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Abstract In this work, a full and complete development of the tangent stiffness matrix is
presented, suitable for the use in an absolute interface coordinates floating frame of reference
formulation. For simulation of flexible multibody systems, the floating frame formulation is
used for its advantage to describe local elastic deformation by means of a body’s linear fi-
nite element model. Consequently, the powerful Craig—-Bampton method can be applied for
model order reduction. By establishing a coordinate transformation from the absolute float-
ing frame coordinates and local interface coordinates corresponding to the Craig—Bampton
modes to absolute interface coordinates, it is possible to satisfy kinematic constraints with-
out the use of Lagrange multipliers. In this way, the floating frame does not need to be
located at an interface point and can be positioned close to the body’s center of mass, with-
out requiring an interface point at the center of mass. This improves simulation accuracy.
In this work, the expression for the new method’s tangent stiffness matrix is obtained by
taking the variation of the equation of equilibrium. The global tangent stiffness matrix is
expressed as a local tangent stiffness matrix, consisting of both material stiffness and geo-
metric stiffness terms, transformed to the global frame by the rotation matrix of the floating
frame. Simulations of static and dynamic validation problems are performed. These simu-
lations show the importance of including the tangent stiffness matrix for both convergence
and simulation efficiency.
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1 Introduction

The field of flexible multibody dynamics considers the study of mechanical systems that
consist of multiple deformable bodies. These bodies are connected together or to the fixed
world in their interface points. In many situations the deformation of a body remains suffi-
ciently small, such that linear elasticity theory can be used to describe the elastic displace-
ment field locally. However, the joints that are situated at the interface points may allow for
large rigid body rotations between different bodies, which causes the kinematics to be of a
nonlinear nature.

The floating frame of reference formulation is a flexible multibody dynamics formula-
tion well-suited for these types of problems. Its details are well-documented in standard
textbooks such as [1]. In the floating frame formulation, the rigid body motion of a body is
described by the absolute coordinates of the floating frame; a coordinate system that moves
along with the body. The elastic deformation is described locally, relative to the floating
frame, by a set of generalized coordinates that correspond to a specific set of mode shapes.
These mode shapes can be obtained from the body’s linear finite element model by means
of model order reduction techniques, such as the Craig-Bampton method [2]. The fact that
such reduction methods can be applied, makes the floating frame formulation a very efficient
multibody formulation for cases in which the local elastic deformation is small indeed.

Because the floating frame formulation uses the floating frame coordinates and the gen-
eralized coordinates corresponding to the local mode shapes, the kinematic constraint equa-
tions are nonlinear and in general difficult to solve analytically. As a consequence, Lagrange
multipliers are required to satisfy the kinematic constraint equations when formulating the
equations of motion. This is an important disadvantage of the floating frame formulation, as
the Lagrange multipliers cause the constrained equations of motion to be of the differential-
algebraic type rather than the differential type. In contrast, formulations in which the ab-
solute interface coordinates are part of the degrees of freedom do not need Lagrange mul-
tipliers: because the kinematic constraints are enforced at the interface points, they can be
satisfied conveniently by relating the relevant interface coordinates.

In previous work, the authors have presented a new formulation for the simulation of
flexible multibody systems [3]. This method is based on the floating frame formulation, but
uses the absolute interface coordinates as the degrees of freedom. In this way, this method
combines the advantage of the floating frame formulation in describing a body’s local elastic
behavior with the advantage of satisfying kinematic constraints without Lagrange multipli-
ers. This is realized by establishing a coordinate transformation that expresses the absolute
floating frame coordinates and local elastic coordinates in terms of the absolute interface
coordinates. The static Craig—Bampton interface modes are used for describing the local
elastic displacement field. In essence, the formulation realizes the desired coordinate trans-
formations by exploiting the fact that the Craig—-Bampton modes are able to describe rigid
body motion. The global equations of motion of a flexible body were presented and the
method was validated in a number of numerical problems.

In this work, a full and complete derivation will be presented of the tangent stiffness
matrix associated with this new formulation. Although the correct form of the tangent stift-
ness matrix was included in all validation problems in [3], its full derivation has not been
presented before. Additionally, this work discusses the importance of the tangent stiffness
matrix in static and dynamic numerical simulations. To this end, a demonstration of the ef-
fects of ignoring or simplifying the tangent stiffness matrix on both simulation accuracy and
simulation time are presented.

In static simulations, the equilibrium equations are solved by increasing the externally
applied load incrementally. Within each load increment, multiple iterations may be required
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to obtain a displacement increment that satisfies the equations of equilibrium with sufficient
accuracy. For the computation of each displacement increment, the equations of equilibrium
are linearized about the current configuration. The tangent stiffness matrix naturally arises
in this linearization.

