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Abstract
Design and optimization of flexure mechanisms and real time high bandwidth control of
flexure based mechanisms require efficient but accurate models. The flexures can be mod-
eled using sophisticated beam elements that are implemented in the generalized strain for-
mulation. However, complex shaped frame parts of the flexure mechanisms could not be
modeled in this formulation. The generalized strain formulation for flexible multibody anal-
ysis defines the configuration of elements using a combination of absolute nodal coordinates
and deformation modes.

This paper defines a multinode superelement in this formulation, i.e., an element having
its properties derived from a reduced linear finite element model. This is accomplished by
defining a local element frame with the coordinates depending on the absolute nodal coordi-
nates. The linear elastic deformation is defined with respect to this frame, where rotational
displacements are defined using the off-diagonal terms of local rotation matrices. The ele-
ment frame can be defined in multiple ways; the most accurate results are obtained if the
resulting elastic rotations are as small as possible. The inertia is defined in two different
ways: the so-called “full approach” gives more accurate results than the so-called “corota-
tional approach” but requires a special term that is not available from standard finite element
models. Simulations show that (flexure based) mechanisms can be modeled accurately using
smart combinations of superelements and beam elements.

Keywords Model order reduction · Flexible multibody dynamics · Component mode
synthesis · Floating frame of reference formulation · Absolute nodal coordinate
formulation · Corotational formulation
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1 Introduction

Design and optimization of flexure mechanisms and real-time high-bandwidth control of
flexure-based mechanisms require efficient, but accurate models. The flexures can be mod-
eled using beam elements [1–3]. Sophisticated beam elements [4, 5] for the modeling of
flexures have been derived and implemented in the generalized strain formulation [6]. How-
ever, the frame parts of flexure mechanisms can have complex shapes (see, for example, the
spherical joint [2] in Fig. 11) and can therefore not be modeled with beam elements.

Efficient modeling of arbitrarily shaped parts requires reduced order models. Reduced
order models are finite element models, the (linear) deformation of which is reduced to a
few generalized coordinates [7, 8] (also referred to as component mode synthesis [9]). By
using these models, arbitrarily shaped bodies can be defined by a single element with few
degrees of freedom. In several formulations, such an arbitrary shaped element is called a
superelement [10–13].

A two-node superelement is derived in the generalized strain formulation [12, 13].
However, many frame parts are connected to more than two other components such that
these frame parts cannot be modeled using the two-node superelement. This paper intro-
duces a superelement with an arbitrarily number of interfaces, which will be referred to as
Generalized-strain Multinode Superelement (GMS).

Figure 1 gives an overview of the geometrically nonlinear multibody formulations and
nonlinear finite element formulations in order to show the relation of the GMS with respect
to existing formulations, as detailed below. All formulations define the configuration with
respect to a global reference frame (also known as inertial frame). The formulations are
categorized based on the type of coordinates that are used as degrees of freedom. In this
paper the term “degrees of freedom” refers to the unknown coordinates that appear in the
equation of motion. Other overviews of the different formulations can be found in [14–17].
In contrast to these papers, the current overview does not distinguish between multibody
analysis (i.e., modeling physical components as a whole) and finite element analysis (i.e.,
partitioning physical components in multiple standard elements) as most formulations can
be used for both analyses. The terminology in the literature about these two analyses is
slightly different from each other, in this paper the following terms are used: “element” is
used for modeling parts, “node” for the connections between the elements, and “element
frame” is the local frame that defines the position and orientation of an element. “Absolute
coordinates” are coordinates with respect to the global frame, while “local coordinates” are
coordinates defined with respect to the element frame.

Two categories of formulation can be distinguished based on the degrees of freedom that
are used to define the large motion of an element (the two columns in Fig. 1). One category
uses the absolute nodal coordinates of the elements, i.e., the position (and orientation) of
the nodes with respect to the global frame. The formulations in the other category use an
element frame for each element to define its large motion. In these formulations the element
frame is typically referred to as the floating frame and the formulations are referred to as the
floating frame formulation, see, e.g., [18]. An advantage of using absolute nodal coordinates
is that constraints can be easily applied: elements can be connected to each other by shar-
ing nodes, and the displacement of some nodes can be prescribed. In other words, applying
constraints eliminates degrees of freedom. In the floating frame formulations, the constraint
equations are generally nonlinear relations between the coordinates of the element frames
and the deformation coordinates of the elements. These equations are generally solved using
the Lagrange multiplier method, increasing the total number of unknowns in the equation of
motion. An advantage of the floating frame formulation is that small elastic deformation of
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Fig. 1 Overview of formulations for finite element and multibody analysis, categorized based on the coordi-
nates that are used as degrees of freedom

the element can be described linearly, relative to the element frame. This facilitates the use
of arbitrarily shaped reduced-order models in the formulation, see, e.g., [19–21]. In [22], a
slightly modified floating frame formulation was proposed, based on the model order reduc-
tion described in [23], which results in a constant mass matrix at the expense of additional
deformation modes. The use of reduced order models is also possible for all formulations
that use an element frame, as indicated in Fig. 1. Because of this potential to model arbitrary
shaped bodies, the floating frame formulation is most often used in multibody simulations if
the displacements due to elastic deformation of the physical components are small. The ab-
solute nodal coordinate formulations are the preferred method for (nonlinear) finite element
simulations, the finite element models generally contain many (standard) elements, making
it important to keep the number of degrees of freedom as low as possible.

The second division of the categories in Fig. 1 defines whether an element based on
absolute nodal coordinates uses an element frame (often called corotational frame in these
formulations) to describe the rigid rotation and to define the elastic deformation relative to
this frame. In contrast to the floating frame formulation, the coordinates of these frames are
not necessarily degrees of freedom (i.e., they do not appear as unknowns in the equation of
motion) but their coordinates are implicitly defined as functions of the degrees of freedom.
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The method that applies this approach is the corotational formulation, see, e.g., [24–26].
Because the elastic deformation can be described linearly to this frame, reduced-order mod-
els can be used in the corotational formulation, see, e.g., [11, 27, 28]. The inertial frame
formulation (see, e.g., [29]) does not use element frames to distinguishes the rigid motion
from the flexible motion. Therefore, the nonlinear Green–Lagrange strain definition is used,
which is valid under large rigid motions. An “absolute nodal coordinate formulation” that
is developed by Shabana [30] is a formulation in terms of absolute nodal coordinates that
defines the orientations of the nodes using slopes. In this formulation corotational elements
[30, 31], as well as inertial frame elements [32], can be developed.

The two rows in Fig. 1 define whether the degrees of freedom contain generalized coor-
dinates related to deformation modes in order to define the stiffness. In case of the floating
frame formulation, the inclusion of these deformation modes is the only way to include flex-
ibility of the elements. In the absolute nodal coordinate formulations, the deformation of
elements is already implicitly defined by the displacements of the nodes.

The generalized strain formulation [6, 33, 34] (also referred to as the natural modes’
approach [35–37]) defines the deformation of an element using deformation modes. The
generalized coordinates associated to these modes are expressed as analytical functions of
the absolute nodal coordinates. These generalized coordinates are called “generalized defor-
mations” (in other literature sources also referred to as “generalized strains” although they
are related to displacements instead of strain). The generalized deformations remain constant
under rigid body motion. Using proper definitions, the deformation modes can be given a
physical meaning like the elongation of a beam element. The constitutive law is expressed
in terms of the deformation modes. Because the generalized deformations are independent
of rigid motions, the resulting constitutive equations are linear or relatively simple nonlin-
ear equations, in contrast to the inertial frame formulation. Rigid elements can be modeled
by applying constraints on all the deformation modes. Also part of the deformation modes
can be constraint to keep only the most important flexibility. This is an advantage compared
to the inertial frame and corotational frame formulations which only allow the modeling
of flexible elements. The inertia forces of the element are defined using the absolute nodal
coordinates.

A challenge in the generalized strain formulation is the definition of suitable deformation
modes. For many default elements deformation modes are defined, like trusses, beams [4,
38], hinges [38], and wheels [39]. Also a two-node superelement [12, 13] was formulated,
based on the deformation modes of beam elements. However, a superelement with more
than two interface nodes has not been derived. Therefore, arbitrarily shaped bodies that are
connected to more than two other parts cannot be easily modeled in the generalized strain
formulation.

