
Multibody Syst Dyn (2019) 46:77–105
https://doi.org/10.1007/s11044-018-09662-0

On the relevance of inertia related terms in the equations
of motion of a flexible body in the floating frame
of reference formulation

Wolfgang Witteveen1 · Florian Pichler1

Received: 18 July 2018 / Accepted: 14 December 2018 / Published online: 14 January 2019
© The Author(s) 2019

Abstract The floating frame of reference formulation is an established method for the de-
scription of linear elastic bodies within multibody dynamics. An exact derivation leads to
rather complex equations of motion. In order to reduce the computational burden, it is com-
mon to neglect certain terms. In the literature this is done by strict application of the small
deformation assumption to the kinetic energy. This leads to a remarkably simplified set of
equations. In this work, the significance of all terms is investigated at the level of the equa-
tions of motion. It is shown that for a large number of applications the previously mentioned
set of simple equations is sufficient. Furthermore, scenarios are described in which this sim-
ple set is no longer accurate enough. Finally, guidelines are provided, so that engineers can
decide which terms should be considered or not. The theoretical conclusions drawn in this
work are underlined by qualitative numerical investigations.

Keywords Flexible multibody dynamics · Degrees of freedom · Mass matrix · Quadratic
velocity vector · Floating frame of reference formulation

1 Introduction

The floating frame of reference formulation (FFRF) is a widely used strategy for the inclu-
sion of a flexible body into multibody system dynamics. The key idea is the separation of the
overall motion into nonlinear rigid body motion superimposed by a small elastic deforma-
tion. The latter one is described by the superposition of weighted shape functions which are
expressed in a body attached coordinate system which translates and rotates with the body.
The final equations of motion for each flexible body contain both simple and complex terms.
Hence, the numerical evaluation of some terms is cheap, yet expensive for the others. The
numerical costly terms are associated with the body’s flexibility, where the numerical effort
increases with the number of considered shape functions. For many practical applications it
has been observed that the flexibility related terms are of minor significance. Those terms are
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the inertia of the deformed body, inertia coupling and parts in the centrifugal and the Corio-
lis forces, which are related to elastic deformations. In the literature two approaches can be
found that deal with the question of which terms need to be considered and which need not.
The first one is the strict application of a small deformation assumption at the level of the
kinetic energy; see, for example, [12] or [21]. With this assumption, a remarkably simple
set of equations is obtained. This work demonstrates why the latter description is probably
sufficient for many applications, but not for all. The second approach, examples of which
can be found in the software package MSC.ADAMS [11], gives the user the possibility to
activate or deactivate certain terms in the equations of motion. The final decision is up to
the user, but the guidance is not very clear. However, for both approaches there is a final
uncertainty which is addressed in this work.

All inertia related terms of a flexible body in the FFRF are investigated on the level of the
equations of motion with respect to their relevance. It is shown why the simplest possible
formulation, stemming from the strict application of the small deformation assumption at the
level of the kinetic energy, is sufficient for many applications. Beyond that, a clear guidance
will be given when, in addition, the deformation dependent inertia tensor, inertia coupling, or
elastic deformation related parts of the centrifugal and Coriolis forces should be considered.
This will be finally summarized in a “set of guidelines”.

The paper is organized as follows: The first section briefly recaps the equations of motion
of a free flexible body considering the FFRF. The assumptions, on which this paper is based,
together with the resulting implications for the equations of motion, are documented in the
next section. The Finite Element structures which are used for the sake of numerical illus-
tration of the theoretical conclusions are introduced in the subsequent section. Following
this, the small deformation assumption and its implications for the magnitude of the modal
coordinates are discussed. In the next section, the maximum entries of significant matrices
are estimated. The latter two estimations will be important for the determination of the sig-
nificance of certain terms. The subsequent section is the key section of this contribution.
All terms will be investigated with respect to their significance. It starts with the inertia of
the deformable body followed by the inertia coupling of the rotational and flexible degrees
of freedom. Finally, the terms of the quadratic velocity vector will be discussed. All the
theoretical considerations in this chapter are accompanied by qualitative numerical investi-
gations. In the subsequent chapter, a set of guidelines is presented in order to simplify the
decision when and which term has to be considered or not. The paper will be concluded by
summarizing the benefits when certain terms of the equations of motion can be neglected.

