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Abstract
Many industrial applications require the displacement of liquid-filled containers on planar
paths (namely, paths on a horizontal plane), by means of linear transport systems or serial
robots. The movement of the liquid inside the container, known as sloshing, is usually unde-
sired, thus there is the necessity to keep under control the peaks that the liquid free-surface
exhibits during motion. This paper aims at validating a model for estimating the liquid slosh-
ing height, taking into account 2-dimensional motions of a cylindrical container occurring
on a horizontal plane, with accelerations up to 9.5 m/s2. This model can be exploited for
assessment or optimization purposes. Experiments performed with a robot following three
paths, each one of them with different motion profiles, are described. Comparisons between
experimental results and model predictions are provided and discussed.

Finally, the previous formulation is extended in order to take into account the addition of
a vertical acceleration, up to 5 m/s2. The resulting 3-dimensional motions are experimentally
validated to prove the effectiveness of the extended technique.

Keywords Liquid sloshing dynamics · Prediction model · Model validation · Experiments ·
2-Dimensional motion · 3-Dimensional motion

This is an extended and revised version of a paper presented, in a preliminary version, at the
ECCOMAS Multibody Dynamics Conference 2021 [1].
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1 Introduction

The transport of containers filled with liquids finds application in several industrial applica-
tions, e.g., in food & beverage or pharmaceutical production and packaging lines. Typically,
the manipulation of such containers is assigned to linear transport systems or industrial se-
rial robots; in many cases the required motion follows planar curves. The prediction of the
liquid movement inside the container, referred to as sloshing, is important to prevent the
liquid from overflowing. Additionally, a reliable sloshing prediction model can be exploited
to limit the stirring of the liquid during task execution.

For this purpose, machine-learning methodologies are presented in [2] and [3], where,
starting from data collection, predictive algorithms are built to inspect the behavior of dis-
crete liquid particles inside a cylindrical container. This technique, though very powerful,
requires experiments to be run in advance, together with a not negligible computational
effort.

In [4] and [5], the Finite Element Method (FEM) is adopted for the analysis of sloshing
in rectangular containers, requiring a preliminary generation of the mesh able to replicate
the liquid behavior.

The meshless Smooth Particle Hydrodynamics (SPH) method is employed in [6] and [7]
to model the sloshing by discretizing the liquid in tens of thousands particles: the simulations
accurately match the experimental data, at a cost of days of computation.

In [8] the coefficients of the nonlinear sloshing dynamics model presented in [9] are
provided to evaluate the sloshing height for 3-dimensional motions, leading to a complex
formulation, which may be difficult to use.

A ready-to-use and fast alternative is represented by the development of equivalent dis-
crete mechanical models. The literature considers two main discrete approaches for the
modeling of sloshing dynamics inside a container subjected to 2-dimensional planar mo-
tion [10]: a spherical pendulum and a 2-DOF mass–spring–damper system. In the former
case, the generalized coordinates describing the system are the angles defining the position
of the pendulum mass, whereas in the latter they are the mass displacements from the refer-
ence position. Although being intuitive, the use of the angular coordinates of the pendulum
mass to assess the sloshing behavior of the liquid (see [11, 12]) lacks physical meaning, in
particular when the knowledge of the liquid peak height is important. For this reason, in the
spherical pendulum model used in [13], [14], and [15], the sloshing height is estimated by
means of the tangent functions of the spherical coordinates. However, estimating the slosh-
ing height by means of the tangent of the pendulum angles may lead to singularity conditions
when the container acceleration is high, since in this case these angles can approach 90◦ and
the tangent tends to assume unrealistic high values.

To overcome this drawback, a novel approach, based on the mass–spring–damper model
[16], is proposed in [17] for the sloshing-height estimation. This model is validated for
1-dimensional motions in [17] and it is exploited in [18] and [19] to plan antisloshing tra-
jectories. The same technique is used in a software application presented in [20] to execute
simulations of liquid sloshing in cylindrical and rectangular containers. In [17], the authors
propose the possible extension to planar motions, but no experimental validation is pro-
vided. The latter is the objective of this paper, particularly referring to 2-dimensional planar
motions of a cylindrical container, with accelerations up to 9.5 m/s2. With respect to the
preliminary conference version presented in [1], this contribution also reports an extension
of the formulation to 3-dimensional motions comprising a vertical acceleration up to 5 m/s2.
Experiments are also provided for this case.