This paper presents a multinode superelement by introducing an implicit element frame,
using the relations derived for the corotational superelement in [27]. The coordinates of the
element frame are not part of the degrees of freedom, but the coordinates can be obtained
from the degrees of freedom with a Newton–Raphson iteration. Deformation modes are
defined using the local coordinates of the nodes to make the superelement applicable in the
generalized strain formulation. Section 2 summarizes the generalized strain formulation and
introduces the notation used throughout the paper. Section 3 formulates the superelement.
An expression for the deformation modes can be chosen by the user, Sect. 4 shows three
general ways to define these modes. The superelement is validated with examples in Sect. 5.
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Fig. 2 Generalized strain
formulation of a two-dimensional
beam element, L0 is the
undeformed length, ε1 defines
the elongation, and ε2, ε3 define
the bending

2 Summary of the generalized strain formulation

This section presents the generalized strain formulation, using the two-dimensional beam
element in Fig. 2 as an example. Detailed derivations for this specific element will not be
given as the purpose of this section is only to give an impression of the generalized strain
formulation in general. The details for many element types can be found in the literature
cited in the introduction.

2.1 Notation for coordinates

The vector rO,O
p defines position of interface node p (lower index) with respect to the global

frame O (second upper index) expressed in the orientation of global frame O (first upper
index). The global orientation of p is denoted by φO

p . In the two-dimensional case, this is
the in-plane rotation; qO,O

p denotes all the absolute coordinates of node p,

qO,O
p =

{
rO,O

p

φO
p

}
. (2.1)

The lower index “All” will be used to define all coordinates that define the configuration of
an element. These coordinates are also denoted by x,

x = qO,O
All =

{
qO,O

p

qO,O
q

}
. (2.2)

In the three-dimensional case, x and qO,O
All have a slightly different meaning: in qO,O

All the
orientations are expressed as the finite rotations around the x, y, and z-axes where the ori-
entations in x are expressed using Euler parameters [40]. Note that due to the nonvectorial
nature of rotations, the vector qO,O

All does not exist in three dimensions. However, only the
virtual change of this vector is used in the derivations.

2.2 Stiffness in terms of deformation modes

The generalized strain formulation defines the deformation of the element using deforma-
tion modes. The generalized coordinates associated to these deformation modes are called
generalized deformations and denoted by ε. In case of the two-dimensional beam, three
deformation modes can be defined of which one defines the elongation and two define the
bending (see Fig. 2). The generalized deformations are explicit functions of the nodal coor-
dinates,

ε =
⎧⎨
⎩

ε1

ε2

ε3

⎫⎬
⎭ = D (x) . (2.3)
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The generalized force associated to the deformation modes is denoted by σ and is related
to the generalized deformations by the constitutive law. If this relation is linear, it can be
written as

σ = Sε, (2.4)

where S is a constant stiffness matrix.

2.3 Inertia

The inertia is modeled based on the coordinates x such that for the resulting forces f on all
nodes we can write

f = M (x) ẍ + h (x, ẋ) , (2.5)

where M (x) is the mass matrix and h (x, ẋ) contains the convective inertia terms. The dot
and double dots on x define the first and second derivative with respect to time, respectively.

2.4 Equation of motion

Using the principle of virtual work, we obtain

δxT (Mẍ + h) + δεT Sε = δxT f a, ε = D (x)∀δx, (2.6)

where f a is the force that is applied on the nodes, or the reaction force in case of prescribed
coordinates, and (. . . )T defines the transpose; δ denotes the virtual change of a variable.
This is the equation of motion of one element in terms of the absolute nodal coordinates
in combination with the generalized deformations. One way to solve this is by substituting
δε = D,xδx, in which D,x defines the derivatives of the generalized deformations which
can be obtained analytically for each element,

Mẍ + h +DT
,xSD (x) = f a. (2.7)

In this case the generalized deformations are only used implicitly. The equation of motion
can also be defined for a set of degrees of freedom that include (part of) the generalized
deformations. In this way (part of) the generalized deformations of the element can be con-
straint which allows the modeling of (partly) rigid bodies. This is detailed in [41, 42] and
Appendix A of [39].

3 Derivation of the superelement

This section derives the GMS. The configuration of the GMS is defined by the absolute
coordinates of the interface nodes and by generalized coordinates of any internal modes.
Together these are the configuration coordinates. An element frame j defines the rigid body
motion. The coordinates of the element frame are not part of the configuration coordinates.
They do not appear in the equation of motion, but they can be determined for a given set
of absolute configuration coordinates. Once the position of the element frame is computed,
the other element-dependent functions and matrices can be derived, e.g., the generalized
deformations (which are a function of the local nodal coordinates) and the mass matrix.
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Table 1 Overview of the derivation of the Generalized-strain Multinode Superelement

Section Description Resulting relations

3.1 Defines the virtual change of
the local configuration
coordinates in terms of the
virtual change of absolute
configuration coordinates

δq
j,j
All = δq

j,j
All

(
δq

O,O
j

, δq
O,O
All

)

3.2 Defines the displacements as
function of the local
configuration coordinates

p
j,j
All = p

j,j
All

(
q

j,j
All

)

δp
j
All =

[
H j

]
δq

j,j
All

3.3 Defines relations for the
generalized deformations,
combined with six constraints
on the displacements that
define the position of the
element frame

⎡
⎣

[
V

j
rig

]
[
V

j
flex

]
⎤
⎦ =

[ [
�

j
rig0

] [
�

j
flex

] ]−1

ε =
[
V

j
flex

]
p

j
All

0 =
[
V

j
rig

]
p

j
All

q
O,O
j

= q
O,O
j

(
q

O,O
All

)

3.4 Derives a relation between the
virtual change of the element
frame and local configuration
coordinates in terms of
absolute configuration
coordinates

δq
O,O
j

=
[
RO

j

][
Zj

][
R

j
O

]
δq

O,O
All

δq
O,O
All =

[
T j

][
R

j
O

]
δq

O,O
All

3.5 Derives a relation between the
virtual change of the
generalized deformations and
the absolute configuration
coordinates

δε = D,xδx

3.6 Derives the stiffness matrix S =
[
�

j
flex

]T [
K

j
All

][
�

j
flex

]

3.7 Derives the inertia M =
[
Gj

]T [
R

O
j

][
M

j
All

][
R

j
O

][
Gj

]

h = h
(
q

O,O
All , q̇

O,O
All

)

Table 1 shows an overview of the steps in derivation of the GMS in this section. Sec-
tion 3.1 relates the local configuration coordinates (i.e., the coordinates with respect to the
element frame) to the absolute configuration coordinates and the position of the element-
frame. Section 3.2 defines the displacements in terms of these local coordinates. In Sect. 3.3
these displacements are used to define the generalized deformations and the position of the
element frame. Sections 3.4 and 3.5 present some relations between the virtual change of
the different coordinate types. The stiffness and inertia terms are derived in Sects. 3.6 and
3.7, respectively.

3.1 Local configuration coordinates in terms of absolute configuration coordinates

Figure 3 shows a GMS with three interface nodes k, l, and m. The vector rO,O
k defines the

position of interface node k with respect to the global frame O . The rotation matrix RO
k

defines the orientation of node k with respect to the global frame. The virtual change of a
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Fig. 3 Absolute positions and
orientations of the deformed and
undeformed element. The
position of the undeformed
element is defined by element
frame j

rotation matrix can be expressed as

δRO
k = δθ̃

O,O

k RO
k , (3.1)

where δθO,O
j is the virtual change of the orientation of frame k and the tilde defines the

skew-symmetric matrix:

a =
⎧⎨
⎩

a1

a2

a3

⎫⎬
⎭ ⇐⇒ ã =

⎡
⎣ 0 −a1 a2

a1 0 −a3

−a2 a3 0

⎤
⎦ . (3.2)

The virtual change of the absolute position and orientation of node k can be expressed
in terms of the local coordinates and the change of the element frame. This is derived in
Appendix A.1. Combining Eqs. (4.4) and (4.5) gives

δqO,O
k = [

RO
j

] [−r̃
j,j

k

][
R

j

O

]
δqO,O

j + [
RO

j

]
δq

j,j

k , (3.3)

with the definitions:

δqO,O
k ≡

{
δrO,O

k

δθO,O
k

}
, δqO,O

j ≡
{

δrO,O
j

δθO,O
j

}
, δq

j,j

k ≡
{

δr
j,j

k

δθ
j,j

k

}
,

[
RO

j

] ≡
[

RO
j 0

0 RO
j

]
,

[
−r̃

j,j

k

]
≡

[
1 −r̃

j,j

k

0 1

]
.

