion-reconstruction results are obtained by calibrating directly before an experiment.

4.3 Accelerometer calibration

The accelerometer coordinate system aF is also subject to wrong scaling, nonorthogonality,
misalignment, and bias. Thus, we utilize k samples of measured accelerations ā from a
standstill IMU at different orientations and corresponding reference accelerations a to derive
a calibration matrix aC and bias ab. For acquisition of IMU accelerations and reference
accelerations, see Sect. 5.4.1. To derive a solution for calibration matrix aC and bias ab we
solve a least-squares minimization problem. Thus, we rearrange Eq. (52) into the steady-
state form yielding

y = P x, (61)
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Fig. 4 Reference coordinate
system (x, y, z) denoted as F and
wrongly scaled, nonorthogonal,
and misaligned coordinate
system of the sensor (x̄, ȳ, z̄)
denoted as F . Angles ψ describe
nonorthogonality. Angles ζ

describe misalignment between
an already orthogonalized sensor
coordinate system (x̄⊥ , ȳ⊥ , z̄⊥)
and F (Color figure online)

with

y = a , y ∈R
3×k (62)

P = [
aC aCab

]
, P ∈R

3×4 (63)

x =
[

ā
−1

]
, x ∈R

4×k. (64)

In Eqs. (61)-(64), y are the calibrated accelerations, P defines a parameter matrix including
all calibration parameters, and x is composed of measured accelerations, and (−1) for sub-
traction of bias from measured accelerations. Equation (61) is an overdetermined system of
equations with k equations and 12 unknown parameters. Thus, a solution for the parameter
matrix P is derived by

P = y x+, (65)

utilizing the Moore–Penrose generalized inverse [47] x+ = xT(x xT)−1 ∈ R
k×4 as P ∈ R

3×4

is not a square matrix. Note that (65) is a minimal norm solution to the Least-Squares mini-
mization problem [48]

min(P)‖Px − y‖2
2. (66)

5 Measurement-data acquisition

The presented algorithms are developed with the overall objective of motion reconstruction
of particles in snow avalanches, where the start- and end-orientation can be computed using
magnetometer and accelerometer data [16]. Additionally, the position can be determined
utilizing a GNSS. However, these orientations and positions are not valid for validation of
computed trajectories as there is no reference. Thus, we use an industrial manipulator to
move along predefined trajectories, where reference orientations and positions are provided
by the robot controller. As compared to [8–10, 12], calibration and experiments are per-
formed on a manipulator without changing the clamping of the IMU in between. Hence,
each IMU is calibrated with respect to the robot coordinate system, which is further used to
represent the reference trajectories and evaluate the deviation of computed trajectories. Ad-
ditionally, each experiment is performed five times, utilizing five individual IMUs (S1–S5)
of the same type successively. To minimize orientation and position errors due to mount-
ing, we utilize a special flange for backlash-free clamping of the IMUs. Once an IMU is
clamped, we perform two experiments for calibration followed by one experiment with mo-
tion at constant orientation and one experiment with simultaneous translation and rotation.
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Fig. 5 Measurement system
setup with a 6R manipulator to
perform motion and an IMU on
the effector to measure motion.
Additionally, the coordinate
system of the robot effector
corresponds to the coordinate
system of the calibrated IMU
accelerometer and gyrometer
(Color figure online)

In each experiment, we measure an additional two seconds prior and subsequent to motion,
thus at standstill. This standstill data is used for sensor-bias determination and is cut out
thereafter.

5.1 Measurement system setup

Measurement data from the following experiments were acquired by a measuring system
called AvaNode [16].