The paper is structured as follows. Section 2 presents the model parameters and the equa-
tions of motion (EOMs) in terms of the corresponding generalized coordinates. Section 3
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Fig. 1 Mass–spring–damper model

provides the formulation of the sloshing-height estimation. In Sect. 4, the results from an ex-
perimental campaign are described and discussed. Lastly, in Sect. 5 conclusions are drawn
and suggestions for future developments are given.

2 Sloshing model

2.1 Model parameters

We will consider a cylindrical container of radius R, filled with a liquid of height h and mass
mF . A simplified discrete mechanical model can be used to reproduce the liquid-sloshing
dynamics. In particular, the mass–spring–damper model comprises a rigid mass m0 (whose
signed vertical distance from the liquid’s center of gravity G is h0) that moves rigidly with
the container, and a series of moving masses mn, with each one of them representing the
equivalent mass of a sloshing mode (Fig. 1a). Each modal mass mn is restrained by a spring
kn and a damper cn, and its signed vertical distance from G is hn.

The model parameters can be determined by imposing a number of equivalence condi-
tions with the original system [10]:

• the overall mass must be the same,

mF = m0 +
∞∑

n=1

mn; (1)

• the height of the center of gravity G must remain the same for small oscillations of the
liquid,

m0h0 +
∞∑

n=1

mnhn = 0; (2)

• the natural frequency associated with the nth mode must coincide with the one that can
be obtained from the continuum model,

ω2
n = kn

mn

= g
ξ1n

R
tanh

(
ξ1n

h

R

)
; (3)
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Fig. 2 Liquid free-surface shapes

• the sloshing force acting on the container wall must be the same as the one calculated
from the continuum model, leading to the determination of the nth sloshing mass,

mn = mF

2R

ξ1nh(ξ 2
1n − 1)

tanh
(
ξ1n

h

R

)
. (4)

In equations (3) and (4), ξ1n is the root of the derivative of the Bessel function of the first
kind with respect to the radial coordinate r , for the 1st circumferential mode and the nth

radial mode [21], while g is the gravity acceleration. The damping ratio ζn = cn

2
√

knmn

can

be determined by using empirical formulas [10].
For a container under 2-dimensional motion on the horizontal xy plane, the excitation

is provided by the container accelerations along the x and y directions, denoted with S̈0 =
[ẍ0 ÿ0 0]T . The motion of the nth sloshing mass is described by the generalized coordinates
(xn, yn), whose definition is illustrated in Fig. 1b. The latter are then used to compute the
liquid sloshing height.

2.2 Equations of motion

In general, three dynamic regimes are possible [10]:

• small oscillations in which the liquid free-surface remains planar (Fig. 2a);
• relatively-large-amplitude oscillations in which the liquid free-surface is no longer planar

(Fig. 2b);
• strongly nonlinear motion, where the liquid free-surface exhibits instantaneous peaks

characterized by swirling shapes.

While the third motion regime will not be the object of the present study, the first and second
cases can be analyzed by means of a linear mass–spring–damper model (L model) and a
nonlinear mass–spring–damper model (NL model), respectively.

The NL model considers the sloshing mass mn as sliding on a parabolic surface, with
an attached nonlinear spring of order w (Fig. 1c) [16]. The analytical expression of the
parabolic surface allows writing the vertical coordinate zn as a function of xn and yn, namely

zn = Cn

2R
(x2

n + y2
n), (5)
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where Cn = ω2
n

R

g
. The time derivative of equation (5) is

żn = Cn

R
(ẋnxn + ẏnyn). (6)

The nonlinear spring exerts the forces αnknx
2w−1
n and αnkny

2w−1
n , along the x and y direc-

tion, respectively. In this paper, we choose w = 2 and αn = 0.58, as suggested in [16]. If the
radial generalized coordinate rn = √

x2
n + y2

n is introduced, the nonlinear-spring force in the
radial direction can be written as αnknr

2w−1
n .