(3.4)

Note that terms between square brackets can have a slightly different meaning than the same
term without brackets in this paper. Combining Eq. (3.3) for all interface nodes gives

δqO,O
IF =

[
R̂

O

j

][
�̂

j

rig

][
R

j

O

]
δqO,O

j +
[
R̂

O

j

]
δq

j,j

IF , (3.5)

where the subscript “IF” refers to the coordinates of all interface nodes, and:

δqO,O
IF ≡

⎧⎪⎨
⎪⎩

δqO,O
IF1

...

δqO,O
IFN

⎫⎪⎬
⎪⎭ ,

[
R̂

O

j

]
≡

⎡
⎢⎣

[
RO

j

]
. . . [

RO
j

]

⎤
⎥⎦ ,

[
�̂

j

rig

]
≡

⎡
⎢⎢⎢⎣

[
−r̃

j,j

IF1

]
...[
−r̃

j,j

IFN

]

⎤
⎥⎥⎥⎦ .

(3.6)
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Henceforth a single upper index, as used in
[
�̂

j

rig

]
, defines the frame in which the variable

is expressed, unless the index is explicitly specified differently.
In Fig. 3, the deformation of the right most part of the GMS is typically not affected

by the positions of the interface nodes. This deformation can be described using internal
modes with generalized coordinates q int . The generalized coordinates of internal modes are
not expressed in the orientation of a specific frame such that their values in local and abso-
lute coordinates are equal. These coordinates can be added to the vector with all interface
coordinates in Eq. (3.5),

δqO,O
All =

[
R

O

j

][
�

j

rig

][
R

j

O

]
δqO,O

j +
[
R

O

j

]
δq

j,j

All , (3.7)

where the subscript “All” refers to the configuration coordinates, and:

δqO,O
All =

{
δqO,O

IF
δq int

}
, δq

j,j

All =
{

δq
j,j

IF
δq int

}
,

[
R

O

j

]
≡

[[
R̂

O

j

]
0

0 1

]
,

[
�

j

rig

]
≡

[[
�̂

j

rig

]
0

]
.

(3.8)

This equation relates the absolute configuration coordinates to their local coordinates
through the coordinates of the element frame. Equation (3.7) can also be rewritten to ex-
press the local coordinates in terms of absolute coordinates:

δq
j,j

All =
[
R

j

O

]
δqO,O

All −
[
�

j

rig

][
R

j

O

]
δqO,O

j . (3.9)

3.2 Displacements in terms of local configuration coordinates

The displacement of interface node k, expressed in the orientation of element frame j , is
denoted by p

j,j

k , see Fig. 3. It is composed of displacements and rotations,

p
j,j

k ≡
{

r
j,j

k − r
j,j

k

ψ
j,j

k

}
, (3.10)

where r
j,j

k is the undeformed position of k with respect to the element frame and ψ
j,j

k

defines the orientation of k. In the undeformed configuration, the local orientations of the
interface nodes are defined to be zero. The rotation ψ

j,j

k will be specified by means of the
local rotation matrix. A rotation matrix can be defined as the matrix exponential of the skew-
symmetric matrix of the rotation vector [43]:

R
j

k = exp
(
φ̃

j,j

k

)
, φ

j,j

k ≡ n
j,j

k φ
j

k , (3.11)

where n
j,j

k is the unit rotation axis and φ
j

k the magnitude of the rotation k with respect to
element frame j . By assuming that the elastic rotation of node k is small, the rotation matrix
can be approximated by the first-order Taylor expansion

R
j

k = exp
(
φ̃

j,j

k

)
≈ 1 + φ̃

j,j

k . (3.12)
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Based on this approximation, the rotation ψ
j,j

k will be implicitly defined using the off-
diagonal terms of this local rotation matrix,

ψ̃
j,j

k = 1

2

(
R

j

k − R
jT

k

)
= 1

2

(
R

j

k − Rk
j

)
. (3.13)

The virtual change of this rotation can be related to the virtual change of the local coordi-
nates of node k, see Appendix A.2. Based on Eq. (A.8), the virtual change of the displace-
ment p

j,j

k can be expressed as

δp
j,j

k =
[
H

j

k

]
δq

j,j

k ,
[
H

j

k

]
≡

[
1 0
0 H

j

k

]
. (3.14)

The matrix H
j

k is defined in the appendix and equals the identity matrix for zero rotation of
the node k. This equation can be combined for all interface nodes:

δp
j,j

IF =
[
Ĥ

j
]
δq

j,j

IF , p
j,j

IF ≡

⎧⎪⎨
⎪⎩

p
j,j

IF1
...

p
j,j

IFN

⎫⎪⎬
⎪⎭ ,

[
Ĥ

j
]

≡

⎡
⎢⎢⎢⎣

[
H

j

IF1

]
. . . [

H
j

IFN

]

⎤
⎥⎥⎥⎦ .

(3.15)
The displacements of the internal modes are defined by their corresponding coordinates
q int . Combining this relation with Eq. (3.15) gives an expression for the virtual change of all
displacements in terms of the change of the local configuration coordinates:

δp
j,j

All = [
H j

]
δq

j,j

All , p
j,j

All ≡
{

p
j,j

IF
q int

}
,

[
H j

] ≡
[[

Ĥ
j
]

0

0 1

]
. (3.16)

3.3 Generalized deformations and the position of the element frame

This section relates the generalized deformations ε to the displacements that are derived in
Sect. 3.2. This will also result in a relation for the coordinates of the element frame.

The displacement vector p
j,j

All describes the elastic deformation. However, it also de-
scribes the six rigid body motions as it includes the displacements of all interface nodes.
Therefore, p

j,j

All can be linearly related to six rigid body motions in combination with the
elastic deformations that are described by ε:

p
j,j

All =
[[

�
j

rig0

] [
�

j

flex

]]{
ηrig

ε

}
, (3.17)

where ηrig are the six coordinates of the six rigid body motions and the constant matrix[
�

j

rig0

]
is

[
�

j

rig

]
in the undeformed configuration. The constant matrix

[
�

j

flex

]
describes

the deformation modes evaluated on the interface nodes. The deformation modes should be
chosen in such way that all modes are independent, which means that the matrix in Eq. (3.17)
is invertible:

{
ηrig

ε

}
=

⎡
⎣

[
V

j

rig

]
[
V

j

flex

]
⎤
⎦p

j

All,

⎡
⎣

[
V

j

rig

]
[
V

j

flex

]
⎤
⎦ ≡

[[
�

j

rig0

] [
�

j

flex

]]−1
. (3.18)



A multinode superelement in the generalized strain formulation 377

The matrix with deformation modes,
[
�

j

flex

]
, can be defined by the user. Section 4 describes

three general methods to define these deformation modes. In the remaining part of this sec-

tion we will assume that this matrix is known. Also the matrix
[
�

j

rig0

]
is known at the start

of the simulation as it can be computed based on the local positions of the interfaces of the

undeformed element. This means that also the matrices
[
V

j

rig

]
and

[
V

j

flex

]
are known, and

all these four matrices are constant. The number of modes in
[
�

j

flex

]
equals

Nmod = NAll − 6 = 6NIF + Nint − 6, (3.19)

where NAll is the number of configuration coordinates, NIF is the number of interface nodes,
and Nint is the number of internal modes.

The rigid body motion of the element is described by the coordinates of its element
frame. It can therefore not also be described by the rigid modes as this will result in a
singular system. This means that ηrig should be zero which defines six constraints on p

j

All:

ηrig =
[
V

j

rig

]
p

j,j

All = 0. (3.20)

Based on these six constraints, we can find the position and orientation of the element frame
for a given set of absolute configuration coordinates qO,O

All . However, an explicit relation
does not exist in general, so that it has to be solved based on a Newton–Raphson iteration.
Substituting Eq. (3.16) in the virtual change of the constraint in Eq. (3.20) gives

δηrig =
[
V

j

rig

]
δp

j,j

All =
[
V

j

rig

] [
H j

]
δq

j,j

All . (3.21)

We want to find the position of the element frame for a given set of absolute coordinates,
i.e., δqO,O

All = 0. Therefore, Eq. (3.9) can be used to obtain

δηrig =
[
V

j

rig

] [
H j

]
δq

j,j

All = −
[
V

j

rig

] [
H j

] [
�

j

rig

][
R

j

O

]
δqO,O

j . (3.22)

Using this equation, we can update the position of the element frame using the following
Newton–Raphson procedure:

(
q̂

O,O
j

)i+1 =
(
q̂

O,O
j

)i −
(

∂ηrig

∂qO,O
j

)−1

ηrig,

(
∂ηrig

∂qO,O
j

)−1

= − [
RO

j

]([
V

j

rig

] [
H j

] [
�

j

rig

])−1
.