In dynamic simulations, the equations of motion are solved incrementally by means of
numerical time integration. For computation of the next time increment, the equations of
motion are linearized about the current configuration. For the simulation of the flexible
multibody problems in this work, implicit integration schemes, such as the Adams—Moulton
scheme, can be used. In those integration schemes, the Jacobian of the equation of motion
can be used to improve the corrector step, which requires the tangent stiffness matrix.

For many standard finite elements such as beams, plates and volume elements, expres-
sions for the tangent stiffness are well-documented; see for instance [4, 5]. However, since
the new formulation [3] is applicable to reduced order models of arbitrarily shaped three-
dimensional flexible bodies, an expression for the tangent stiffness matrix is required for
these general circumstances. The most significant contributions of this work are the de-
velopment of the general expression of the tangent stiffness matrix and a discussion of its
relevance in numerical problems.

The remainder of this work contains two theoretical sections, followed by two sections
on numerical validations. In Sect. 2, the new floating frame formulation as presented in [3]
is summarized. This is restricted to that what is necessary to derive the tangent stiffness ma-
trix. The kinematics of the floating frame formulation is introduced, where local interface
coordinates are used to describe local elastic deformation using the Craig—-Bampton method.
The local interface coordinates, are expressed in terms of the difference between the abso-
lute interface coordinates and the absolute floating frame coordinates. By demanding zero
elastic deformation at the location of the floating frame, the floating frame coordinates and
local interface coordinates are both expressed in terms of the absolute interface coordinates.
In Sect. 3, the full expression for the tangent stiffness matrix is derived. To this end, the
equation of equilibrium of a flexible body is derived based on the principle of virtual work.
The tangent stiffness matrix is introduced after taking the variation in the equation of equi-
librium. This requires the variations in the relevant transformation matrices, which will be
provided. It is shown that the tangent stiffness matrix depends on the orientation of the float-
ing frame and the body’s elastic deformation. In Sect. 4, numerical validation problems that
show the importance of the tangent stiffness matrix on the simulation convergence of static
problems are discussed. In Sect. 5, numerical validation problems that show the importance
of the tangent stiffness on the simulation efficiency of dynamic problems are discussed. The
paper finalizes with the most important conclusions.

2 A floating frame formulation in terms of absolute interface coordinates
using Craig-Bampton modes

The kinematics of a three-dimensional flexible body is considered in the floating frame for-
mulation. The position and orientation of the floating frame is denoted by the pair {P;, E|},
where P; identifies the material point on the body to which coordinate frame E; is rigidly
attached. The degrees of freedom consist of the 6 absolute coordinates of the floating frame
with respect to the inertial frame Py and the generalized coordinates associated with the
mode shapes that describe the body’s elastic deformation. Let N be the number of interface
points on the body. Then the number of interface coordinates is 6 N. In order to establish
a coordinate transformation from the degrees of freedom of the floating frame formulation
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to absolute interface coordinates, the total number of generalized coordinates in both for-
mulations must be the same. Hence, the number of mode shapes taken into account in the
floating frame formulation must be equal to 6N — 6. In this way, the total number of degrees
of freedom of a flexible body equals 6N .

The fact that the coordinate transformation involves the interface coordinates, suggests
that it is convenient to describe the body’s local elastic behavior such that it is uniquely de-
fined by the local interface coordinates. In this aspect, choosing the Craig-Bampton modes
as the local mode shapes is a natural choice, because the generalized coordinates correspond-
ing to the Craig—-Bampton modes are in fact local interface coordinates. Let Py identify the
interface point with index k. The local generalized coordinates associated with this inter-
face point are denoted by the (6 x 1) vector qi’j , which defines the elastic displacement and
rotations of P (lower index k) relative to P; (second upper index j) and its components
are expressed in the coordinate system {P;, E;} (first upper index j). Now, the local elastic
deformation at an arbitrary point P on the body can be expressed as

N
qp’ =) & (x})ql”. 2.1
k=1

Here ®; is the (6 x 6) mode matrix that describes the elastic displacements and rotations
due to the six Craig-Bampton modes of Py, which is identified by the position vector Xﬁ;’
on the undeformed body. Equation (2.1) is written in short as

q,’ =[®plq’, 2.2)

where the (6 x 6/N) matrix [® p] contains all the Craig-Bampton modes evaluated at P and
the (1 x 6N) vector q// contains all local interface coordinates:

ai’
[@r1=[®x;) ... eyvexH].  a=| 1| (2.3)

ai/
Because there are 6N interface coordinates, there will be 6N Craig—Bampton modes, not
6N — 6. Moreover, the Craig—-Bampton modes are able to describe rigid body motion. Since
rigid body motion is already described by the floating frame coordinates, taking into account
all Craig-Bampton modes will cause problems of non-uniqueness. In order to remove this

singularity, six constraints are be imposed on the modes. In its most general form, one needs
to demand

]:(qj,j) =0, 24

which are in general six nonlinear equations in terms of q’+/. Due to its possible nonlinear
nature, this might not be solved analytically. However, it is possible to solve Eq. (2.4) in its
tangent space. Taking the variation of Eq. (2.4) yields