The EOMs, describing the time evolution of the generalized coordinates (xn, yn), can be
obtained by means of the Lagrange equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt

( ∂T

∂ẋn

)
− ∂T

∂xn

+ ∂V

∂xn

= − ∂D

∂ẋn

,

d

dt

( ∂T

∂ẏn

)
− ∂T

∂yn

+ ∂V

∂yn

= − ∂D

∂ẏn

,

(7)

where

• the kinetic energy T of the nth sloshing mass can be computed by taking into account
its velocity ṡn = [ẋn ẏn żn]T , the container velocity Ṡ0 = [ẋ0 ẏ0 0]T and by exploiting
equation (6):

T = 1

2
mn[(ẋ0 + ẋn)

2 + (ẏ0 + ẏn)
2 + ż2

n]

= 1

2
mn

[
(ẋ0 + ẋn)

2 + (ẏ0 + ẏn)
2 + C2

n

R2
(ẋnxn + ẏnyn)

2
]
;

(8)

• the potential energy V considers the contribution of gravity and nonlinear-spring forces,
namely

V = mngzn +
rnˆ

0

αnknr
2w−1
n drn = mng

Cn

2R
(x2

n + y2
n) + αnkn

2w
(x2

n + y2
n)

w; (9)

• the Rayleigh function D accounts for energy dissipation,

D = 1

2
cn(ẋ

2
n + ẏ2

n + ż2
n) = mnζnωn

[
ẋ2

n + ẏ2
n + C2

n

R2
(ẋnxn + ẏnyn)

2
]
. (10)

The substitution of equations (8), (9), and (10) in the system (7) leads to the formulation of
two coupled EOMs for the NL model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍn + 2ωnζn[ẋn + C2
n(x

2
nẋn + ynẏnxn)]+

+C2
n(xnẋ

2
n + x2

nẍn + xnẏ
2
n + xnÿnyn)+

+ω2
nxn[1 + αn(x

2
n + y2

n)
w−1] + ẍ0

R
= 0,

ÿn + 2ωnζn[ẏn + C2
n(y

2
nẏn + xnẋnyn)]+

+C2
n(ynẏ

2
n + y2

nÿn + ynẋ
2
n + ynẍnxn)+

+ω2
nyn[1 + αn(x

2
n + y2

n)
w−1] + ÿ0

R
= 0,

(11)
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where xn = xn/R, yn = yn/R. As far as the L model is concerned, the linearization of
the EOMs in equation (11) provides two decoupled EOMs in the generalized coordinates
(xn, yn) of the nth mode:

{
ẍn + 2ζnωnẋn + ω2

nxn + ẍ0 = 0,

ÿn + 2ζnωnẏn + ω2
nyn + ÿ0 = 0.

(12)

2.3 Extension to 3-dimensional motion

If an excitation z̈0 along the z-axis is added to that on the xy plane, the container is subject
to a 3D motion, namely S̈0 = [ẍ0 ÿ0 z̈0]T . As long as we assume to employ the mass–
spring–damper model presented in Sect. 2.1 to reproduce the liquid behavior, the same
model parameters can be used. This choice allows the derivation of a fast and easy model ex-
tension, without the complication inherent in the construction of a different discrete model.
As a consequence, we assume that the additional motion along the z-axis only influences
the kinetic energy of the nth sloshing mass:

T = 1

2
mn[(ẋ0 + ẋn)

2 + (ẏ0 + ẏn)
2 + (ż0 + żn)

2]

= 1

2
mn

{
(ẋ0 + ẋn)

2 + (ẏ0 + ẏn)
2 +

[
ż0 + Cn

R
(ẋnxn + ẏnyn)

]2}
,

(13)

where żn is still given by equation (6). Hence, combining equation (7) with equations (13),
(9), and (10), the NL-model EOMs for the 3D motion become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍn + 2ωnζn[ẋn + C2
n(x

2
nẋn + ynẏnxn)]+

+C2
n(xnẋ

2
n + x2

nẍn + xnẏ
2
n + xnÿnyn)+

+ω2
nxn[1 + αn(x

2
n + y2

n)
w−1] + ẍ0

R
+ z̈0

g
ω2

nxn = 0,

ÿn + 2ωnζn[ẏn + C2
n(y

2
nẏn + xnẋnyn)]+

+C2
n(ynẏ

2
n + y2

nÿn + ynẋ
2
n + ynẍnxn)+

+ω2
nyn[1 + αn(x

2
n + y2

n)
w−1] + ÿ0

R
+ z̈0

g
ω2

nyn = 0,

(14)

whereas the L-model EOMs yield

⎧
⎪⎪⎨

⎪⎪⎩

ẍn + 2ζnωnẋn + ω2
nxn + ẍ0 + z̈0

g
ω2

nxn = 0,

ÿn + 2ζnωnẏn + ω2
nyn + ÿ0 + z̈0

g
ω2

nyn = 0.