(3.23)

The hat on qO,O
j emphasizes that this vector fundamentally does not exist. As noted in

Sect. 2.1, the rotation in this vector is parameterized by finite rotations. This does not work
for large rotations in three dimensions. However, the orientation can be defined by a rotation
matrix or Euler parameters, and the vector can be updated in an equivalent way.

Once the position of the element frame is found, the displacements p
j,j

All can be obtained
using Eq. (3.10) after which the generalized deformation is obtained from Eq. (3.18),

ε =
[
V

j

flex

]
p

j,j

All . (3.24)
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3.4 Virtual change of the element frame and local configuration coordinates as
function of absolute configuration coordinates

Section 3.3 defined the position of the element frame based on the absolute coordinates us-
ing the six constraints in Eq. (3.20). Once the element frame is in the right position and
orientation, these constraints can also be used to write the virtual change of the element
frame as a function of the virtual change of the absolute coordinates. The constraints im-
ply that also their virtual change should stay zero as defined in Eq. (3.21). By substituting
Eq. (3.9) into this relation, we obtain

δηrig =
[
V

j

rig

] [
H j

]
δq

j,j

All

=
[
V

j

rig

] [
H j

] [
R

j

O

]
δqO,O

All −
[
V

j

rig

] [
H j

] [
�

j

rig

][
R

j

O

]
δqO,O

j

= 0. (3.25)

In undeformed configuration,
[
H j

] = 1, see Sect. 3.2. Therefore
[
V

j

rig

] [
H j

] [
�

j

rig

]
=[

V
j

rig

][
�

j

rig

]
= 1 in undeformed configuration, see Eq. (3.18). The deformation of the GMS

is assumed to be small, for this small deformation, the matrices
[
H j

]
and

[
�

j

rig

]
will typ-

ically only change slightly. This indicates that the term
[
V

j

rig

] [
H j

] [
�

j

rig

]
is close to the

identity matrix, which implies that it is invertible. Therefore, the equation can be rewrit-
ten to relate the virtual change of the element frame to the virtual change of the absolute
configuration coordinates:

δqO,O
j = [

RO
j

] [
Zj

] [
R

j

O

]
δqO,O

All ,

[
Zj

] ≡
([

V
j

rig

] [
H j

] [
�

j

rig

])−1 [
V

j

rig

] [
H j

]
.

(3.26)

A physical interpretation of the 6 × 6NIF matrix
[
Zj

]
is that it defines the rigid body motion

as a function of an arbitrary motion expressed in the local frame. By substituting Eq. (3.26)
into Eq. (3.9), we obtain the change of the local configuration coordinates as a function of
the absolute configuration coordinates:

δq
j,j

All = [
T j

] [
R

j

O

]
δqO,O

All ,
[
T j

] ≡ 1 −
[
�

j

rig

] [
Zj

]
. (3.27)

A physical interpretation of
[
T j

]
is that it removes the rigid body motion from an arbitrary

motion, leaving the flexible motion of the coordinates. More elaborate geometric interpreta-

tions of the matrices
[
�

j

rig

]
,
[
Zj

]
, and

[
T j

]
are given in [44].

3.5 First derivative of the generalized coordinates

This section defines the change of the deformation coordinates ε as a function of the change
of the elements’ absolute coordinates x. This results in the matrix D,x that is used in the
equation of motion as defined in Eq. (2.7).

The virtual change of the generalized deformation can be obtained as a function of virtual
change of the absolute coordinates by substituting Eqs. (3.16) and (3.27) into the definition
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of the generalized deformation from Eq. (3.24):

δε =
[
V

j

flex

]
δp

j,j

All =
[
V

j

flex

] [
H j

]
δq

j,j

All

=
[
V

j

flex

] [
H j

] [
T j

] [
R

j

O

]
δqO,O

All . (3.28)

Note that δqO,O
All contains the virtual change of finite rotations for each interface node. Ro-

tations in three dimension should be specified using a parameterization like Euler angles or
Euler parameters. In this paper Euler parameters are used. The orientation of node k with
respect to frame O will be parameterized by λO

k . The absolute coordinates with this param-
eterization are given by x:

x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xIF1

...

xIFN

q int

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, xk =
{

rO,O
k

λO
k

}
. (3.29)

The virtual change of finite rotations can be related to the virtual change of the parameteri-
zation (see, e.g., [45]) resulting in an equation like

δθO,O
k = G

(
λO

k

)
δλO

k , (3.30)

where G is a function that is in case of Euler parameters,

G (λ) ≡ 2

⎡
⎣−λ1 λ0 −λ3 λ2

−λ2 λ3 λ0 −λ1

−λ3 −λ2 λ1 λ0

⎤
⎦ . (3.31)

Based on this relation for each interface node, the virtual change δqO,O
All can easily be related

to the virtual change of x resulting in an equation like

δqO,O
All = [G] δx. (3.32)

Using Eq. (3.28), the derivative of the generalized deformations to the coordinates becomes

D,x = ∂ε

∂x
=

[
V

j

flex

] [
H j

] [
T j

] [
R

j

O

]
[G] . (3.33)

3.6 Stiffness matrix

The GMS uses the stiffness and mass matrix of a linear finite element model that is reduced
using Craig–Bampton modes [7] (i.e., boundary and internal modes). Note that the vec-
tor with displacements, p

j,j

All , indeed consists of these boundary displacements and internal
modes. The result of the reduced model, expressed in the orientation of element frame j is
like

[
M

j

All

]
p̈

j,j

All +
[
K

j

All

]
p

j,j

All = f
j

All, (3.34)
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where
[
M

j

All

]
is the constant reduced mass matrix,

[
K

j

All

]
the constant reduced stiffness

matrix, and f
j

All defines applied forces on the modes. The potential energy of this model is

Epot = 1

2

{
p

j,j

All

}T [
K

j

All

]
p

j,j

All . (3.35)

By substituting Eq. (3.17) with ηrig = 0, the stiffness matrix in terms of the deformation
modes, S, can be obtained, which can be used in the equation of motion, Eq. (2.7):

Epot = 1

2
εT Sε, S ≡

[
�

j

flex

]T [
K

j

All

][
�

j

flex

]
. (3.36)

3.7 Inertia terms

The inertia terms can be derived in different ways. This paper presents two approaches: the
“corotational inertia” defines the energy based on the corotated mass matrix and derives the
inertia vector using Lagrange’s equation. The “full inertia” derives the global acceleration
of the material points in the body and obtains the inertia terms by integrating these accel-
erations over the volume. Both approaches neglect the higher-order terms in deformation
and result in the same mass matrix, but a different convective inertia. The approaches are
consistent to two of the approaches described in [10].

3.7.1 Corotational inertia

The kinetic energy of the reduced linearized finite element model is

Ekin = 1

2

(
q̇O,O

All

)T [
R

O

j

][
M

j

All

][
R

j

O

]
q̇O,O

All . (3.37)

Substituting Eq. (3.32) defines the global mass matrix, M , of the element, which appears in
the equation of motion, Eq. (2.7):

Ekin = 1

2
ẋT Mẋ, M ≡ [B]T

[
M

j

All

]
[B] , [B] ≡

[
R

j

O

]
[G] . (3.38)

Based on Lagrange’s equation, the total inertia forces, H, can be defined as function of the
kinetic energy. These inertia forces should equal the inertia forces defined in Eq. (2.5):

H = d

dt

(
∂Ekin

∂ẋ

)T

−
(

∂Ekin

∂x

)T

= Mẍ + hcorot. (3.39)

Substituting Eq. (3.38) and rewriting gives the convective inertia as

hcorot = H− Mẍ = dM

dt
ẋ − 1

2

(
∂
(
ẋT Mẋ

)
∂x

)T

= [
Ḃ
]T

[
M

j

All

]
[B] ẋ + [B]T

[
M

j

All

] [
Ḃ
]
ẋ

−
(

∂ [B] ẋ

∂x

)T [
M

j

All

]
[B] ẋ. (3.40)

The full expression is derived in Appendix A.3. This result is similar to the result obtained
in the superelement of [13].
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3.7.2 Full inertia

For an initial undeformed configuration, the global velocity or virtual change of an arbitrary
point s in the GMS can be written in terms of its absolute nodal coordinates:

ṙO,O
s = RO

j �
j

All,s

[
R

j

O

]
q̇O,O

All , δrO,O
s = RO

j �
j

All,s

[
R

j

O

]
δqO,O

All , (3.41)

where the 3 × NAll matrix �
j

All,s defines the mode-shapes evaluated at position s. Note that
the mode-shapes contain a linear combination of all the Craig–Bampton boundary modes
such that rigid body motion is also included.