5.1.1 Measuring system (AvaNode)

The AvaNode was initially built to capture the inflow dynamics of snow avalanches and pro-
vides functions that are neither used for nor affect the presented experiments, e.g., retrieval
systems, GNSS, and magnetometer. However, we utilized the main component of the lat-
ter system; the IMU of type MPU9250.4 This IMU is mounted in a 3D printed cube with
100 mm edge length, such that the IMU coordinate system coincides with the geometric
center of the cube. There is also a robust housing for infield measurements, which is, how-
ever, not used in the present paper. Data provided by the IMU is stored on a SD-Card by
means of an Adafruit Feather m0 microcontroller with a sampling rate of 400 Hz.

5.1.2 Manipulator

To perform multiple experiments with individual IMUs with the same motion, we utilized
an industrial manipulator with 6 DOF of type Stäubli TX2-90L, see Fig. 5. This manipula-
tor has a repetitive positioning accuracy of ±0.035 mm, a reach of 1200 mm, and is able to
move objects ≤6 kg. In addition, the robot controller provides reference positions and orien-
tations during motion. However, this reference data is provided with a sampling frequency
of 250 Hz. Thus, we resampled measured reference data to 400 Hz.

5.2 Translational motion at constant orientation

The experiment with translational motion at constant orientation comprises three identical
trajectories performed in succession with a standstill period of 1 s in between, as shown in
Fig. 6. In addition, each of these three trajectories consists of three linear translations in the

4Sensor settings: accelerometer range: ±16 g; gyrometer range: ±2000◦/s.
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Table 1 Positions with respect to
the initial frame (I) in meters at
standstill periods of the
experiment at constant
orientation. The markers denote
time stamps of the standstill
periods corresponding to Fig. 6

marker a b c d e f

x-axis 0 0 −1 −1 0 0

y-axis 0 0 0 0.75 0.5 0

z-axis 0 1 1 1 1 0

Fig. 6 Reference positions with
respect to the initial frame (I),
provided by the Stäubli robot
controller, for the experiment at
constant orientation and the
experiment with simultaneous
translation and rotation (Color
figure online)

direction of one sensor axis at a time and two subsequent planar linear translations thereafter,
see Fig. 6. In between the individual translations there is a standstill period of 0.5 s. The time
stamps and position values corresponding to standstill periods denoted as (a, b, c, d, e, f) are
shown in Fig. 6 and Table 1, respectively. The experiments were conducted by moving the
manipulator at maximum joint speed resulting in peak values of 2 m s−1 for the z-axis and
1.5 m s−1 for the x- and y-axes velocities. Further, the manipulator accelerated the IMU
with the acceleration peaking at ≈10 m s−2 according to the measured accelerations shown
in Fig. 7a, where gravity effects the y-axis. The errors in measured angular velocities are
caused by translational acceleration due to sensor crosscoupling and are shown in Fig. 7b.

5.3 Simultaneous translation and rotation

In the present section, the translational part is equivalent to the motion described in Sect. 5.2,
however, with simultaneous rotations. The IMU is rotated about its axes by an angle accord-
ing to Table 2. Rotation is performed such that rotational increments are evenly distributed
over the course of translation. In Fig. 8, measured accelerations and angular velocities for
the measurement with simultaneous translation and rotation are displayed. As in Sect. 5.2,
gravity in Fig. 8a effects the y-axis of the initial frame and is eliminated following Eq. (12).
In Fig. 8b, we see the correspondence of angular velocities to the rotations denoted in Ta-
ble 2.

5.4 Calibration measurements

To calibrate the accelerometer and gyrometer, applying the methods from Sect. 4, it is re-
quired to perform specific measurements for calibration data acquisition.