(15)

3 Analytical sloshing-height estimation

3.1 1-Dimensional motion

If only a 1-dimensional excitation in the y direction is provided and the phenomenon of
rotary sloshing is neglected [10], solely the generalized coordinate yn is different from zero.
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In such a case, the conservation of the center of gravity y-coordinate, between the continuum
model and the equivalent model, yields

yGmF =
∞∑

n=1

ynmn + y0m0 =
∞∑

n=1

ynmn. (16)

Considering a cylindrical container with cross-section S = πR2, filled with a liquid of height
h, yG can be computed as

yG = 1

Sh

¨

S

h
2 +η(r,θ,ηn)ˆ

− h
2

y dzdS

= 1

πR2h

R̂

0

2πˆ

0

h
2 +η(r,θ,ηn)ˆ

− h
2

r2 sin θ dzdθdr,

(17)

where the function η(r, θ, ηn) describes the liquid free-surface shape, ηn is the sloshing
height of the nth mode, (r, θ) are the polar coordinates, with x = r cos θ , y = r sin θ , and
dS = r dθdr . As for the L model, the function η(r, θ, ηn) describes a plane (Fig. 2a),

η(r, θ, ηn) =
∞∑

n=1

ηn

r

R
sin θ, (18)

whereas, for the NL model, the nonplanar free-surface can be described by means of the
first-kind Bessel function (Fig. 2b), namely

η(r, θ, ηn) =
∞∑

n=1

ηn

J1(ξ1n
r
R
)

J1(ξ1n)
sin θ. (19)

Independently from the adopted function η, the expression of yG from equation (17) can be
used in equation (16) to express ηn as a function of the model parameters and the generalized
coordinates (xn, yn), with the latter being obtained by solving the EOMs (see Sect. 2.2). The
L-model assumption of planar surface leads to

yG = 1

πR2h

R̂

0

2πˆ

0

h
2 +∑

ηn
r
R

sin θˆ

− h
2

r2 sin θ dzdθdr = R

4h

∞∑

n=1

ηn. (20)

Regarding the NL model, by exploiting one of the Bessel function properties, i.e.,´ R

0 r2J1(ξ1n
r
R
) dr = R3 J1(ξ1n)

ξ2
1n

, yG can be evaluated as

yG = 1

πR2h

R̂

0

2πˆ

0

h
2 +∑

ηn

J1(ξ1n
r
R

)

J1(ξ1n)
sin θˆ

− h
2

r2 sin θ dzdθdr = R

h

∞∑

n=1

ηn

ξ 2
1n

. (21)
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Table 1 SH estimation for a 1-dimensional planar motion, without (left column) and with (right column)
an excitation along the z-axis

S̈0 = [0 ÿ0 0]T S̈0 = [0 ÿ0 z̈0]T

L model ηn = 4hmn

mF R
yn (22) ηn = 4hmn

mF R
yn (23)

yn from (12) yn from (15)

NL model ηn = ξ2
1n

hmn

mF R
yn (24) ηn = ξ2

1n
hmn

mF R
yn (25)

yn from (11) yn from (14)

Table 2 MSH estimation for a 2-dimensional planar motion, without (left column) and with (right col-
umn) an excitation along the z-axis

S̈0 = [ẍ0 ÿ0 0]T S̈0 = [ẍ0 ÿ0 z̈0]T

L model ηn = 4hmn

mF R

√
x2
n + y2

n (28) ηn = 4hmn

mF R

√
x2
n + y2

n (29)

xn, yn from (12) xn, yn from (15)

NL model ηn = ξ2
1n

hmn

mF R

√
x2
n + y2

n (30) ηn = ξ2
1n

hmn

mF R

√
x2
n + y2

n (31)

xn, yn from (11) xn, yn from (14)

Inserting the results from equations (20) and (21) into equation (16) allows the formulation
of the nth sloshing height (SH) for the L and NL models, respectively, as shown in the
leftmost column of Table 1.