VF - 8¢’ =0. (2.5)

These are 6 linear equations in the virtual displacements 8q/+/. If these equations are satis-
fied, the virtual change in the interface coordinates is such that no rigid body motion occurs.
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Fig. 1 A flexible body in its deformed configuration and its undeformed configurations (dashed lines) for
floating frame locations at an interface point and at the undeformed body’s center of mass. Placing the floating
frame close to the center of mass requires a smaller deformation. Figure was made using Adobe Illustrator

In the original work [3], the six constraints are defined by demanding that at the location
of the floating frame, the elastic deformation is zero. Explicitly this means that the virtual
change in interface coordinates should satisfy

[®;16q’7 =0, (2.6)

where [® ;] now represents the Craig-Bampton mode matrix evaluated at the floating frame.
The most straightforward way in which Eq. (2.6) is satisfied, is by choosing the Craig—
Bampton modes such that each of them equals zero at the location of the floating frame:

[®;1=0. 2.7

This is the case when the floating frame is located in an interface point and the Craig—
Bampton modes of that particular interface point are removed from the set of modes; see
e.g. [6]. However, this makes the results dependent on the interface point chosen. More-
over, in general a better accuracy is obtained when the floating frame is close to the
body’s center of mass. In that case, the deformed configuration of a body can be described
with smaller elastic deformations. Figure 1 illustrates this effect. Alternatively, the Craig—
Bampton modes can be determined while keeping the floating frame fixed; see e.g. [7]. This
is equivalent to the first method [6] when an auxiliary interface point is introduced at the
location of floating frame. In this way, the floating frame can be close to the center of mass.
However, it is now required to determine the location of the floating frame, before com-
puting the Craig-Bampton modes. This is not convenient, since the Craig-Bampton modes
need to be recomputed if one wants to locate the floating frame on a different location. More-
over, when using an auxiliary interface point at the location of the floating frame, one in fact
uses 6 degrees of freedom more than in the method presented in [3]. This is an unnecessary
increase of the computational cost.

It is of course not necessary to demand that each individual mode equals zero at the
location of the floating frame. Equation (2.6) only prescribes that a linear combination of
modes should be such that there is zero elastic deformation at the location of the floating
frame. The general form of this constraint, Eq. (2.6), is more attractive than Eq. (2.7) in
the sense that the mathematical formulation is similar for all interface points: all interface
points are treated in the same way. That is, the remaining procedure does not depend on
what interface point is chosen to locate the floating frame in. The essence of the method [3]
is in defining how the absolute floating frame coordinates can be expressed in terms of the
absolute interface coordinates while satisfying Eq. (2.6).

In the floating frame formulation, the global position of interface point P; relative to
the inertial frame Py is expressed in terms of the global position of the floating frame P;
relative to Py and the local position of P relative to P;:

r00 = r%0 4 RO}, 2.8)
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Fig. 2 The position of material
point Py relative to Pp using
floating frame P;. Figure was
made using InkScape

.71.7 R]

rjo’o R?

M

Po

Here r,? 0, ro 9 and r 7 are position vectors of which the indices follow the convention as

introduced above and RJO is the (3 x 3) rotation matrix that relates the orientation of frame
P; to Po. Figure 2 shows a graphical representation of this relation.
For the virtual displacement 81‘0 0

or( 0 =or0 + 57 "ROr] + RY5r]7, (2.9)

in which Sfrjo‘o is the skew symmetric matrix of virtual rotations, defined by the variation
of the rotation matrix as

SRY =67 ORY. (2.10)

For the virtual rotation of interface point Py

sm 0 =890 +RYom]. @2.11)

Let 8q"“ denote the variation in the global interface coordinates, which is composed of
the virtual displacement Srko’o and the virtual rotation ém kO "% In compact form, Eq. (2.9)
and (2.11) can be combined:

b = (R ol + [RY ][~ (R} Joa) @12
in which
R? 0 1 -5/
w1=[N ] e[y T en

By rewriting Eq. (2.12), it is possible to express the local interface coordinates in terms of
the global interface coordinates and the floating frame coordinates:

Gl = [R)Joal — [/ ][R Jsa? @14

This can be done for all interface points:

3 = [R},]5q%0 — [@4;, ][R}, 577, 2.15)
in which
A [R] [—F7]
[Rp,] = . [@al=| |, (2.16)
[R{)] [— r 1

@ Springer



The tangent stiffness matrix for an absolute interface coordinates. . . 249

the matrix [—F; ] can be interpreted as the displacements of interface point Py due to a
rigid body motion of the floating frame, expressed in the deformed configuration of the
body. Hence, the matrix [®,] represents the displacements of all interface points due to
a rigid body motion of the floating frame, expressed in the deformed configuration of the
body. Substitution of Eq. (2.15) in the constraint Eq. (2.6) yields

[®,1[R} 164 — [®,][®4][R],]5q°° =0. (2.17)