2 Brief review of the equations of motion

In order to avoid redundancy, an extensive derivation of the equations of motion is omitted
and only relevant equations are reviewed. Details can be found in Shabana [1] and the work
of Sherif and Nachbagauer [2]. For better readability with respect to the mentioned publica-
tions, the same notation is used in this work. In contrast to [1], a superscript referring to the
number of the flexible body will be omitted.

For the description of the position vector r , pointing to an arbitrary point P on a de-
formable body, two coordinate systems are used (see Fig. 1). One is a space-fixed coordinate
system, which is called the inertial frame (IF), and the second is a so-called floating frame
(FF), which is a body attached coordinate system.

The vector r can be given as

r = R + Aū = R + A(ū0 + ūf ) = R + A(ū0 + Sqf ), (1)
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Fig. 1 Deformable body

where R is the (3 × 1) position vector from the origin of the IF to the origin of the FF.
The matrix A is the orthogonal rotation matrix transferring vectors expressed in the FF to
their counterparts expressed in the IF. The vector from the origin of the FF to the point P
is represented by ū. The overbar denotes that the quantity is expressed with respect to the
FF. The vector ū can be subdivided into ū0 and ūf where ū0 holds the time invariant vector
from the origin of the FF to the particle’s position in the undeformed configuration. The
(3 × 1) vector ūf represents the elastic deformations and is expressed by a superposition
of weighted shape functions in the form ūf = Sqf . The (3 × nf ) matrix S contains in its
columns the time invariant shape functions, and the (nf × 1) vector qf holds the time vari-
ant weighting factors. In the context of the Finite Element Method, shape vectors are used
instead of shape functions. Those shape vectors are commonly called “modes”. The expres-
sions “shape functions, “shape vectors” and “modes” are used in this work synonymously.
The kinetic energy T of the deformable body is given as

T = 1

2

∫
V

ṙTṙρ dV = 1

2
q̇TMq̇ M =

⎡
⎣mRR mRΘ mRf

mΘΘ mΘf

sym mff

⎤
⎦ (2)

with the generalized coordinates

q = [
RT ΘT qT

f

]T
. (3)

The (nΘ × 1) vector Θ contains the generalized rotational coordinates where the number
nΘ depends on the particular choice (Euler parameters, Euler angles, . . . ). All coordinates
are collected in the (n × 1) vector q with n = 3 + nΘ + nf . According to [1, Chaps. 5.1 and
5.2], the submatrices can be computed using

mRR = Im mRΘ = −A

[∫
V

˜̄uρ dV

]
Ḡ mRf = A

[∫
V

Sρ dV

]

mΘΘ = Ḡ
T
[∫

V

˜̄uT ˜̄uρ dV

]
Ḡ mΘf = Ḡ

T
[∫

V

˜̄uSρ dV

]
mff =

∫
V

STSρ dV,

(4)
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where the matrix I holds a (3 × 3) identity matrix and ˜̄u holds the (3 × 3) skew symmetric
matrix representation of the vector ū. The (3 × nΘ ) matrix Ḡ transforms the generalized
velocities into the (3 × 1) angular velocity vector ω̄,

ω̄ = ḠΘ̇ . (5)

The parameters m and ρ represent the body’s mass and density, respectively, and V is the
volume of the body. The application of the Lagrange formalism, together with the consider-
ation of the body’s elastic forces, leads to the equations of motion in the form of

Mq̈ + Kq = Qv, (6)

where the (n × n) time invariant matrix K can be given as

K =
⎡
⎣ 0 0 0

0 0
sym Kff

⎤
⎦ (7)

(see [1, Eq. (5.145)]). In contrast to the referenced equation, the constraints for a non-
minimal set of rotational coordinates (e.g., Euler parameters) are omitted here, since they
are not relevant for the considerations in this work. According to [2, Eqs. (25), (54) and
(66)], the so-called (n × 1) quadratic velocity vector Qv can be written as

Qv =
⎡
⎣

(
Qv

)
R(

Qv

)
Θ(

Qv

)
f

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

−A ˜̄ω ˜̄ω [∫
V

ūρ dV
] − 2A ˜̄ω [∫

V
˙̄uρ dV

] + A
[∫

V
˜̄uρ dV

] ˙̄GΘ̇

−Ḡ
T ˜̄ω

[∫
V

˜̄uT ˜̄uρ dV
]
ω̄ − 2Ḡ

T
[∫

V
˜̄uT ˙̄̃uρ dV

]
ω̄ − Ḡ

T
[∫

V
˜̄uT ˜̄uρ dV

] ˙̄GΘ̇[∫
V

ST ˜̄ω ˜̄uρ dV
]
ω̄ − 2

[∫
V

ST ˙̄̃uTρ dV
]
ω̄ −

[∫
V

ST ˜̄uρ dV
] ˙̄GΘ̇

⎤
⎥⎥⎥⎥⎦ .