Based on the principle of virtual work, the total inertia force is implicitly defined by the
volume integral

δxT H =
∫

V

(
δrO,O

s

)T
r̈O,O

s ρdV ∀δx, (3.42)

where ρ is the material density. The resulting total inertial is derived in Appendix A.4,
resulting in Eq. (A.33):

H = [B]T
[
M

j

All

]
[B] ẍ + [B]T

[
N

j

All

]
[B] ẋ − [B]T

[
M

j

All

][
ω̃

j,O

j

]
[B] ẋ. (3.43)

The first term in this expression is the global mass matrix times the acceleration, see
Eq. (3.38). The convective inertia vector according to the full approach is

hfull = H− Mẍ = [B]T
[
N

j

All

]
[B] ẋ − [B]T

[
M

j

All

][
ω̃

j,O

j

]
[B] ẋ, (3.44)

where expressions for
[
N

j

All

]
and

[
ω̃

j,O

j

]
are given in the appendix. Matrix

[
N

j

All

]
is given

in Eq. (A.30), where it can be seen that it involves an integral that cannot be computed from
the finite element matrices that are commonly available in a linear finite element analysis.
The consistent derivation of this integral requires evaluating a specific term for each element
in the finite element model, but the integral can also be estimated by using a lumped mass
approximation.

3.7.3 Comparison

The second terms of the convective inertias of both approaches as defined in Eqs. (3.40)

and (3.44) are equivalent: [B]T
[
M

j

All

] [
Ḃ
]
ẋ = − [B]T

[
M

j

All

][
ω̃

j,O

j

]
[B] ẋ, see Eq. (A.12).

However, the remaining terms in both approaches are different. This difference exists be-
cause the corotational approach uses the energy in the discretized, reduced form to obtain
the inertia forces, where the full approach derives the inertia forces from the continuum and
applies the model order reduction afterwards. Figure 4 visualizes this. In both approaches
the total energy is conserved. However, the corotational approach implicitly assumes that

the inertia forces can be written in terms of the reduced mass matrix
[
M

j

All

]
. The full ap-

proach shows that the exact evaluation of the inertia forces requires the term
[
N

j

All

]
which

cannot be expressed in terms of the reduced mass matrix. Sections 5.1 and 5.2 of this paper
further evaluate the differences. In [46] (Sect. 5.3) a more elaborate derivation of the inertia
terms is given, which also shows that the inertia terms cannot be written in terms of the finite
element mass matrix.
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Fig. 4 Two different approaches to obtain the inertia. The main difference is the order in which both steps
are applied, rs represents a position in the element, x contains the absolute configuration coordinates

Fig. 5 Three general definitions for the flexible modes (illustrated for a beamlike GMS, but the definitions
are also applicable to other shapes)

4 General methods to define the position of the element frame and the
flexible modes

This section defines three general methods to define the matrix with flexible modes,
[
�

j

flex

]
,

that was introduced in Sect. 3.3. The matrix defines the displacements, p
j,j

All , as function of
the generalized deformations, ε. Also default choices for the position of the element frame
are given. The three methods are illustrated in Fig. 5.

4.1 Local interface displacements

The first option directly relates the generalized deformations, ε, to the local displacements
of all interface nodes except one. If we, for example, exclude the first interface node, the
matrix with flexible modes becomes

[
�

j

flex

]
=

[
06×Nmod

1Nmod×Nmod

]
. (4.1)

This choice causes the orientation of the frame to be the orientation of the remaining inter-
face node. Therefore, a logical choice in combination with these deformation modes is to
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place the element frame in the remaining interface node. A disadvantage of this option is
that the result will depend on the interface node chosen. An advantage is that the position
of the element frame does not have to be found by the Newton–Raphson iteration outlined
in Sect. 3.3 as its coordinates are simply the coordinates of the related interface node. This
also simplifies some of the other relations that have been defined in Sect. 3.

4.2 Natural modes of the free body

For this option the natural modes are extracted from the reduced model with free motion by
solving the eigenvalue problem

([
K

j

All

]
− �

[
M

j

All

])[[
�

j

free−rig

] [
�

j

free−flex

]]
= 0. (4.2)

The vector
[
�

j

free−rig

]
defines the first six eigenmodes, which are rigid body modes with

zero eigenvalues. Note that this matrix is not necessarily exactly the same as
[
�

j

rig0

]
, but is

spans the same space. The modes
[
�

j

free−flex

]
are defined to be

[
�

j

flex

]
. An advantage of this

choice is that the mode-shapes define the natural modes which means that the modes with
the higher natural frequencies can be constraint in the GMS. Another advantage is that the
stiffness matrix as derived in Eq. (3.36) becomes diagonal, which simplifies the evaluation
of the stiffness equation (Eq. (2.4)),

S =
[
�

j

free−flex

]T [
K

j

All

][
�

j

free−flex

]
= diag

(
ω2

)
, (4.3)

where the vector ω defines the eigen frequencies, and the matrix diag
(
ω2

)
is part of the

diagonal matrix �. The element frame can be positioned anywhere, and its position will not
affect the results. A classic choice is to place it at the center of mass.

4.3 Frame attached to a material point

This option gives the position of the element frame a physical meaning, it is attached to a
material point. This option was also used in [27]. The frame is chosen to be in the center of
mass. Based on the finite element model, the displacement and rotation of the material point
that is located at the position of the element frame, p

j,j

FFR, can be expressed as a function of
the displacements p

j,j

All . This displacement should be zero if the element frame is attached to
this material point:

p
j,j

FFR =
[
V

j

FFR

]
p

j,j

All = 0, (4.4)

where
[
V

j

FFR

]
are the Craig–Bampton boundary modes, evaluated at the location of the ele-

ment frame. This means that
[
V

j

rig

]
in Eq. (3.20) equals

[
V

j

FFR

]
. Using the inverse relation

in Eq. (3.18), the following should hold:

⎡
⎣

[
V

j

FFR

]
[
V

j

flex

]
⎤
⎦[[

�
j

rig0

] [
�

j

flex

]]
=

⎡
⎣

[
V

j

FFR

][
�

j

rig0

] [
V

j

FFR

][
�

j

flex

]
[
V

j

flex

][
�

j

rig0

] [
V

j

flex

][
�

j

flex

]
⎤
⎦ =

[
1 0

0 1

]
.

(4.5)
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From a physical interpretation, it follows that
[
V

j

FFR

][
�

j

rig0

]
indeed always equals the

identity-matrix:
[
�

j

rig0

]
computes the virtual change of the displacements p

j,j

All for unit dis-

placements of the element frame, where
[
V

j

FFR

]
computes the displacements of the element

frame as function of the displacements p
j,j

All . So the product of both matrices computes the
virtual change of the element frame as function of the virtual change of itself.

The matrix
[
�

j

flex

]
should be defined in such way that the remaining part of Eq. (4.5)

holds. The natural modes of the free motion,
[
�

j

free−flex

]
, will be used to define this flexible

modes. However, in order to make sure that the top right term of Eq. (4.5) holds, the effect
of rigid body motion should be subtracted from these modes. Note that the matrix

[
T j

]
as

defined in Eq. (3.27) subtracts the rigid body motion from an arbitrary motion. The flexible
modes will therefore be defined using this matrix in undeformed configuration:

[
�

j

flex

]
=

(
1 −

[
�

j

rig0

][
V

j

FFR

])[
�

j

free−flex

]
. (4.6)

By using the relation
[
V

j

FFR

][
�

j

rig0

]
= 1, it can be shown that this indeed satisfies the right-

upper part of Eq. (4.5):
[
V

j

FFR

][
�

j

flex

]
=

[
V

j

FFR

](
1 −

[
�

j

rig0

][
V

j

FFR

])[
�

j

free−flex

]

=
([

V
j

FFR

]
−

[
V

j

FFR

][
�

j

rig0

][
V

j

FFR

])[
�

j

free−flex

]

=
([

V
j

FFR

]
−

[
V

j

FFR

])[
�

j

free−flex

]
= 0.

(4.7)

The stiffness matrix of this method equals the stiffness matrix of the method in Sect. 4.2.
This can be shown by the fact that the stiffness matrix multiplied by rigid body modes equals

zero,
[
K

j

All

][
�

j

rig0

]
= 0, and, using Eq. (4.6),

S =
[
�

j

flex

]T [
K

j

All

][
�

j

flex

]
=

[
�

j

free−flex

]T [
K

j

All

][
�

j

free−flex

]
. (4.8)

This means that this method shares the advantages with the method in Sect. 4.2: the mode
shapes are related to the natural modes and the stiffness matrix is diagonal. However, the
mass matrix of this method is different from the mass matrix in Sect. 4.2.