5.4.1 Accelerometer measurements for six-position calibration

In this section, we present the measurements performed with the purpose of accelerometer
calibration. Here, an IMU was placed in six different orientations utilizing the manipulator,
such that each of the three sensor axes is successively parallel to the gravity vector and has an
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Fig. 7 Calibrated measurement data for the experiment at constant orientation on the example of S2 (Color
figure online)

Table 2 Rotations with respect to the sensor frame (S) in radians between standstill periods of the exper-
iment with simultaneous translation and rotation. The markers denote time stamps of the standstill periods
corresponding to Fig. 6

marker a–b b–c c–d d–e e–f

x-axis π /2 0 0 -π /2 0

y-axis 0 -π /2 0 -π /2 0

z-axis 0 0 -π /2 π /2 π /2

Fig. 8 Calibrated measurement data for the experiment with simultaneous translation and rotation on the
example of IMU S2 (Color figure online)

equal direction for the first three measurements and the opposite direction for the remainder.
The sequence of the six orientations as we used it in this paper is shown in Fig. 9. In each
orientation, the IMU was held for 5 s to measure accelerations at standstill, corresponding
to reference accelerations

1a =
⎡
⎣ 0

0
−g

⎤
⎦ , 2a =

⎡
⎣0

0
g

⎤
⎦ , 3a =

⎡
⎣0

g

0

⎤
⎦ , 4a =

⎡
⎣g

0
0

⎤
⎦ , 5a =

⎡
⎣ 0

−g

0

⎤
⎦ , 6a =

⎡
⎣−g

0
0

⎤
⎦ , (67)



A novel motion-reconstruction method for inertial sensors with constraints 199

Fig. 9 Individual orientations of the six-position calibration in chronological sequence as they were con-
ducted in this paper. All orientations are shown with respect to a common viewpoint

for orientations (1) to (6) according to Fig. 9. Note that in Eq. (67), accelerations for one time
step are denoted. Further, note that due to their functionality, an axis of an IMU measures
positive gravitation when this sensor axis is parallel, but points in the opposite direction
to the gravitation vector. Apparently, the raw measurement data also comprises the motion
from one orientation to another. Therefore, the latter motions are cut from the measurement
data. The remaining data, which are measured accelerations at standstill, are arranged into a
sequence resulting in an acceleration vector for calibration

ā = [
1ā 2ā 3ā 4ā 5ā 6ā

]
, (68)

and corresponding reference accelerations

a = [
1a 2a 3a 4a 5a 6a

]
. (69)

The acquired acceleration vectors ā and a can then be utilized to compute calibration
parameters, see Sect. 4.3.

5.4.2 Gyrometer measurements for calibration

The angle-domain calibration denotes comparison of computed angles with reference an-
gles to derive calibration parameters. Computed angles result from time integration of the
measured angular velocities and the reference angles are provided by the robot controller.
For this purpose, we performed measurements containing successive rotations about the ref-
erence frame axes. In general, the rotation angles about x-, y-, and z-axes are defined as α,
β , and γ , respectively. In the present gyrometer calibration measurements, we chose

α = β = γ = π rad. (70)

Therefore, Eq. (55) takes the special form of

� = π

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (71)

Rotations by means of the manipulator are performed such that each rotation is followed
by an opposite rotation, back to the initial orientation, see Fig. 10. In addition, there is one
common pivot for all rotations that coincides with the center of the reference coordinate
system F . This results in a measurement comprising solely rotations without translations.
In between the individual rotations, which are performed in the sequence shown in Fig. 10,
there is a standstill period of 2 s, see Fig. 15 displaying the example of IMU S2.
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Fig. 10 Successive rotations about one axis of the gyrometer for calibration purpose (Color figure online)

Note that there is also the approach to calibrate in the angular velocity domain [12]. How-
ever, this requires that the sensor is rotated with constant angular velocity. Apparently, we
could realize this approach by means of the manipulator. However, the presented approach
does not require special equipment and is therefore preferred.

6 Experimental results

The methods for motion reconstruction and optimization, satisfying constraints on veloc-
ity, position, and angular velocity by means of polynomial corrections on measured quanti-
ties, were applied to experimental measurement data. Specifically, two different experiments
(motion with and without rotation) were performed multiple times by means of an indus-
trial robot. Data was successively acquired by five individual IMUs of the same type. Each
of the IMUs underwent calibration. Additionally, reference positions and orientations were
provided by the robot controller.