At this point, the floating frame coordinates can be expressed in the absolute interface coor-
dinates:
—j -1
8q77 =[RO)IZ;1[Rp18q%°,  [Z;]1= ([®][®s]) [®;]. (2.18)
Back substitution in Eq. (2.15) yields an expression for the local interface coordinates in
terms of the global interface coordinates:

sqi = [Tj][ﬁjo]gqo*o, [T;1=1-[®4][Z;]. (2.19)

Equations (2.18) and (2.19) define the desired transformations that can be used to rewrite
the equation of motion or equation of equilibrium in the standard floating frame formulation
in terms of the absolute interface coordinates. The full derivation of the equation of motion
of a flexible body is presented in [3] and will not be repeated here, because it is not strictly
necessary for the derivation of the tangent stiffness matrix. For that purpose, the equations
of equilibrium are sufficient.

3 The tangent stiffness matrix

The equation of equilibrium of a flexible body is derived by equating the virtual work due
to externally applied forces § Wy, to the virtual work due to the internal elastic forces & Wiy,.
The virtual external work is written in terms of the global generalized externally applied
forces Q2, at the interface points:

ext

ext*®

§Wex = (59°%)" Q4 (3.1)

The virtual internal elastic work is written in terms of the local generalized internal elastic
forces QY that are experienced at the interface points due to the local elastic deforma-
tion. When the Craig—Bampton modes are applied in the reduction of the body’s local finite
element stiffness matrix, the internal forces can be expressed as the product of the local
(reduced) material stiffness matrix K times the local interface coordinates q/+/, the virtual
internal work can be expressed as

SWiy = ((qu,j)TQijm — (Sq.i».i)Tquvj' (3.2)

Substitution of Eq. (2.19) in Eq. (3.2) yields
SWin = (69°-°)"[RY]IT,1"Ka’ . (3.3)
The equilibrium equations in the global frame are obtained by equating Eq. (3.3) to Eq. (3.1)

[RY)T,17QL, = Q2 (3.4)
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Since [T;] depends on the elastic deformation of the body and [l_{jO] depends on the orien-
tation of the floating frame, the equilibrium Eqgs. (3.4) are nonlinear in terms of the gener-
alized coordinates. These equations can be solved incrementally using load stepping, which
requires one to repeatedly solve a set of linear equations in terms of small increments in the
generalized coordinates. Taking the variation of Eq. (3.4) yields

[RY]IT,175Q), + [RY 8IT;17Q),, + 3[R JIT,17Q), = 5Q2,. (3.5)

. i S0 . .. .
On the left hand side of Eq. (3.5), the terms 8Qfm, 8[T;] and 5[R ; ] all contain variations in
the generalized coordinates. Using the coordinate transformations presented in Sect. 2, these
terms can all be expressed as a matrix times a vector of variations in the absolute interface
coordinates. Hence, the equation can be rewritten to the following form:
K,8q%% =8Q, (3.6)

ext?

where K, is the tangential stiffness matrix that depends on the orientation of the floating
frame and the elastic deformation of the body.

In static problems, Eq. (3.6) can be solved incrementally for the global position of the
interface coordinates. Given a certain load increment §Q,, Eq. (3.6) can be solved for

ext?

the corresponding displacement increment §q? ' by applying Newton-Raphson iterations.
Then the global position of the interface coordinates can be updated by adding the obtained
8q2:9 to the current position of the interface points. After this, the external load can be
increased with the next load increment and a possible residual from the current step. This
procedure can be repeated until the external load is applied entirely. Clearly, the full expres-
sion for the tangential stiffness matrix K; is needed for this procedure, which requires the
rewriting of all three terms on the right hand side of Eq. (3.5). To this end, the variation of
the transformation matrix [T ;] must be derived, for which the variation of the transformation
matrix [Z;] is required.

3.1 Variations of [Z ;] and [T ]
The variation of [Z;] is obtained by taking the virtual change of its definition Eq. (2.18):
S1Z,1=5(19;1[®s]) ' [®;]. 3.7)
For an arbitrary invertible matrix A the following holds for the variation of its inverse:
SAT = —AT5AAT. 3.8)
Using Eq. (3.8) and the fact that [®;] is constant, the variation in [Z;] is expressed as
SIZ;1 = —(191[@rig]) ' [9;15[Drig 1 ([@1[Dyie]) ' [@)1, (3.9)
which can be written in compact form as
81Z,1 = ~1Z,18[ @ 1[Z;]. (3.10)
Here, the virtual change in [®] is
311" .
Slogl=| : |, o[-F']= [0 _‘Sf'i']]. 3.11)

S[—F4]
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For the variation in [T};], also the virtual change of its definition Eq. (2.19) is taken:
8[T;1= —8[Prigl[Z;] — [®rie18[Z;]. (3.12)
Substitution of Eq. (3.10) in Eq. (3.12) yields
8[T;]1 = —8[@uigllZ;] + [Prig][Z; 15[ @rig][Z;]. (3.13)
In compact form, this can be rewritten:
8[T;1=—I[T;18[®wllZ;]. (3.14)
3.2 First tangent stiffness term: [Kj]