5 Validation

The GMS is validated using the multibody software SPACAR [38, 41]. A rigid rotating beam
demonstrates the importance of the convective inertia terms. The application of the GMS
in dynamic simulation is shown by a slider–crank case. A static cantilever beam shows
the effect of different definitions of the element frame. In these first three examples, the
mass and stiffness of the GMS are obtained using a finite element model of beam elements.
These examples are validated using the beam elements defined in [4]. Deformation due
to shear is neglected in these examples. In the fourth and fifth case, the GMS is used in a
spherical flexure joint and a misaligned cross-flexure to show the usefulness in flexure based
mechanisms. The flexures are modeled with the beam element described in [47].
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Fig. 6 Rigid rotating beam,
modeled by a GMS with either
one or two interface nodes

Table 2 Force on the rotating beam

No conv. iner. Corot. iner. Full iner.

One interface node 0 mLω2/2 mLω2/2

Second interface at location B 3mLω2/8 mLω2/2 mLω2/2

Second interface at location C mLω2/2 mLω2/2 mLω2/2

5.1 Rigid rotating beam

This section shows an example to evaluate the convective inertia terms. Figure 6 shows a
beam that rigidly rotates around point A, which moves with a constant velocity v in the x-
direction. The beam is modeled using a single GMS with either one or two interface nodes.
The first interface node is positioned in point A, the second optionally in point B or C.
The element frame is fixed to the material point in the center of the beam (see Sect. 4.3).
Table 2 shows the required force F on the beam when it is horizontally oriented (i.e., the po-
sition shown in figure). The results obtained with the corotational inertia and the full inertia
correspond to the centrifugal force on a rotating beam, i.e., mLω2/2. In absolute nodal co-
ordinates based finite element simulations, the convective inertia is generally neglected. For
some element-types this gives exact results, for other elements this only results in a small
error if the elements are small. However, in this rotating beam example, using no convec-
tive inertia (i.e., using only the mass matrix times the accelerations) does only give correct
results if the center of mass is exactly in the center of both interface nodes. This illustrates
the importance of the convective inertia term.

Table 3 shows inertia terms to compare the corotational inertia with the full inertia. These
are the terms in two dimensions, so the inertia forces on each interface point contains three
terms: for the translational x-direction, the y-direction, and the rotational direction around
the z-axis. The total inertia force H in the x-direction always equals −mLω2/2 for both
approaches as also given in Table 2. The corotational inertia results in a rotational term
which dependents on the overall velocity v. This is a nonphysical result, in the first place
because the overall velocity of a mechanism should not affect the inertia forces. Secondly,
because a rigid rotating component should only experience centrifugal inertia forces. In this
case with a rigid beam there is no effect as the extra bending moments at both interface
nodes cancel each other. However, in a flexible beam element, the extra bending moments
will affect the bending deformation of the element as shown in Sect. 5.2. The full inertia
only results in inertia in the x-direction and is independent of the overall velocity v.

5.2 Two-dimensional slider–crank

This example evaluates the accuracy of the GMS in a dynamic simulation. A two-
dimensional slider–crank problem that was also analyzed in [27, 42, 48] is shown in Fig. 7.
Its physical properties are given in Table 4. The rigid crank is initially horizontally oriented
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Table 3 Inertia terms on the rotating beam, H= Mẍ + h

Mẍ hcorot hfull

One interface node

⎧⎪⎨
⎪⎩

0

0

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

−Lmω2/2

0

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

−Lmω2/2

0

0

⎫⎪⎬
⎪⎭

Second interface at location B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mLω2/24

0

0

−mLω2/3

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mLω2/240

0

−mLωv/48

−31mLω2/240

0

mLωv/48

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

−mLω2/8

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Second interface at location C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mLω2/6

0

0

−mLω2/3

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mLω2/60

0

−mLωv/12

−mLω2/60

0

mLωv/12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 7 Two-dimensional
slider–crank

Table 4 Properties of the
two-dimensional slider–crank Property Value

Crank length 0.15 m

Connector length 0.3 m

Connector diameter 0.006 m

Young’s modulus of the connector 200 GPa

Connector density 8 780 kg/m3

Slider mass 0.0334 kg

to the right, and rotates with a constant angular velocity of 150 rad/s. The flexible connector
between the crank and slider is initially undeformed and has an initial velocity correspond-
ing to the velocity of the crank (i.e., its initial velocity is a clockwise rotation of 75 rad/s
around the slider). The mass of the slider is half of the mass of the connector. Figure 8 shows
the midpoint deflection of the connector perpendicular to the undeformed connector divided
by the length of the connector. The connector is modeled in seven different ways:

a. 10 serial connected beam elements, this serves as reference-case;
b. 2 serial connected beam elements;
c. 2 GMSs with full inertia, the result is identical to the case where no convective inertia is

modeled;
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Fig. 8 Displacement-results of the two-dimensional slider–crank

d. 2 GMSs with corotational inertia;
e. 4 GMSs with corotational inertia;
f. 2 corotational superelements with no convective inertia. This result is copied from [27].

The following observations can be made:

• The GMS with full inertia gives almost the same results as the GMS without convective
inertia (plotted by a single line). This indicates (together with the results in the rotating
beam problem) that the convective inertia terms can be neglected in beam-like compo-
nents;

• The errors of the GSM with full inertia and without convective inertia (case c) with respect
to the reference case, are in the same order as the errors obtained by beam elements and
the corotational superelement (cases b and f).

• The GMS with corotational inertia gives a significant different deflection compared to
the other results. Using four elements instead of two, the results are much closer to that
of the other simulations. This indicates that the corotational inertia method gives small
inaccuracies if the elements are large.

5.3 Static equilibrium of a cantilever beam

This example evaluates the influence of the frame position on the accuracy and computation
time. A hollow circular cantilever beam is subjected to a vertical tip force. The length of the
beam is 1 m, the outer radius of the cross-section 0.01 m and the wall thickness 0.001 m.
The Young’s modulus is 70 GPa. Figure 9 shows configurations obtained by three different
methods: the GMS, a beam element [4], and the corotational superelement of [27]. In all
three cases, the beam is modeled using three serial connected elements, a reference is ob-
tained by ten serial connected beam elements. The modes of the GMS are defined using the
option described in Sect. 4.3: “frame attached to a material point” and the frame is located
in the center of the element. For a force of 10 000N, the result for the GMS did not converge
due to the large deformation in the left most element. In general, all three methods give the
same results. Small differences are visible for the larger deformations because this results
in large deformation per element. The difference in the results between the GMS and the
corotational superelement are caused by the matrix

[
H j

]
that was introduced in Eq. (3.14).

In the derivation of the corotational superelement, this matrix was neglected by assuming
small deformations.
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Fig. 9 Configurations of
cantilever beam, modeled by
three elements, subjected to
different forces

Fig. 10 Errors and computation times and number of element frame updates of static cantilever beam, mod-
eled by 1 to 10 GMSs. Some results could not be computed. The computation times are averaged over 25
simulations
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Fig. 11 Spherical joint: (a) flexures showing the connections with ring (R), base (B) and End-effector (E);
(b) flexures and frame-parts; (c) side view, (d) top view; and (e) close-up view

One of the advantages of the GMS is that the position of the element frame can be
defined in different ways, see Sect. 4. Figure 10 shows results to study the effect of different
positions. In the first three frame-options, the frame is placed in an interface point and the
modes are chosen by the option of Sect. 4.1 (“local interface displacements”); in the fourth
frame-option, the method of Sect. 4.3 is used (“frame attached to a material point”).

The results indicate that positioning the frame at the center of the element gives the
most accurate results. The most important reason is that the elastic rotational displacements
are the smallest in this case. Defining an extra interface node in the center of the elements
increases the number of degrees of freedom and significantly increases the computation
time, especially when many elements are used.

Placing the element frame in the center without defining an extra interface node re-
quires to update the frame in each loadstep using the Newton–Raphson procedure defined
in Sect. 3.3, but this only slightly increases the computation time. Figure 10 gives the total
computation time that was required for these Newton–Raphson updates. These times are
approximately the same as the time difference between the total computation time of case
d and the total computation time of the cases a and b. On average, 3.8 iteration steps were
required to find the coordinates of an element frame. Figure 10 shows the total number of
iteration steps in one simulation, where one step took on average 7.3 · 10−5 s.