3.2 2-Dimensional motion

When accounting for a 2-dimensional excitation, the plane 
, on which the maximum slosh-
ing height (MSH) occurs, changes its orientation instantaneously, according to a rotation
about the z-axis by the angle (Fig. 1b),

φn = arctan
(yn

xn

)
. (26)

If the liquid behavior is analyzed on the plane 
 at every instant, equation (16) can be
extended to the radial coordinate of G, remembering that rn = √

x2
n + y2

n :

rGmF =
∞∑

n=1

rnmn =
∞∑

n=1

mn

√
x2

n + y2
n. (27)

Equations (20) and (21) can be used to express rG in terms of ηn, depending on the adopted
model. The approach seen in Sect. 3.1 allows writing the formulas for the nth MSH evalu-
ation, both for the L and NL models, considering a 2-dimensional motion of the container
(the leftmost column of Table 2).

3.3 Remarks

By looking at the leftmost columns of Tables 1 and 2, one can point out that, for equal values
of the generalized coordinates (xn, yn), the ratio between ηn obtained from the L model in
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equations (22), (28) and ηn from the NL model in equations (24), (30) is always 4/ξ 2
1n.

If only the 1st mode is considered, this ratio is equal to 4/ξ 2
11 ≈ 1.18 and shows that the

assumption of planar free-surface always overestimates the sloshing height compared to the
assumption of a nonplanar free-surface. Furthermore, while in equations (22), (24), ηn has
the same sign of yn, in equations (28), (30) ηn is always positive. This means that equations
(22), (24) express the trend of the sloshing height on only one side of the container (on
the other side, the sloshing height is estimated as the opposite of ηn): in this case, we will
simply talk about sloshing height (SH). Conversely, in equations (28), (30), ηn indicates
the maximum peak that occurs on the container wall (on a plane oriented as described in
equation (26)): in this case, we will use the expression maximum sloshing height (MSH).

3.4 Extension to 3-dimensional motion

When an additional excitation along the z-axis is taken into account, the formulas for the
SH and the MSH estimation are reported in the rightmost columns of Tables 1 and 2. They
are seemingly identical to those employed in the case of a planar motion along the xy plane.
However, the generalized coordinates xn, yn are obtained by solving the EOMs in (14) for
the NL model and in (15) for the L model, instead of equations (11) and (12), respectively.

Summing up, once that the liquid properties are known (in terms of container radius R,
static height h, and density ρ), the equivalent-discrete model parameters (see Sect. 2) can be
computed, and the 3-dimensional formulation can be applied to study the liquid sloshing for
a general motion of the container, namely S̈0 = [ẍ0 ÿ0 z̈0]T , by simply employing the EOMs
in (15) if the L model is adopted, or by solving the EOMs in (14) if the NL model is chosen.
Once that the generalized coordinates (xn, yn) of the nth sloshing mass are computed, if the
container is not subject to an acceleration along the x-axis throughout the whole motion
(ẍ0 = 0 [m/s2]), for the SH estimation, we must refer to Table 1. Conversely, if both ẍ0 and
ÿ0 are other than zero, the reference for the MSH estimation is Table 2. The aforementioned
generalization for the sloshing-height estimation is illustrated by the flowchart in Fig. 3.

Hence, the sloshing-height estimation requires the numerical solution of the EOMs to
find the generalized coordinates (xn, yn) of the nth sloshing mass, together with the com-
putation of the formulas in Tables 1 and 2, depending on the adopted model. Regarding
our (nonoptimized) MATLAB implementation, the average computational time is 0.7 s, for
either the linear and the nonlinear formulations.

4 Experimental validation

4.1 Experimental setup and motion laws

The experimental setup comprises a cylindrical container with radius R = 50 mm and a
liquid static height h = 70 mm. The liquid is water, which is colored by adding dark brown
powder, in order to obtain a better contrast for the image processing analysis. Motions are
performed by an industrial robot (Stäubli RX130L) and recorded by a GoPro Hero3 camera.
The trajectories are planned so that the robot follows three geometrical paths on the xy plane
(Fig. 4), each of them with different motion profiles, characterized by increasing container
accelerations:

• a back-and-forth linear path (indicated as l-motion);
• an eight-shaped path (e-motion);
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Fig. 3 Flowchart describing the computation of the liquid sloshing height, depending on the type of container
acceleration and the adopted model

Fig. 4 The three planar paths followed by the robot during experimental validation
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Fig. 5 The three motion profiles performed per each planar path

Fig. 6 The 3D paths obtained as an extension of the 2D case

• a circular path, performed twice in succession (c-motion).