The expressions for 6[Z;] and 8[T;] as established in Eq. (3.10) and Eq. (3.14) will now
be used for the derivation of the tangent stiffness matrix. For the first term in Eq. (3.5), the
virtual change in internal forces QY is required. Since the local material stiffness matrix
K is constant, this can simply be written as

8Q), =Ksq’. (3.15)

Using Eq. (2.19), the virtual change in local interface coordinates is expressed in terms of
the virtual change in global interface coordinates:

5Q}, = KIT;1[R},]5q°°. (3.16)

And so the first term in Eq. (3.5) can be expressed as

[R ][T]TtSQ,nt [R ][K1][ ] 3q%?, [Ki]=[T;]"K[T,]. (3.17)

[K;] can be recognized as the transformed local material stiffness matrix. The transforma-
tion matrices [T ;] remove the rigid body component from the local material stiffness matrix

K and the rotation matrices [1_110] transform the local material stiffness matrix to the global
frame.

3.3 Second tangent stiffness term: [K;]
In order to rewrite the second term in Eq. (3.5), the following notation is introduced first:

1o =I1T,17Q),. (3.18)

The virtual change in [T] is required in Eq. (3.5). Substitution of Eq. (3.14) and Eq. (3.18),
this can be written as

[RY1SIT17QL, = —[R} J1Z,1761 901" Q. (3.19)
The multiplication of 8[<I>ng] th can be expanded as
BRI%EE
M,
(I} 0 0 "
(S[(bng]Tle |: |:8f'{] 0i| [8~j J 0:| ] ) .: . (3.20)
|: FijnAt,N :|
L Mijnt,N _
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In this, the generalized forces Q’m « of interface point k are decomposed in the forces FA'fm !

0 FiJnt,l
0 0

ro=[FL) e, K] = : . (3.21)
0 F,

[RV181T17QL, = —[R} 1z, 1" [F7,] 5. (3.22)

and moments Ml’m «~ Equation (3.20) can be rewritten:

3[c1>’ ]

rig

With this, the second term in Eq. (3.5) becomes

At this point, the transformation from the local interface coordinates to the global interface
coordinates can again be made using Eq. (2.19):

[R7 J61T;17Q}, = —[R7 1121 [, ] 1T/1[RG ] (3.23)
In short form, this can be written as
[R18IT,17QL, = [RYJIKI[R, 8970, (Kol=—IZ, 1" [EL]'IT;1. (324
3.4 Third tangent stiffness term: [K3]

For the third term in Eq. (3.5), the variation of the rotation matrix is rewritten with Eq. (2.10)
and for the internal forces Eq. (3.18) is used:

8[_ IIT1"QL, = [R; ]87: Q/ . (3.25)

In this, 871:;:'0 and (A)l’ can be interchanged by considering the following:

J

0 ¥/,
- j,0 A or/
o ém; Q/, 0 M, | 500
57}? Q= =- (R ] 5 ‘0.0 |-
~j.0 A X, 7 T
87T Qi n 0 ¥,
| [0 M,{N_ ]
(3.26)
This can be written in compact form as
[[o o
0 M/,
0 j iq| o or B '
67[;' Qi = _([ ml] [Mln{])[R.O] 871_]0.0 s [Mmt] = (327)
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Substitution of Eq. (3.27) and using the transformation Eq. (2.18) to express the virtual
position of the floating frame in terms of the virtual position of the interface coordinates
yields for the third term in Eq. (3.5):

o[RY JT,17Ql = ~[R7 (¥ ] + [N, ])121[Rp Joq . (3.28)

And so the third term in Eq. (3.5) can be expressed as

S[RYNT Q) = [RYJKAI[R,]89%C,  [Ksl=—([FL ]+ [MLDIZ;1. (329

Combining Eqgs. (3.17), (3.24) and (3.29) yields an expression for the virtual change in the
equilibrium equation in terms of the variation in global interface coordinates:

[RY](IK)] + [Ko] + [K31)[R}, ]8g%© = 6QY,. (3.30)

And thus the expression for the tangential stiffness matrix is obtained:

K, = [R]](IK,] + [Ka] + [Ks])[R} ] (331)

It can be seen that it consists of a local stiffness matrix, rotated to the global frame. The local
tangential stiffness matrix contains the local material stiffness matrix. The matrices [K;] and
[K3] together form the geometric stiffness matrix K, . They depend explicitly on the internal
forces by means of [Flm] and [Mml] Moreover, the geometric stiffness matrix depends on
the deformation of the body by means of the transformation matrices [Z;] and [T;].