The presented calibration, motion reconstruction, and optimization methods were com-
puted in Python (version 3.7) and were utilized to derive the results in the following. Input-
file and data-array handling, computation of mean values and norms was performed by
means of Numpy (version 1.16.4) [49]. Reference data resampling and the Nelder–Mead
optimization algorithm were utilized from Scipy (version 1.2.1) [40]. In addition, parts of
Sect. 2 regarding Lie groups were computed with the help of Exudyn (version 1.0.151)
[50].

6.1 Reconstructed motion without optimization

In this section, the motion-reconstruction algorithm from Sect. 2 was applied to calibrated
measurement data. The latter data was acquired from two different experiments. Specifically,
one experiment with translations at constant orientation and another experiment with the
same translations, however, with simultaneous rotations, see Fig. 7 and Fig. 8, respectively.
Each of the two experiments was performed five times, using five successively mounted
IMUs of the same type, denoted as S1–S5. For every IMU, the experiment with rotations
was conducted first, followed by the experiment without rotations.

The differences between the computed positions and reference positions for both exper-
iments are shown in Fig. 11. In Fig. 11 and the following, the position errors sperr for IMU
Sj are represented by the Euclidean norm

j perr,i = ‖j pi − pref,i‖2, ∀i ∈ {0,1,2, . . . , n} and ∀j ∈ {1,2, . . . ,5}, (72)

where p is a vector of spatial positions derived from Eq. (14) and pref are corresponding
reference positions provided by the robot controller. Figure 11 and the following error plots
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Fig. 11 Euclidean norm of position errors perr for experiments at constant orientation (a) and with simulta-
neous translation and rotation (b) prior to optimization. S1–S5 denote five individual IMUs that correspond
for (a) and (b). Additionally, the mean value of position errors of all IMUs is displayed (Color figure online)

Fig. 12 Euclidean norm of velocity errors verr from IMU S1–S5 for experiments at constant orientation (a)
and with simultaneous translation and rotation (b) prior to optimization. Additionally, the mean value of
velocity errors of all IMUs is displayed (Color figure online)

also include a mean value of position errors derived by

p̂err,i = 1

5

5∑
j=1

j perr,i , ∀i ∈ {0,1,2, . . . , n}. (73)

The errors in velocity are derived analogous to Eq. (72) and Eq. (73), respectively, yielding
sverr and v̂err, see Fig. 12. Referring to the mean values of errors in Fig. 11a and Fig. 11b,
we see an approx. linear and quadratic error increase, respectively. This yielded an average
maximum error of 5.6 m after 23 s for the experiment at constant orientation, where the
absolute maximum error was 8.7 m, see Fig. 11a. For the experiment with rotations, there
was an average maximum error of 76.6 m after 23 s and a maximum error of 99 m for
sensor S4, see Fig. 11b. Thus, for an experiment with a duration of 23 s, we investigated an
approximately 13 times higher maximum error for measurements with rotations compared
to measurements at constant orientation. The error values for each individual sensor are
shown in Table 3 and Table 5 for experiments at constant orientation and experiments with
rotations, respectively.
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Fig. 13 Computed position (a) and error of position (b) by means of optimized translational acceleration for
the experiment at constant orientation. Here, (b) shows the norm of the deviation of computed positions to
reference positions, not deviation of norms from (a) (Color figure online)

Table 3 Maximum and average
error in position prior and
subsequent to optimization for
the experiment at constant
orientation for sensors S1–S5