In Fig. 5, the trends of the second time derivative1 σ̈ of the path parameter are illustrated: for
every path, all three motion profiles are shown. Note that the legend refers to the maximum
of the container acceleration norm ‖S̈0‖max reached during the corresponding motion.

Additionally, the 2D planar motions obtained from a modified trapezoidal motion law
with 6 segments of σ̈ are extended into 3D motions (l3-motion, e3-motion, c3-motion)
through the inclusion of an excitation along the z-axis (Fig. 6a). In particular, for the e3-
motion and c3-motion, the accelerations along the x and y directions are kept unchanged
with respect to the corresponding e-motion and c-motion of the 2D case, respectively. The
same cannot be said about the l3-motion, where the acceleration along the y-axis was
slightly modified to meet the robot limits. As a result of the extension, if 2D and 3D paths
are observed from the top of the xy plane, they share the same shape, whereas, from a front
perspective, the vertical coordinate changes along the path according to an excursion �z

(Fig. 6b). On each 2D path, two different trends of z̈0 are considered, thus providing two
different 3D paths, characterized by two different values of �z:

• a profile with moderate dynamics, namely |z̈0|max ∈ [2,3] m/s2;
• a profile with more prominent dynamics, namely |z̈0|max ∈ [4,5] m/s2.

1The acceleration S̈0 can be written as S̈0(σ, σ̇ , σ̈ ) = S′′
0(σ )σ̇ 2 + S′

0(σ )σ̈ , where ()′ = ∂()/∂σ denotes the
derivative with respect to the path parameter σ .
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Fig. 7 Snapshots from the image processing analysis of the recorded videos

Regarding the extraction of the experimental sloshing height from the recorded videos,
once each frame is converted into black & white, the image must be processed in two dif-
ferent ways, depending on the excitation type:

• SH detection. When the excitation is given by a 1-dimensional acceleration along the
y-axis with or without the addition of z̈0 on the vertical direction, the trend of the SH can
be examined on only one side of the container (Sect. 3.3); in this case, the SH is detected
by identifying the black pixel with the highest z-coordinate on the rightmost side of the
container (Figs. 7a, 7b); then, the SH is evaluated as the difference (converted in mm)
between the vertical coordinate of the detected pixel and that of the pixel representing the
liquid static height h.

• MSH detection. When the excitation is a general planar or spatial motion, the MSH can
occur anywhere on the container wall. The MSH is again detected as the black pixel with
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Fig. 8 Comparison of the proposed models and the experimental results from the planar motions

the highest z-coordinate, but in this case the whole surface of the container is considered.
Furthermore, a distinction is made between a peak occurring on the front part of the
container and a peak on the rear wall, noticing that in the former case the liquid image
presents a uniform black shape (Fig. 7c), whereas in the latter case the liquid image is
characterized by white regions due to the light reflection on the liquid free-surface (Fig.
7d). Through this distinction, the peak can be correctly located on the container surface
and the knowledge of the image depth can be used to obtain a more realistic measure of
the MSH.

4.2 Experimental results

In Fig. 8, the 2-dimensional L and NL model predictions are compared with the results
from the experimental motions, only considering the 1st sloshing mode. A good adherence
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Fig. 9 Snapshots from the recorded videos, showing the different peaks reached by the liquid

between the experiments and the models can be appreciated for the 1-dimensional motions
(Figs. 8a, 8b, 8c), and tracking remains reliable also for 2-dimensional motions, especially
when considering lower values of ‖S̈0‖max (Figs. 8d, 8g). As the value of the 2-dimensional
excitation S̈0 is increased, the model predictions still capture the trend of the real liquid
MSH, although they seem to lose accuracy in correspondence to the peaks reached by the
liquid (Figs. 8e, 8f, 8h, 8i). This can be eventually attributed to two reasons:

• The high dynamics given to the container causes a regime of strongly nonlinear motions,
where the liquid free-surface loses the assumed shape and shows instantaneous swirly
peaks, as illustrated in Fig. 9a, that cannot be tracked by the models;

• The height of the frames that are employed for the image processing analysis, grants
a greater field of view when the liquid peak occurs on the rear wall of the container
(Fig. 9b), whereas, for a peak on the front wall (Fig. 9c), the value of the real MSH
is saturated by the frame upper limit; this explains the discrepancy between the experi-
ments and the prediction models in the red areas that are highlighted in Figs. 8e, 8f, 8h,
8i.