4 Numerical validation: equilibrium analysis

In order to investigate the effect of the tangent stiffness matrix in equilibrium analysis, a
static validation problem is used. In this static problem, a cantilever beam with circular
cross section is considered. The total length of the beam is 1 m. The outer radius of the cross
section is 0.01 m with a wall thickness of 0.001 m. The Young modulus is 70.0E9 Pa. The
beam subjected to a vertical tip force that is applied with 100 N increments. Within each load
increment, Newton—Raphson iterations are performed until the numerical solution satisfies
equilibrium within a certain error margin.

Figure 3 shows the beam’s deformed configuration for applied loads of 300, 1000 and
10000 N when using one, three and ten bodies. For each body, only the 12 Craig—Bampton
boundary modes are taken into consideration. For each body, the floating frame is attached to
the center of mass. In [3], it was already shown that results obtained with the new method are
in good agreement with results obtained with finite element software Ansys and multibody
software Spacar [8]. In this analysis, it was observed that, for low values of the applied load,
exactly the same solutions were obtained when only the material stiffness matrix [K;] was
used instead of the full tangential stiffness matrix. However, for high values of the applied
load, simulations in which only the material stiffness matrix is used do not converge. In
these cases, increasing the number of load increments does not work: [K;] and [K3] must
be included. In this example, convergence was reached for loads up to approximately 500 N
when only the material stiffness matrix was used. Moreover, it was observed that when using
one body, the simulation up to a load of 10000 N did not converge. More than one body is
required to reach such high loads.
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Fig. 3 Deflected beam
configuration, using 1, 3 and 10
bodies. Graphs were plotted
using Matlab and the figure was
created using Adobe Illustrator
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Figure 4 shows the relative error of the tip displacement as a function of the number
of bodies for applied loads of 300, 1000 and 10000 N. To this end, the simulation with
ten bodies is used as a reference. The difference in tip displacement with respect to the
simulation with ten bodies is computed and divided by the total tip displacement of the
simulation with ten bodies. From this figure, it can be seen that the difference in tip position
when using ten bodies instead of nine is less than 1%. Also, it can be seen that when one is
willing to accept a relative error of 5%, one needs one, two and four bodies for loads up to
300, 1000 and 10000 N, respectively.

Figures 5 and 6 show the convergence of the solution with increasing iterations for an
applied load of 500 N, using the full tangent stiffness matrix and material stiffness matrix,
respectively. In these figures, the vertical axes display the magnitude of the iteration’s dis-
placement increment. From both figures it can be seen that 5 load increments are used and
that within each load increment multiple iterations are used to reach equilibrium. It can be
seen that when the full tangent stiffness matrix is used, the required number of iterations
is lower. Moreover, the number of required iterations per load increment remains constant,
even at higher loads. If only the material stiffness matrix is used, the required number of
iterations per load step increases significantly at higher loads.
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Fig. 5 Increment in the 10° . T T T T T
generalized coordinates for
increasing iterations when using 102h
the full tangent stiffness matrix.
The graph was plotted using 4
Matlab and the figure was created ~ 107
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Fig. 6 Increment in the 10°
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From this static validation problem it is learned that, for high values of the applied load,
taking full tangent stiffness matrix into account is essential for convergence. For low val-
ues of the applied load, the material stiffness matrix is sufficient to guarantee convergence,
but more iterations are required to reach this convergence. For this reason, the full tangent
stiffness matrix is always advised, even when performing simulations in which the applied
loads remain small.

5 Numerical validation: dynamic analysis

In order to investigate the effect of the tangent stiffness matrix in dynamic analysis, mul-
tiple dynamic validation problems are used. Those problems consist of a cantilever beam
subjected to a dynamic tip load, a rotating beam and 2D and 3D slider-crank mechanisms.
In all simulations, only the 12 Craig-Bampton boundary modes are taken into account for
each body. For each body, the floating frame is attached to the center of mass. The Adams—
Moulton implicit time integration is used. In this section, simulation results are be presented
in which simulations with and without the use of the Jacobian are compared. The Jacobian
is based on either the full tangent stiffness matrix or based on the material stiffness matrix
only. In all simulations, it was observed that not the accuracy of the numerical solution is
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Fig. 7 Vertical tip position of 1
the beam using 1, 3 and ten
bodies. The graphs were plotted ~ 09 r
using Matlab and the figure was §/
created using Adobe Illustrator s 08 r
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influenced by which form of the Jacobian is used, but only the simulation time required to
obtain this solution.

5.1 Cantilever beam

In the dynamic cantilever beam problem, the same cantilever beam is used as in the static
problem described in the previous section. However, in this case, a transient vertical tip force
is applied. In 0.05 s, the force is increased linearly from 0 to 2500 N and maintained constant
at this value after 0.05 s. A simulation was performed using ten bodies and validated with
multibody software Adams and Spacar, from which it was concluded that the new method
yields reliable results. Then simulations were performed with a varying number of bodies,
according to the new method. Figure 7 shows the vertical tip position as a function of time
when using one, three and ten bodies.