value unit S1 S2 S3 S4 S5

nonopt. max(perr) m 3.145 4.161 5.171 8.703 6.819

average(perr) m 1.315 1.202 2.228 3.410 2.330

optimized max(perr) m 0.340 0.388 0.609 0.995 0.615

average(perr) m 0.204 0.193 0.330 0.434 0.274

6.2 Optimization of experiments at constant orientation

The present section deals with optimization of reconstructed velocities and positions derived
from the experiment at constant orientation, see Fig. 11a. Specifically, as R = I3 in this
case, see Eq. (42), we applied the optimization from Sect. 3.4.1 to measured calibrated
accelerations. In Fig. 13a, computed positions of all IMUs, as well as a reference position
are shown. Comparing Fig. 13b to Fig. 11a, it can be seen that the terminal position error was
eliminated by means of the present optimization. The deviation of the position constraint,
see equation Eq. (23), is in the range of 10−9 and depends on the tolerance settings of the
Nelder–Mead algorithm, see Sect. 3.2. The same applies to the deviation of the velocity
constraint, see Eq. (21). For actual values of terminal velocity and position, we refer to
Table 6 in Appendix A. In contrast to Sect. 6.1, the maximum error of optimized positions
was approximately at measurement half-time, see Fig. 13b. Referring to the mean value
in Fig. 13b, the error increased from zero to the maximum value in the first half of the
measurement and decreased to zero in the second half. Additionally, the maximum of the
mean error decreased from 5.6 m to 0.56 m, thus by approximately 90%, see Fig. 11a and
Fig. 13b, respectively.

6.2.1 Validation of optimization with analytical solution

To validate the present Nelder–Mead optimization we compare the acceleration correction
coefficients from Sect. 6.2 with their analytical solution, derived in Sect. 3.4.1. Table 4
shows mean values of the correction coefficients of sensor S2, derived from both methods.
In addition, Table 4 shows the errors of the correction coefficients, derived by means of the
optimization, with respect to the analytical solution. These errors are in the range of 10−6

and thus validate the functionality of the optimization for the present work.
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Table 4 Correction coefficients for sensor S2 of the polynomial (ac = 0c+1c t ) to satisfy velocity constraints
derived analytically and with Nelder–Mead optimization. In addition, the error of the Nelder–Mead solution
is compared to the analytical solution for sensor S2

term axis analytical solution optimization solution error

0c (constant) x −7.52881 × 10−3 −7.53568 × 10−3 6.86658 × 10−6

y 6.37839 × 10−3 6.37222 × 10−3 6.16618 × 10−6

z 6.39584 × 10−3 6.39184 × 10−3 3.99919 × 10−6

1c (linear) x −8.80620 × 10−4 −8.80117 × 10−4 −5.03011 × 10−7

y −1.65037 × 10−3 −1.65001 × 10−3 −3.57965 × 10−7

z −1.21826 × 10−3 −1.21804 × 10−3 −2.16015 × 10−7

Fig. 14 Computed position (a) and error of position (b) by means of optimized angular velocity and optimized
translational acceleration for the experiment with simultaneous translation and rotation. Here, (b) shows the
norm of deviation of computed positions to reference positions, not deviation of norms from (a) (Color figure
online)

6.3 Optimization of experiments with simultaneous translation and rotation

The optimization was also applied to IMU data acquired from experiments with simulta-
neous translation and rotation. Hence, angular velocity and acceleration were optimized to
satisfy terminal orientation, velocity, and position constraints.

In Fig. 14a, the positions with respect to the start position for all sensors, as well as a ref-
erence position are shown. The remaining errors subsequent to optimization are displayed
in Fig. 14b. In addition, Fig. 14b provides the mean value of remaining errors from sen-
sors S1–S5. This mean error peaked at 3.6 m at approx. measurement half-time and thus
decreased by approximately 95% compared to the maximum value of the mean errors of
nonoptimized positions, see Fig. 11b. However, the worst performance of the optimization
was investigated for sensors S2 and S5 with an error decrease of approximately 92%. The
optimization yielded best results for sensor S4, decreasing the maximum error from 99 m
to 3.4 m and thus by approximately 96%. In addition, the average error over the measure-
ment duration also decreased by approximately 93% with respect to mean values from all
5 sensors, see Table 5. As the position error is mainly driven by measurement duration, we
assume that evaluation of snow-avalanche measurement data will yield errors in the range
of the presented errors, i.e., between 2 m and 5 m, see Fig. 14b. Compared to typical travel
distances of particles in snow avalanches, which are between 115 m and 575 m for a snow
avalanche with 23 s duration [51], the relative position error is 0.35% to 4.35%.
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Table 5 Maximum and average error in position prior and subsequent to optimization for the experiment
with simultaneous translation and rotation for sensors S1–S5