(8)

Note that the different formulas for the quadratic velocity vector given in [2] and [1] are
equal. This is discussed in detail in [2].

3 Assumptions and simplifications

In this section, some very common assumptions are discussed, since they lead to significant
simplifications in the mass and stiffness matrix, as well as in the quadratic velocity vector.

3.1 Euler parameters

Euler parameters are used in this work for the parametrization of the rotation, see [1,
Chap. 2.1]. Therefore, nΘ = 4 and the constraint ΘTΘ = 1 has to be considered in the
final set of equations. An interesting discussion on Euler parameters can be found in [3].
However, due to its irrelevance for the subject of this paper, the constraint equation and its
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effect on the equations of motion are not considered. A consequence of the use of Euler
parameters is the identity

˙̄GΘ̇ = 0 (9)

(see [1, Eqs. (2.69) and (2.87)]). This leads to simplifications in (8) since terms containing

the product ˙̄GΘ̇ evaluate to zero.

3.2 Linearized mean-axis conditions

As mention before, the position of a mass particle is described with respect to an FF attached
to the body. A distinct definition of the FF requires the determination of its origin and ori-
entation. The most relevant suggestions, together with interesting discussions on this issue,
can be found, among other references, in [4–6] and [7]. However, in this work a linearized
mean axis frame, which is sometimes referred to as Buckens or linearized Tisserand frame,
is considered. The constraint equations for the origin and the orientation of the FF are

∫
V

˙̄uf ρ dV = 0
∫

V

˜̄u0 ˙̄uf ρ dV = 0. (10)

In the next subsection, an advantageous choice of the shape functions in S is discussed.
Those shape functions automatically fulfill the constraints (10), and hence they need not be
considered explicitly in the final set of equations.

3.3 Use of (pseudo) free surface modes together with an FF origin fixed
to the center of gravity of the undeformed body

Again, just a brief review is given on the implications of the choice of free surface modes
and an FF origin which is initially attached to the center of gravity of the undeformed body.
More details can be found in [5] and [8].

Attaching the origin of the FF to the center of gravity of the undeformed body implies
∫

V

ū0ρ dV = 0. (11)

Free surface modes are the eigenvectors of the unconstraint body with nonzero eigenvalues.
The zero eigenvalue modes belong to the rigid body modes, see [8]. The properties of free
surface modes can be given as

∫
V

Sρ dV = 0
∫

V

˜̄u0Sρ dV = 0 (12)

which is explained in detail in [8]. Due to the fact that ūf = Sqf , and therefore ˙̄uf =
Sq̇f , the constraints (10) are fulfilled automatically, when free surface modes are used. The
application of (12) to the equations of motion leads to significant simplifications of the
equations of motion. Details on all resulting simplifications can be found in [5] and [8].

3.4 Use of mass normalized modes

Free surface modes are stiffness and mass orthogonal. Mass normalized modes are charac-
terized by a scaling so that ∫

V

STSρ dV = I nf , (13)
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where I nf is an (nf × nf ) identity matrix. The use of mass normalized modes leads to a
diagonal stiffness matrix Kff , which is hereafter denoted as Ω2. Its ith main diagonal entry
Ω2

i holds the eigenvalue of mode number i, which is equal to the squared eigenfrequency of
the mode. From now on, it is assumed that the mode numbering correlates with increasing
eigenfrequencies.

3.5 Use of central principal axis of inertia

It is assumed that the initial orientation of the axis of the FF matches the principal axis of
inertia of the undeformed body.