Figure 8 shows the relative error of the vertical tip displacement as a function of the
number of bodies. To this end, the simulation with ten bodies is used as a reference and the
root mean square error of the entire time simulation is used for comparison. The difference
in tip position when using ten bodies instead of nine is less than 1%.

Figure 9 shows the effect of including the Jacobian in the numerical time integration
scheme on the simulation time. In order to compare the effects of simulations when using
a varying number of bodies, the vertical axis displays the simulation time of a simulation
in which the Jacobian is used relative to the simulation time when no Jacobian is used.
This is done such that when this relative measure equals 1, both simulations were equally
fast. When the relative measure is lower or higher than 1, including the Jacobian made the
simulation faster or higher, respectively. From this figure, it can be seen that the use of the
Jacobian is only beneficial when a small number of bodies is used. Simulations with two
or four bodies showed that using a Jacobian saves approximately 40% of simulation time.
However, when six or more bodies are used, up to 50% more simulation time is required
when using the Jacobian. Slightly shorter simulation times are obtained when using the full
tangent stiffness matrix instead of the material stiffness matrix.

5.2 Rotating beam

In the rotating beam problem, again the same beam properties are used as in the previous
problems. The beam is hinged at its left interface point and given a constant angular velocity
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Fig. 8 Convergence of the 0.3 T T T T
solution when increasing the

number of bodies. The graph was 0.25
plotted using Matlab and the
figure was created using Adobe
Ilustrator
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Fig. 9 Effect of including a 1.7
Jacobian based on the full
tangent stiffness matrix or
material stiffness matrix only on
simulation time. The graphs were
plotted using Matlab and the
figure was created using Adobe
Tllustrator
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Fig. 10 Graphical representation constant
of the rotating beam problem, angular F(t)
subjected to a transient velocity

perpendicular tip force. The /\ flexible beam
figure was made using InkScape () mm

of 100 rad/s. During the first 0.01 s of the simulation, a constant tip force of 50 N is applied
perpendicular to the beam, in the plane of rotation. Figure 10 shows a graphical representa-
tion of the problem. Figure 11 shows the tip deflection as a function of time when using one,
three and ten bodies. Figure 12 shows the relative error of the tip deflection as a function of
the number of bodies. To this end, the simulation with ten bodies is used as a reference and
the root mean square error of the entire time simulation is used for comparison. The differ-
ence in tip position when using ten bodies instead of nine is less than 1%. Figure 13 shows
the effect of including the Jacobian in the time integration on the simulation time. From this
figure it can be seen that when using four bodies or more, using the Jacobian requires up to
50% more simulation time than when no Jacobian is used. There is little difference between
using the full tangential stiffness matrix and using the material stiffness matrix only.
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Fig. 11 Deflection of the tip of
the beam, measured relative from
its dynamic equilibrium position,
using 1, 3 and ten bodies. The
graphs were plotted using Matlab
and the figure was created using
Adobe Illustrator

Fig. 12 Convergence of the
solution when increasing the
number of bodies. The graph was
plotted using Matlab and the
figure was created using Adobe
Illustrator

Fig. 13 Effect of including a
Jacobian based on the full
tangent stiffness matrix or
material stiffness matrix only on
simulation time. The graphs were
plotted using Matlab and the
figure was created using Adobe
Illustrator
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The 2D slider-crank problem is adopted from [9] and shown in Fig. 14. The rigid crank
with length of 0.15 m is rotating with a constant angular velocity of 150 rad/s. The flexible
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Fig. 14 2D Slider-crank
mechanism with flexible

connector. Figure was made
using InkScape

rotating crank slider
Fig. 15 Midpoint deformation 0.02 T T T T T . .

of the connector, using 2, 4 and
10 bodies. Graphs were plotted
using Matlab and the figure was
created using Adobe Illustrator

0.015 1

0.01 1

0.005 1

Normalized midpoint deflection (-)

-0.005 J
==u==ui 2 bodies
-0.01 || = = = 4 bodies _
m— ] bodies
-0.015 1 1 L 1 1 L L
0 1 2 3 4 5 6 7 8

Crank angle (rad)

connector with length of 0.3 m has a uniform circular cross section with a diameter of
0.006 m and is made of steel. In the simulation a Young’s modulus of 0.2E12 Pa and a
mass density of 7.87E3 kg/m? is used. The end of the connector is connected to a slider
with a mass half the mass of the connector. The slider is able to translate without friction
on its base. The angular velocity of the crank introduces an initial linear velocity and an
angular velocity of the connector, assuming no deformation. Figure 15 shows the transverse
deflection of the midpoint of the flexible connector when using two, four and ten bodies.
Figure 16 shows the relative error of the midpoint deflection as a function of the number
of bodies. To this end, the simulation with ten bodies is used as a reference and the root
mean square error of the entire time simulation is used for comparison. The difference in tip
position when using ten bodies instead of nine is less than 1%. Figure 17 shows the effect
of including the Jacobian in the time integration on the simulation time. From this figure, it
can be seen that using the Jacobian always reduces the simulation time by approximately a
factor 2. There is little difference between using the full tangential stiffness matrix and using
the material stiffness matrix only.