value unit S1 S2 S3 S4 S5

nonopt. max(perr) m 73.070 57.491 90.088 99.031 64.994

average(perr) m 19.629 17.492 23.588 26.006 18.809

optimized max(perr) m 3.989 4.714 2.357 3.395 4.966

average(perr) m 2.165 2.548 1.244 1.520 2.711

Fig. 15 Angular velocity prior and subsequent to the angle-domain calibration on the example of IMU S2
(Color figure online)

6.4 Sensor calibration

In this section we show IMU measurement data prior and subsequent to calibration on the
example of IMU S2.

6.4.1 Gyrometer calibration

The application of the angle-domain calibration, see Sect. 4.2, on raw data from the mea-
surement described in Sect. 5.4 yields calibrated angular velocity as shown in Fig. 15b. The
associated raw data is displayed in Fig. 15a. For the example of IMU S2, the computed
calibration matrix and bias are, respectively,

ωC =
⎡
⎣ 1.00915106 −0.02059929 0.01363541

0.01371188 1.00421565 −0.00048151
−0.01674715 −0.00008789 1.00826100

⎤
⎦ , (74)

ωb = [−1.27108 × 10−2 −1.58370 × 10−2 1.09948 × 10−2
]T

rad s−1, (75)

and were derived utilizing the angle-domain calibration from Sect. 4.2.
Note that the z-axis components, while rotating about the y-axis, see Fig. 15, result from

the manipulator crossing a singularity. Comparing the values near zero from Fig. 15a and
Fig. 15b, we can see an improvement regarding nonorthogonality. However, more accurate
calibration may be derived considering additional rotations in the opposite direction instead
of only three rotations, as in the presented calibration method. The scaling error is in the
subpercent range, as shown in the diagonal of Eq. (74).
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Fig. 16 Translational acceleration prior and subsequent to the six-position calibration on the example of IMU
S2 (Color figure online)

6.4.2 Accelerometer calibration

The raw data derived from the six-position calibration measurement, see Sect. 5.4, is shown
in Fig. 16a. Applying the calibration, derived in Sect. 4.3, yields angular velocities according
to Fig. 16b. The calibration parameters associated to IMU S2, and thus Fig. 16, were derived
by applying the calibration from Sect. 4.3 yielding a calibration matrix

aC =
⎡
⎣ 0.99752299 −0.01784329 0.01199042

0.01783147 0.99824794 −0.00975371
−0.01338447 0.00995222 0.99040812

⎤
⎦ , (76)

and bias

ab = [−8.27747 × 10−2 −1.48133 × 10−1 1.68094 × 10−2
]T

m s−2. (77)

7 Conclusion

Due to stochastic and deterministic errors of IMU measurement data, the deviation of the
computed position and orientation increases with measurement duration. Therefore, we pro-
posed a novel optimization method for motion reconstruction of a rigid body. This method
corrects measured acceleration and angular velocity by means of correction polynomials,
such that the deviations in constraints at the end of motion are minimized. To test the per-
formance of the optimization, two experiments, each with a duration of 23 seconds, were
conducted using an industrial manipulator. The two experiments, one translational motion at
constant orientation and one motion with simultaneous translation and rotation, were mea-
sured by five individual calibrated IMUs of the same type successively. Immediately prior to
the experiments, each IMU was calibrated by applying the six-position calibration and the
angle-domain calibration to the accelerometer and gyrometer, respectively. As we utilized
an industrial manipulator, misalignment between accelerometer and gyrometer is corrected
with respect to a common coordinate system. The derived motion-reconstruction method and
optimization method were then applied to the measurement data of the five IMUs. A compar-
ison of results prior and subsequent to optimization provided convincing evidence in favor
of the presented optimization. For the experiment at constant orientation, the optimization
yielded an average maximum position error decrease of 90% for five IMU measurements.
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Table 6 Terminal velocity and position for the experiment at constant orientation for sensors S1–S5. vn and
pn denote velocity and position prior to optimization, respectively. vopt,n and popt,n are derived terminal
velocity and position, respectively, utilizing the proposed optimization method