5.4 Spherical joint

Figure 11 shows the serial stacked spherical joint that was introduced in [2]. The most
important dimensions of this flexure joint are given in Table 5. The flexure joint consist
of six folded flexures which are connected to three frame parts. These folded flexures are
placed in such way that lines through the folds coincide in the center of the joint. In this way,
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Table 5 Properties of the spherical joint

Property Value

L 32.7 mm

r 18.5 mm

ψ 103.3�
θ1 38.6�
w 16.6 mm

t 0.48 mm

Property Value

S 111 mm

D 75 mm

H 76 mm

Ring mass 0.306 kg

Base / End-effector mass 0.287 kg

Young’s modulus 200 GPa

Poisson ratio 0.3

Fig. 12 Support stiffness in
vertical direction of the spherical
joints as function of rotation
around the x-axis. The
connecting parts are modeled
either rigid or flexible. The joint
is either modeled by three GMSs
in combination with beam
elements for the leaf springs or
by a finite element model

the deformation of the flexures allows a large rotation of the end-effector around all three
axes through this center point. The joint is stiff in the translational directions. The flexures
are modeled using beam elements, each of the three frame parts is modeled by a GMS.

Figure 12 shows the support-stiffness in the vertical direction (z-direction). The results
indicate that compliance of the frame parts is significant with respect to the total compli-
ance and that this compliance can be modeled accurately using the GMS. Figure 13 shows
eigenfrequencies for the case that the base and end effector are fixed to the ground at their
triangular-shaped face. The first three eigenfrequencies are rotations of the ring. These
eigenfrequencies are related to a low stiffness and therefore almost not influenced by the
flexibility of the connecting parts. The other three eigenfrequencies are influenced by the
flexibility of the connecting parts which is modeled accurately using the GMS.

5.5 Misaligned cross-flexure

Figure 14 shows an overconstrained cross-flexure with a misalignment in the overconstraint
direction that was described in [49, 50]. The two flexures are each modeled using eight
beam elements with torsional warping (as defined in [47]) to model the thin part and one
beam element to model the thick part which is used for attachment to the frame parts. The
flexures are made of steel (Young’s modulus 200 GPa, Poisson ratio 0.3), have a thickness
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Fig. 13 Eigenfrequencies of the
spherical joint modeled with rigid
or flexible connecting parts. The
joint is either modeled by three
GMSs in combination with beam
elements for the leaf springs or
by a finite element model

Fig. 14 Misaligned cross flexure: (a) three-dimensional view, (b) top view, (c) side view. Dimensions are
given in millimeters

of 0.3 mm and a width of 30 mm. The upper flexure is on one side attached to the fixed
world. The lower flexure also has a fixed side; however, at this side a misalignment in the
vertical direction can be prescribed.

Both flexures are connected to the shuttle, allowing a rotation of the shuttle around the
indicated rotation axis. The shuttle is modeled by a GMS and is made of aluminum (E-
modulus 69 GPa, Poisson ratio 0.3). The element frame is defined according to the free-
body-modes definition (see Sect. 4.2).
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Fig. 15 First natural frequency of the misaligned cross-flexure, the results of the experiment and the finite
element model are copied from [50]

Figure 15 shows the first natural frequency (in which the shuttle rotates around the indi-
cated rotation axis) as function of the misalignment. The results show that the compliance
of the shuttle has significant influence on the result and this effect can be modeled with
the GMS. Also the shear deformation in the beam elements has a significant effect. The
exclusion of shear has a similar effect as a rigid shuttle on the first natural frequency.

6 Conclusions

A superelement has been presented which can be used to model arbitrarily shaped parts with
multiple interface nodes in the generalized strain formulation. The deformation is defined
linearly with respect to a local frame, where rotational displacements are defined using the
off-diagonal terms of local rotation matrices. The coordinates of the frame are not part of
the degrees of freedom, but can be obtained by a Newton–Raphson iteration, as a function
of the degrees of freedom. This frame can be defined in multiple ways. Simulations show
that this definition of the frame can have significant influence on the results. More accurate
results are obtained if the elastic rotations with respect to the element frame are small. Two
methods are presented to define the inertia: simulations show that the “full approach” gives
more accurate results than the “corotational approach,” however, the full approach includes
terms that cannot be derived from a standard reduced finite element model. The paper shows
that complex components with slender parts can be modeled accurately using a proper com-
bination superelements and beam elements.

Appendix A: Derivations

This appendix shows some derivations for the formulation presented in Sect. 3.

A.1 Relating the virtual change of absolute and local coordinates of an interface
node

This section shows how the virtual change of the absolute position and orientation of an
interface node can be expressed in terms of the virtual change of its local coordinates and
the virtual change of the coordinates of the element frame.
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An absolute position rO,O
k of node k can be defined by means of the coordinates of the

element frame (see Fig. 3):

rO,O
k = rO,O

j + r
O,j

k = rO,O
j + RO

j r
j,j

k , (A.1)

where RO
j defines the absolute orientation of element frame j . The virtual change of a

rotation matrix can be expressed as

δRO
j = δθ̃

O,O

j RO
j = RO

j δθ̃
j,O

j = −RO
j δθ̃

j,j

O , (A.2)

where δθO,O
j defines the virtual change in finite rotations of frame j with respect to the

global frame O . The tilde defines the skew-symmetric matrix of a vector which is related to
the cross-product such that, for two arbitrary 3 × 1 vectors a and b, the following relations
hold:

ã ≡
⎡
⎣ 0 −a1 a2

a1 0 −a3

−a2 a3 0

⎤
⎦ , ãb = a × b = −b̃a. (A.3)

The virtual change of the absolute position rO,O
k can be rewritten by substituting

Eq. (A.2) into the virtual change of Eq. (A.1), after which the relations in Eq. (A.3) are
used to rewrite the result:

δrO,O
k = δrO,O

j + RO
j δθ̃

j,O

j r
j,j

k + RO
j δr

j,j

k

= δrO,O
j − RO

j r̃
j,j

k δθ
j,O

j + RO
j δr

j,j

k

= δrO,O
j − RO

j r̃
j,j

k R
j

OδθO,O
j + RO

j δr
j,j

k .

(A.4)

This defines the virtual change of the absolute position of node k as function of the vir-
tual change of element frame j and the local position of k. Also the virtual change in the
orientation of node k can be defined through the element frame,

δθO,O
k = δθO,O

j + RO
j δθ

j,j

k . (A.5)

A.2 Virtual change of rotational displacements

This section defines how the virtual change of the displacements of an interface point k can
be related to the virtual change of the local coordinates of this interface point. The rotation
was defined by means of the off-diagonal terms of the local rotation matrix, Eq. (3.13):

ψ̃
j,j

k = 1

2

(
R

j

k − Rk
j

)
⇐⇒ ψ

j,j

k = 1

2

⎧⎪⎨
⎪⎩

nT
z R

j

kny − nT
y R

j

knz

nT
x R

j

knz − nT
z R

j

knx

nT
y R

j

knx − nT
x R

j

kny

⎫⎪⎬
⎪⎭ , (A.6)

where nx , ny and nz are unit-vectors in the x, y, and z-direction, respectively. The virtual
change of the first term can be expressed using the virtual change of a rotation matrix as
defined in Eq. (A.2):

δ
(
nT

z R
j

kny

)
= nT

z δθ̃
j,j

k R
j

kny = −nT
z

˜
R

j

knyδθ
j,j

k . (A.7)
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Similar relations can be obtained for the other five terms. Using this relations, the virtual
change of the rotation ψ

j,j

k can be related to the virtual change of the local finite rotations
θ

j,j

k :

δψ
j,j

k = H
j

kδθ
j,j

k ,H
j

k = 1

2

⎡
⎢⎢⎣

−nT
z

˜
R

j

kny + nT
y

˜
R

j

knz

−nT
x

˜
R

j

knz + nT
z

˜
R

j

knx

−nT
y

˜
R

j

knx + nT
x

˜
R

j

kny

⎤
⎥⎥⎦ . (A.8)

For undeformed elements, the matrix R
j

k equals the identity matrix which means that the
matrix H

j

k also equals identity for undeformed elements.