3.6 Final equations of motion

The application of the former assumptions to the mass matrix (2) and the quadratic velocity
vector (8) lead to much simpler equations of motions of the free flexible body in the form of

Mq̈ + Kq = Qv

M =
⎡
⎣mI 3 0 0

mΘΘ mΘf

sym I nf

⎤
⎦ K =

⎡
⎣ 0 0 0

0 0
sym Ω2

⎤
⎦

mΘΘ = Ḡ
T
[∫

V
˜̄uT ˜̄uρ dV

]
Ḡ mΘf = Ḡ

T ∫
V

˜̄uf Sρ dV

Qv =

⎡
⎢⎢⎢⎣

0

−2 ˙̄GT
[∫

V
˜̄uT ˜̄uρ dV

]
ω̄ − Ḡ

T[∫
V

˜̄uT ˙̄̃u + ˙̄̃uT ˜̄uρ dV
]
ω̄ − 2 ˙̄GT

[∫
V

˜̄uf
˙̄uf ρ dV

]
[∫

V
ST ˜̄ω ˜̄uρ dV

]
ω̄ − 2

[∫
V

ST ˙̄̃uTρ dV
]
ω̄

⎤
⎥⎥⎥⎦

(14)

(see [1, Eqs. (8.15) and (8.23)] and [2, Eqs. (54) and (66), together with the subsequent
discussion]). The slight difference to the referenced equations ( ˜̄uf instead of ˜̄u) in the third
term of (Qv)Θ stems from a simplification due to (12). The same simplification leads to ˜̄uf

instead of ˜̄u in mΘf , which is well documented in [5] and [8].
In Shabana [1], so-called ”inertia shape“ integrals

Ikl = Ilk =
∫

V

ū0kū0lρ dV Ī kl =
∫

V

ū0kS lρ dV

S̄kl = S̄
T
lk =

∫
V

ST
k S lρ dV k, l = 1,2,3

(15)

can be found (see [1, Eqs. (5.70), (5.155), (5.156) and (5.158)]). The scalar ū0k holds the kth
component of the vector ū0 (ūT

0 = [
ū01 ū02 ū03

]
). The (1 × nf ) row vector Sk holds the kth

row of S. In case free surface modes are used, it can be easily shown by the right equation
of (12) that Ī kl is equal to Ī lk . This interesting relationship has been found in unpublished
records of Sherif ([2, 3, 8, 18] and [19]). By the use of (15), the integrals in Eq. (14) can be
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evaluated, and the equations of motion can be given in the form

Mq̈ + Kq = Qv

M =

⎡
⎢⎢⎣

mI 0 0

Ḡ
T [

I 0 + W 1Qf + QT
f W 2Qf

]
Ḡ Ḡ

T
QT

f W 3

sym I

⎤
⎥⎥⎦

Qv =

⎡
⎢⎢⎣

0

−2 ˙̄GT
[
I 0 + W 1Qf + QT

f W 2Qf

]
ω̄ − Ḡ

T
[
W 1Q̇f + 2QT

f W 2Q̇f

]
ω̄ − 2 ˙̄GTQT

f W 3q̇f[
ω̄1I ω̄2I ω̄3I

] [
1
2 WT

1 + W 2Qf

]
ω̄ − 2W T

3 Q̇f ω̄

⎤
⎥⎥⎦

(16)

where the (3 × 3) matrix I 0, the (3 × 3nf ) matrix W 1, the (3nf × 3nf ) matrix W 2 and the
(3nf × nf ) matrix W 3 hold invariant quantities and are defined as

I 0 =
⎡
⎣ I22 + I33 −I12 −I13

I11 + I33 −I23

sym I11 + I22

⎤
⎦ W 2 =

⎡
⎢⎣

S̄22 + S̄33 −S̄21 −S̄31

S̄11 + S̄33 −S̄32

sym S̄11 + S̄22

⎤
⎥⎦

W 1 =
⎡
⎢⎣

2(Ī 22 + Ī 33) −(Ī 12 + Ī 21) −(Ī 13 + Ī 31)

−(Ī 12 + Ī 21) 2(Ī 11 + Ī 33) −(Ī 23 + Ī 32)

−(Ī 13 + Ī 31) −(Ī 23 + Ī 32) 2(Ī 11 + Ī 22)