value unit S1 S2 S3 S4 S5

‖vn‖2 m s−1 0.23 0.53 0.22 0.56 0.56

‖pn‖2 m 3.15 4.16 5.17 8.70 6.82

‖vopt,n‖2 m s−1 4.80 × 10−9 5.59 × 10−9 6.12 × 10−9 6.17 × 10−9 8.47 × 10−9

‖popt,n‖2 m 8.20 × 10−9 7.67 × 10−9 4.52 × 10−9 2.84 × 10−9 9.30 × 10−9

Table 7 Terminal velocity and position for the experiment with simultaneous translation and rotation for
sensors S1–S5. vn and pn denote velocity and position prior to optimization, respectively. vopt,n and popt,n
are derived terminal velocity and position, respectively, utilizing the proposed optimization method

value unit S1 S2 S3 S4 S5

‖vn‖2 m s−1 7.58 5.25 10.62 11.54 5.79

‖pn‖2 m 73.07 57.49 90.09 9.90 × 101 64.99

‖�θθθ(R)‖1 rad 8.95 × 10−2 1.03 × 10−1 1.32 × 10−1 1.09 × 10−1 3.75 × 10−2

‖vopt,n‖2 m s−1 2.70 × 10−9 1.77 × 10−8 4.71 × 10−9 6.13 × 10−9 3.42 × 10−9

‖popt,n‖2 m 7.95 × 10−10 8.47 × 10−9 1.15 × 10−9 5.43 × 10−9 2.22 × 10−9

‖�θθθ(Ropt)‖1 rad 7.55 × 10−8 8.11 × 10−8 6.82 × 10−8 3.22 × 10−3 1.00 × 10−7

Moreover, optimization of simultaneous translation and rotation decreased the average max-
imum position error by 95%. In addition, the average position error for the experiment at
constant orientation and the experiment with rotations decreased by, respectively, 86% and
93%. Thus, the results utilizing the proposed methods contribute significantly toward the
minimization of trajectory deviations in inertial-motion reconstruction. Future research will
be conducted regarding the application of these methods to snow-avalanche measurement
data. Additionally, this method does not prevent sensor fusion; hence a combination may
lead to even more accurate motion reconstruction, e.g., applying the derived optimization
method to Kalman-filtered data.

Appendix A: Constraint compliance

In this paper, optimization is utilized to minimize deviations of computed quantities with
respect to constraints. Thus, constraints are satisfied to a certain extent. The remaining de-
viation for the experiment at constant orientation and the experiment with simultaneous
translation and rotation are, respectively, shown in Table 6 and Table 7.

Appendix B: Correction coefficients

Mean value μ and standard deviation σ for correction coefficients of sensors S1–S5 are
derived by means of Numpy functions numpy.mean and numpy.std, respectively, for
the experiment at constant orientation (Table 8) and simultaneous translation and rotation
(Table 9).
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Table 8 Mean value and
standard deviation of correction
coefficients for the experiment at
constant orientation

value μ σ

0c 8.600 × 10−3 1.713 × 10−2

1c −1.035 × 10−3 9.604 × 10−4

Table 9 Mean value and
standard deviation of correction
coefficients for the experiment
with simultaneous translation and
rotation

value μ σ

0c 5.185 × 10−3 1.297 × 10−1

1c −2.235 × 10−4 8.854 × 10−3

ωc −2.839 × 10−4 3.284 × 10−3
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