Regarding the former case, the L-model assumption of a planar surface during motion loses
adherence with reality when the container acceleration is roughly greater than ‖S̈0‖max ≈
8 m/s2, with a maximum jerk of ‖...

S0‖max ≈ 60 m/s3. This is reflected in a less accurate
correspondence between the model prediction and the experimental result, even though
the model evaluation is still reliable. It is worth observing that the maximum peaks are
always overestimated by the L model. As far as the NL model is concerned, the assumption
of a free surface described by means of the Bessel function of the first kind finds a bet-
ter correspondence with reality, compared with the L model. The model estimation begins
to lose adherence with reality when the container acceleration reaches a value of roughly
‖S̈0‖max ≈ 9.5 m/s2, with a maximum jerk of ‖...

S0‖max ≈ 74 m/s3. Additionally, the global
maxima predicted by the NL model are always below the experimental ones.

Table 3 summarizes the obtained results by reporting the accuracy index εmod expressing
the error between the model and the experimental maxima:

εmod = ηmax,mod − ηmax, exp

ηmax, exp

× 100% (32)

where the subscripts mod and exp denote the adopted model (2-dimensional L/NL) and
the experimental results, respectively. For all motions, |ε2D−L| is always below 18%, and
|ε2D−NL| never exceeds 19%, with the NL model granting a better tracking during the whole
time period. Furthermore, the positive sign of ε2D−L proves that the L model always over-
estimates the real SH and MSH peaks, as expected (see Sect. 3.3), hence providing a more
conservative estimation.
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Table 3 Accuracy index εmod evaluated for the planar motions

l-motion ‖S̈0‖max ≈ 5.2 m/s2 ‖S̈0‖max ≈ 7.4 m/s2 ‖S̈0‖max ≈ 8.1 m/s2

ε2D−NL = −11.9% ε2D−NL = −9.5% ε2D−NL = −14.1%

ε2D−L = 8.8% ε2D−L = 15.8% ε2D−L = 12.8%

e-motion ‖S̈0‖max ≈ 4.7 m/s2 ‖S̈0‖max ≈ 8.1 m/s2 ‖S̈0‖max ≈ 9.2 m/s2

ε2D−NL = −2.1% ε2D−NL = −7.5% ε2D−NL = −9.2%

ε2D−L = 18.3% ε2D−L = 16.2% ε2D−L = 17.1%

c-motion ‖S̈0‖max ≈ 5.8 m/s2 ‖S̈0‖max ≈ 8.9 m/s2 ‖S̈0‖max ≈ 9.5 m/s2

ε2D−NL = −8.7% ε2D−NL = −14.3% ε2D−NL = −19%

ε2D−L = 17.6% ε2D−L = 11.6% ε2D−L = 16.9%

In Fig. 10, the results from the 3D motions are illustrated: for each motion, the 3-
dimensional L and NL model predictions are compared with the 2-dimensional L and
NL ones, to show the benefit obtained by employing the extended formulation. In gen-
eral, the 3-dimensional models exhibit a better correspondence with respect to the 2-
dimensional ones, especially when the vertical acceleration is more significant (e.g., when
|z̈0|max ∈ [4,5] m/s2). The definition of the index σmod expresses the mean absolute error
between the experimental results and the model predictions,

σmod =
∑N

i=1|ηexp(ti) − ηmod(ti)|
N

, (33)

where the subscripts mod and exp denote the adopted model (2-dimensional L/NL or 3-
dimensional L/NL) and the experimental results, respectively, whereas ti refers to the ith
time instant and N represents the number of samplings. The analysis of Table 4, in which
the index σmod is evaluated for the 3-dimensional motions, confirms the qualitative evidence,
i.e.:

• for equal formulations (3D or 2D), the NL model grants a better tracking of the real-
liquid trends with respect to the L model (for instance, in most cases, σ3D−NL < σ3D−L

and σ2D−NL < σ2D−L);
• in general, the 3D formulation provides a more reliable correspondence with reality,

compared to the 2D formulation; indeed, in most cases σ3D−NL < σ2D−NL and σ3D−L <

σ2D−L.