5.4 3D slider-crank

The dynamic 3D slider-crank mechanism is adopted from [10] and shown in Fig. 18. The
physical properties of the mechanism are the same as in the 2D case described above. The
horizontal position of the rotation axis d is 0.1 m. In the initial configuration, the crank is
oriented vertically upward. Figure 19 shows the deflection of the midpoint of the flexible
connector in its local y-direction when using two, four and ten bodies. Figure 20 shows the
relative error of the midpoint deflection as a function of the number of bodies. To this end,
the simulation with ten bodies is used as a reference and the root mean square error of the
entire time simulation is used for comparison. The difference in tip position when using ten
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Fig. 16 Convergence of the
solution when increasing the
number of bodies. The graph was
plotted using Matlab and the
figure was created using Adobe
Ilustrator

Fig. 17 Effect of including a
Jacobian based on the full
tangent stiffness matrix or
material stiffness matrix only on
simulation time. The graphs were
plotted using Matlab and the
figure was created using Adobe
Ilustrator

Fig. 18 3D Slider-crank
mechanism with flexible
connector. The figure was made
using InkScape
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bodies instead of nine is less than 1%. Figure 21 shows the effect of including the Jacobian
in the time integration on the simulation time. It can be seen that for this problem the effect
of using the Jacobian on the simulation times is only small. Depending on the number of
bodies and on which stiffness matrix is used, simulation times are in the order of 10% shorter
or longer compared to the simulation in which no Jacobian is used. The simulation of ten
bodies using the material stiffness matrix did not converge.
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Fig. 19 Midpoint deformation 0.015 T T T T T T T
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Fig. 21 Effect of including a 1.15
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tangent stiffness matrix or 1.1
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simulation time. The graphs were
plotted using Matlab and the
figure was created using Adobe
Ilustrator
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6 Conclusion

The floating frame formulation has the advantage that model order reduction methods can be
applied on the linear finite element models of individual bodies. In the newly presented float-
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ing frame formulation, the use of Craig-Bampton interface modes as local shape functions is
crucial. The fact that the Craig-Bampton modes are able to describe six rigid body motions
is exploited to establish a relation between the floating frame coordinates and the absolute
interface coordinates. In this way, the equilibrium equations and equations of motion of a
flexible multibody system can be expressed in terms of the absolute interface coordinates.
As a consequence, no Lagrange multipliers are required in order to enforce kinematic con-
straints between bodies.

The use of the full tangent stiffness matrix can be of importance in both static and dy-
namic analysis, because of the fact that incremental solution procedures are used. Moreover,
for some applications the importance of the tangent stiffness matrix is based on physical
grounds, in particular when deformations become large. In this work, the tangent stiffness
matrix for the new absolute interface coordinates floating frame formulation was developed.
To this end, the variation in the equation of equilibrium was taken. The resulting expressions
were rearranged such that the global tangent stiffness matrix can be written as a local tan-
gent stiffness matrix, rotated to the global frame. The local tangent stiffness matrix consists
of the material stiffness matrix, which is based directly on the linear finite element model,
and a geometric stiffness matrix, which is based on the internal elastic forces, experienced
by the interface points. Hence, the tangent stiffness matrix depends both on the orientation
of the floating frame and on the local elastic deformation of the body.

Validation by means of numerical problems has shown that in the case of high loads
and/or large deformations, the full tangent stiffness matrix must be taken into account in or-
der to guarantee convergence. In dynamic simulations, the use of a Jacobian in the numerical
time integration of the equation of motion shows mixed results. For some problems, the sim-
ulation times reduced when using the Jacobian, whereas for other problems the simulation
times increased. In all simulations it was seen that simplifying the tangent stiffness by the
material stiffness only does not result in a significant reduction of the simulation time. For
some problems, simulations using the material stiffness only failed to converge. Therefore,
it is recommended that if the Jacobian is used, the full tangential stiffness is implemented.
It is concluded that in the new formulation, taking into account the full tangential stiffness
matrix has no influence on the accuracy of the solution and little influence on the simulation
times. Based on the many dynamic problems studied in the work, no generally applicable
advise can be given about whether to include or not to include the Jacobian.

The absolute interface coordinates floating frame formulations as previously published is
an important step in creating efficient superelements of arbitrarily shaped three-dimensional
bodies, based on the bodies’ linear finite element models. With the developments presented
in this paper, the inclusion of the tangent stiffness matrix is realized, which can be taken
into account directly when creating those superelements. It is advised to implement the full
tangent stiffness matrix at all times, because its expression is readily available, it may be
required for convergence and does not influence the computational costs significantly. In
this sense, this work is also a contribution to the further development of reduction methods
suitable for geometrically nonlinear flexible multibody systems.
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