⎤
⎥⎦ W 3 =

⎡
⎢⎣

S̄23 − S̄32

S̄31 − S̄13

S̄12 − S̄21

⎤
⎥⎦

(17)

and the (3nf × 3) matrix Qf holds the modal coordinates in the form of

Qf =
⎡
⎢⎣

qf 0 0
0 qf 0
0 0 qf

⎤
⎥⎦ . (18)

This convenient nomenclature for the matrix W 1 and W 2 was introduced by Sherif, see
[18] and [19]. The matrix W 3 can be found in the work of Shabana [1, Eqs. (5.74) to
(5.76)] but is not denoted as W 3 there. It is worth mentioning that the (3 × 3) matrix I 0

represents the inertia tensor of the undeformed body. Note that (14) and (16) contain the
same equations of motion, the notation is merely different. Both equations are used in the
following investigations.

3.7 Comment on the use of different mode basis

The literature offers several possibilities for the particular choice of shape vectors. The most
famous mode base is probably the one of Craig [23]. Comparative studies of other possibil-
ities can be found, among other references, in [24] and [25]. However, at this point of this
work it is interesting to note that arbitrary mode shapes can be transformed into a mode base
possessing the properties given before, see [8].
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3.8 Comments on the complexity of the equations of motion and goal of this work

An obvious disadvantage of the equations of motion (16) are the necessary matrix vector
operations related to the invariant matrices W 1, W 2 and W 3 stemming from the body’s flex-
ibility. This increased numerical effort affects the residuum of (16) and the computation of
the Jacobian matrix. In order to minimize this computational burden, some suggestions for
the negligence of certain terms can be found in the literature and multibody dynamic soft-
ware packages. As an example, [12] can be cited. This paper refers to the classical paper
[13] where the hypothesis of small elastic deformations around the undeformed configura-
tion is applied on the level of kinetic energy. As a consequence, the coupling between the
rotational and flexible degrees of freedom in the mass matrix and in the quadratic velocity
vector vanishes in the final equations of motion. Another example is the commercially avail-
able software package MSC.ADAMS [14], which offers the user a possibility to deactivate
certain terms of the mass matrix. The explanation of the terms is quite vague and, hence, the
decision is difficult to make for a user without extensive knowledge of the theory of flexible
multibody systems.

The goal of this work is a systematic investigation on the relevance of all the terms related
to the invariant matrices on the level of the equations of motion. As far as we know, this kind
of in depth analysis of the FFRF is a new contribution to the existing literature. Beside the
theoretical insights a set of guidelines is provided as practical benefit. Thereby engineers
can decide which terms should be considered or not.

4 Illustrative examples used in the paper

In the practical use of multibody simulation, the flexible bodies are mostly modeled via the
Finite Element Method. In that context, the displacements are evaluated at certain grid points
and instead of shape functions, shape vectors are used to describe the elastic deformation.
More comments on the transition from a “continuous formulation” to a formulation based
on Finite Element models can be found in [1, Chap. 5.2, Sect. “Lumped mass”]. Although
the details for the computation of the invariant matrices I 0, W 1, W 2 and W 3 may change,
the final equations of motion (16) remain the same. Those matrices are computed based on
the result of the Finite Element analysis and are part of the procedure when a flexible body is
imported into the multibody simulation software. In MSC.ADAMS [14], for example, those
matrices can be found in the so-called *.mtx file.

In this work several theoretical considerations are presented. The drawn conclusions are
of fundamental character for all flexible bodies independent of the overall multibody system
where the flexible bodies are embedded. Therefore, it is not necessary to present results of
time integrations of particular multibody systems. Instead, the presented examples deal with
estimations of effects based on the former mentioned invariant matrices, which are flexible
body data only.

The Finite Element (FE) structures used to this end are introduced in this section. Six
very different FE structures have been selected in order to cover a broad band of applica-
tions. All the assumptions mentioned in the former subsection are valid for the following
FE structures. For all the Finite Element models given below, the consistent set of units, ton,
millimeter and Newton, have been used. The necessary matrices I 0, W 1, W 2 and W 3 have
been computed using the flexible body interface of MSC.ADAMS [14]. Consequently, the
mode base of Craig [23] is used, which consists of constraint normal modes (CNM) and
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Fig. 2 Screenshots of FE models

Table 1 Details concerning the used FE models

Connection
rod

Car body Jeffcot rotor Plate Generic
structures

Beam

In this
work
referenced
as . . .