4.3 Remarks

In the described experiments, the employed amount of liquid inside the container (R =
50 mm, h = 70 mm, with h/R = 7/5) has a mass of mF ≈ 0.55 kg. Considering only the
first sloshing mode to model the liquid dynamics, from equation (4), we can theoretically
compute the mass m1 which is responsible of the liquid sloshing (m1 ≈ 0.18 kg). If the
case with the highest dynamics is taken into account (e.g., the c-motion with ‖S̈0‖max ≈
9.5 m/s2), it can be shown, from the simulations, that the forces transmitted by the liquid on
the robot end-effector are negligible, hence not influencing the robot dynamics. Conversely,
as the value of mF is increased (and consequently of m1, if h/R is fixed), the forces acting
on the robot end-effector get more important.
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Fig. 10 Results from the 3D motions
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Table 4 Accuracy index σmod evaluated for the 3-dimensional motions, comparing the 3D and the 2D for-
mulations

l3-motion (|z̈0|max ∈ [2,3] m/s2) σ3D−NL = 1.7 mm σ2D−NL = 2.4 mm

σ3D−L = 3.3 mm σ2D−L = 4.1 mm

l3-motion (|z̈0|max ∈ [4,5] m/s2) σ3D−NL = 2.3 mm σ2D−NL = 4.5 mm

σ3D−L = 4.2 mm σ2D−L = 6.1 mm

e3-motion (|z̈0|max ∈ [2,3] m/s2) σ3D−NL = 1.9 mm σ2D−NL = 2.2 mm

σ3D−L = 4.0 mm σ2D−L = 3.3 mm

e3-motion (|z̈0|max ∈ [4,5] m/s2) σ3D−NL = 2.0 mm σ2D−NL = 4.3 mm

σ3D−L = 3.7 mm σ2D−L = 4.0 mm

c3-motion (|z̈0|max ∈ [2,3] m/s2) σ3D−NL = 2.3 mm σ2D−NL = 3.0 mm

σ3D−L = 3.9 mm σ2D−L = 4.2 mm

c3-motion (|z̈0|max ∈ [4,5] m/s2) σ3D−NL = 3.0 mm σ2D−NL = 5.0 mm

σ3D−L = 3.8 mm σ2D−L = 5.3 mm

It is also worth mentioning the influence of the ratio h/R. In particular, for a fixed value
of mF , when h/R increases, the value of the sloshing mass m1 drops down [10], whereas m1

represents a more important contribution as h/R decreases. As long as the sloshing mass m1

grows, the sloshing of the liquid becomes more significant, and the free surface might not
satisfy the model assumptions. Consequently, for lower values of h/R, the prediction models
may lose adherence with reality. This also finds confirmation by looking at the correlation
between the first natural frequency and the ratio h/R (see equation (3)): with the decreasing
of h/R, ω1 tends to lower values, meaning that the fundamentals of the liquid free-surface
can be easily excited by the motion-law spectrum, in correspondence of the highest ampli-
tudes [18]. This may result in a more nonlinear behavior and shape of the liquid free-surface
that might not be detected by the models, although a higher number of sloshing modes is
considered.

5 Conclusions and future work

A novel technique for the sloshing-height estimation of a liquid inside a cylindrical container
subject to 2-dimensional planar motions was proposed, extending what was presented in
[17]. The technique is based on simple discrete mechanical models, rather than machine-
learning or complex fluid dynamics methodologies, thus granting a reliable and easy-to-
compute estimation.

Experiments, considering three container planar paths performed by an industrial robot
with different motion profiles, were presented and the relative results were discussed. An ac-
curacy index, expressing the error between the model and the experimental sloshing-height
maxima, was used to prove the effectiveness of the estimation, even for high values of the
container acceleration (up to 9.5 m/s2).

Additionally, the 2-dimensional formulation was extended into a 3-dimensional one, to
take into account an additional excitation along the vertical direction, hence resulting in a 3D
motion of the container. The planar paths of the 2D case were extended by adding a z-axis
acceleration (up to 5 m/s2). The mean absolute error between the experimental results and
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the model predictions was examined to evaluate the benefit, in terms of accuracy, obtained
by employing the 3D formulation instead of the 2D one.

Future work will include a further validation study considering higher values of the ver-
tical acceleration and the use of the proposed sloshing-height estimation for square-section
containers, adapting the formulation that was presented in Sect. 3. In addition, a detailed
sensitivity analysis will be addressed to assess the influence of the container dimensions on
the accuracy of the model predictions (Sect. 4.3).
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