A.3 Derivation of the corotational inertia

This section derives the full expression for the corotational convective inertia as given in
Sect. 3.7.1. The corotational convective inertia vector, as defined in Eq. (3.40) is

hcorot = [
Ḃ
]T

[
M

j

All

]
[B] ẋ + [B]T

[
M

j

All

] [
Ḃ
]
ẋ −

(
∂ [B] ẋ

∂x

)T [
M

j

All

]
[B] ẋ,

[B] ≡
[
R

j

O

]
[G] ,

(A.9)

which includes two derivatives of the matrix [B] that need to be derived. The time-derivative
can be written as

[
Ḃ
] = −

[
ω̃

j,O

j

][
R

j

O

]
[G] +

[
R

j

O

] [
Ġ

]
. (A.10)

The product
[
Ġ

]
ẋ only consists of the term Ġ

O

k λ̇
O

k for each interface node which is zero
if Euler parameters are used to define the rotation in x, as can be easily verified using
Eq. (3.30):

[
Ġ

]
ẋ = 0. (A.11)

This means that we can write

[
Ḃ
]
ẋ = −

[
ω̃

j,O

j

][
R

j

O

]
[G] ẋ = −

[
ω̃

j,O

j

]
[B] ẋ. (A.12)

In order to obtain the derivative of [B] ẋ with respect to x, we obtain the virtual change of
[B] ẋ in terms of δx. The vector ẋ does not depend on x so can be considered to be constant.
The change of [B] can be split into two terms by using its definition in Eq. (A.9):

δ ([B] ẋ) = δ
([

R
j

O

]
[G]

)
ẋ = δ

[
R

j

O

]
[G] ẋ +

[
R

j

O

]
δ [G] ẋ. (A.13)

The first term defines the virtual change of the rotation matrix, which can be rewritten using
Eq. (A.2):

δ
[
R

j

O

]
[G] ẋ = δ

[
θ̃

j,j

O

][
R

j

O

]
[G] ẋ = −δ

[
θ̃

j,O

j

][
R

j

O

]
[G] ẋ = −δ

[
θ̃

j,O

j

]
wj ,

wj ≡
[
R

j

O

]
[G] ẋ,

(A.14)
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where wj can be interpreted as the absolute velocity of the nodes, expressed in the coordi-

nates of the local frame j ;
[
δθ̃

j,O

j

]
is a matrix with 2NIF times δθ̃

j,O

j :

[
δθ̃

j,O

j

]
=

⎡
⎢⎢⎢⎢⎣

δθ̃
j,O

j

. . .

δθ̃
j,O

j

0

⎤
⎥⎥⎥⎥⎦ . (A.15)

Each δθ̃
j,O

j is related to three components of the vector wj ; therefore, we can use the
relation in Eq. (A.3) to rewrite:

−δ
[
θ̃

j,O

j

]
wj =

⎡
⎢⎣

w̃1

...

w̃2NIF

⎤
⎥⎦ δθ

j,O

j =
⎡
⎢⎣

w̃1

...

w̃2NIF

⎤
⎥⎦R

j

OδθO,O
j , (A.16)

where w̃k applies the tilde-operator on the kth set of three components of wj . Because δθO,O
j

is part of δqO,O
j , we can write the equation in terms of δqO,O

j :

−δ
[
θ̃

j,O

j

]
wj =

[
Ŵ

j
][

R
j

O

]
δqO,O

j ,
[
Ŵ

j
]

≡
⎡
⎢⎣

0 w̃1

...
...

0 w̃2NIF

⎤
⎥⎦ . (A.17)

Equations (3.26) and (3.32) are used to rewrite this in terms of δx:

δ
[
R

j

O

]
[G] ẋ = −δ

[
θ̃

j,O

j

]
wj =

[
Ŵ

j
] [

Zj
] [

R
j

O

]
[G] δx =

[
Ŵ

j
] [

Zj
]

[B] δx. (A.18)

The second term in the virtual change of [B] ẋ is related to the virtual change of [G]. Note
that [G] relates the virtual change in finite rotations to the virtual change of Euler param-
eters; [G] only contains terms associated with these rotations. For each interface node, we
can write, based on Eq. (3.31),

δGO
k λ̇

O

G = ρ
(
λ̇

O

k

)
δλO

k , (A.19)

where ρ is a function, namely

ρ
(
λ̇
) ≡ 2

⎡
⎣ λ̇1 −λ̇0 λ̇3 −λ̇2

λ̇2 −λ̇3 −λ̇0 λ̇1

λ̇3 λ̇2 −λ̇1 −λ̇0

⎤
⎦ . (A.20)

The terms for the individual interface rotations can be combined for the full matrix into a
single equation such that the second term in δ [B] ẋ becomes

[
R

j

O

]
δ [G] ẋ =

[
R

j

O

]
δ [G] · ẋ =

[
R

j

O

]
[ρ] δx. (A.21)

By substituting Eqs. (A.12), (A.18) and (A.21) into Eq. (A.9), the convective inertia can be
written as

hcorot = [
Ḃ
]T

[
M

j

All

]
[B] ẋ − [B]T

[
M

j

All

][
ω̃

j,O

j

]
[B] ẋ
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−
(

[B]T
[
Zj

]T
[
Ŵ

j
]T + [ρ]T

[
R

O

j

])[
M

j

All

]
[B] ẋ. (A.22)

A.4 Derivation of full inertia

This section derives the full inertia, which was implicitly defined in Sect. 3.7.2, Eq. (3.42):

δxT H =
∫

V

(
δrO,O

s

)T
r̈O,O

s ρdV ∀δx. (A.23)

The velocity and virtual change of the position rO,O
s were defined in Eq. (3.41):

ṙO,O
s = RO

j �
j

All,s

[
R

j

O

]
q̇O,O

All , δrO,O
s = RO

j �
j

All,s

[
R

j

O

]
δqO,O

All , (A.24)

in which the 3 × NAll matrix �
j

All,s contains the mode-shapes evaluated at point s,

�
j

All,s =
[
�

j

1,s . . . �
j

NAll,s

]
. (A.25)

The acceleration of point s is obtained by differentiation of the velocity:

r̈O,O
s = RO

j �
j

All,s

[
R

j

O

]
q̈O,O

All + RO
j ω̃

j,O

j �
j

All,s

[
R

j

O

]
q̇O,O

All

− RO
j �

j

All,sω̃
j,O

j

[
R

j

O

]
q̇O,O

All . (A.26)

By substituting Eqs. (3.32), (A.24) and (A.26) into Eq. (A.23), we find an expression for the
full inertia:

H = [G]T
[
R

O

j

][
M

j

All

][
R

j

O

]
q̈O,O

All

+ [G]T
[
R

O

j

]([
N

j

All

]
−

[
M

j

All

][
ω̃

j,O

j

])[
R

j

O

]
q̇O,O

All , (A.27)

with
[
M

j

All

]
=

∫
V

(
�

j

All,s

)T

�
j

All,sρdV,

[
N

j

All

]
=

∫
V

(
�

j

All,s

)T

ω̃
j,O

j �
j

All,sρdV .

(A.28)

Note that
[
M

j

All

]
is equal to the reduced local mass matrix obtained by the finite element

model as also used in Eq. (3.37). The integral
[
N

j

All

]
depends on the velocity which would

require computing this integral at every time step. However, according to Eq. (A.3), the last
two terms in the integral can be rewritten for each mode k in �

j

All,s :

ω̃
j,O

j �
j

k,s = −�̃
j

k,sω
j,O

j . (A.29)

This means that ω
j,O

j can be taken outside the integral and
[
N

j

All

]
is therefore rewritten as

[
N

j

All

]
= −

∫
V

ρ
(
�

j

All,s

)T

�̃
j

All,sdV
[
ω

j,O

j

]
, (A.30)
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where the 3×3NAll matrix �̃
j

All,s defines the skew-symmetric matrices for each of the modes

of point s and the 3NAll × NAll matrix
[
ω

j,O

j

]
consists of NAll times the vector ω

j,O

j :

�̃
j

All,s ≡
[
�̃

j

1,s . . . �̃
j

NAll,s

]
,

[
ω

j,O

j

]
≡

⎡
⎢⎢⎣

ω
j,O

j

. . .

ω
j,O

j

⎤
⎥⎥⎦ . (A.31)

The integral in Eq. (A.30) is independent of the velocity. However, it cannot be computed
based on default finite element matrices as it requires evaluating this integral for each ele-
ment in the finite element model.

The acceleration of the absolute interface coordinates can be expressed in terms of ẍ,
using Eqs. (3.32) and (A.11):

q̈O,O
All = d

dt
([G] ẋ) = [

Ġ
]
ẋ + [G] ẍ = [G] ẍ. (A.32)

By substituting this equation and using the definition of [B] (see Eq. (A.9)), we can write
the total inertia as

H = [B]T
[
M

j

All

]
[B] ẍ + [B]T

[
N

j

All

]
[B] ẋ − [B]T

[
M

j

All

][
ω̃

j,O

j

]
[B] ẋ. (A.33)
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