Conrod Car Jeffcot Plate GenStruct1
GenStruct2

Beam

Number
CNM

15 50 10 20 20 38

Number
CIM

12 24 12 24 6 12

Extension 20 × 210
× 80 [mm]

3.8 × 1.5
× 1.1 [m]

300 × 300
× 750 [mm]

1000 × 1000
× 0.5 [mm]

330 × 200
× 8 [mm]

750 × 20
× 20 [mm]

Mass in kg 0.9 270 7.4 3.9 0.36/0.4 1.8

constraint interface modes (CIM). Screenshots of the FE models can be seen in Fig. 2 and
additional information is collected in Table 1.

For reasons of confidentially, the picture of the car body can only be shown in low-
resolution. The generic structure GenStruct1 has been created in order to underline the
effect of a particular structural compliance with respect to centrifugal forces. The second
generic structure GenStruct2 is similar as GenStruct1 without having this special sensitivity
to centrifugal forces.

The eigenvalues of the final modes are later used to estimate an upper limit of the modal
coordinates. Therefore, the eigenfrequencies of the first ten modes are given in Fig. 3.

5 Assumption of small deformations

All investigated terms are related to effects caused by the flexibility of the body. These
effects are increasing with the elastic deformation of the body. Therefore, it is important to
specify a realistic upper bound of expectable deformations, and hence an upper bound of the
modal coordinates.
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Fig. 3 Eigenfrequencies of the first 10 modes

5.1 Small elastic deformations with respect to the body’s dimension

Commonly, the mode shapes are obtained by a linear Finite Element analysis. Consequently,
the attribute “linear” defines the range of validity. The deformations have to be small enough,
so that no geometric nonlinearities and no material nonlinearities take place. In the simple
case of a tensile bar, the longitudinal deformation is given as �l = σ l0

E
, where σ is the stress,

l0 the length of the bar and E the Young modulus. The use of an unrealistic high yield stress
limit σ = 103 N/mm2 and E = 2 × 105 N/mm2 (steel) leads to a maximum displacement
of 0.5% of the original length. In cases where slender structures like beams or plates are
loaded by bending, geometric nonlinearities are the limiting criterion for the validity of a
linear computation. In the case of a two-sided clamped beam or a four-sided clamped plate,
geometric nonlinearities significantly influence the result even if the deflection of the center
point is very small. The regime of validity is larger when just a one-sided clamped beam
or plate is considered. However, in the literature it is often stated that for linear analysis,
the maximum deflection should be in the range of the cross-section dimensions. To give
an example, for the Finite Element solver in SolidWorks [9], it is suggested to use nonlin-
ear techniques in case of deformations larger than 1/20 times the largest dimension of the
body [10]. However, in this paper it is supposed that the elastic deformations are at least one
to two magnitudes smaller than the body’s largest extension.

5.2 Magnitude of modes and modal coordinates

Two very frequently used sets of consistent units are kilogram/meter and ton/millimeter,
respectively. When those units are used, experience shows that the requirement of small
deformations (no material and no geometric nonlinearity) leads to modal scaling factors
(so-called “modal coordinates”) typically much less than one. The following considerations
show why this assumption mostly holds true.

A consequence of the mentioned mass normalization (Eq. (13)) is the relationship

∫
V

(
S

p

1

)2
ρ dV +

∫
V

(
S

p

2

)2
ρ dV +

∫
V

(
S

p

2

)2
ρ dV = 1, (19)
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Fig. 4 Averaged modal deflection vs total mass

where the symbol S
p

i holds the component i of the pth mode Sp . Using the mean value
theorem, Eq. (19) can be modified into

(
S̄

p

1

)2 + (
S̄

p

2

)2 + (
S̄

p

3

)2 = 1

mt

, (20)

where mt holds the total mass of the structure and S̄
p

i represents a kind of averaged modal
deflection of component i. It can be seen that the averaged modal deflection increases when
the mass is decreasing, and vice versa. In the following, two extreme cases are investigated.
For the first case, it is assumed that the modal deflections are uniformly distributed to all
degrees of freedom. The averaged deflection S̄

p

a1 can then be given as

S̄
p

a1 = 1√
3mt

. (21)

For the second case, it is assumed that the modal deflection is dominated by one component,
like the first bending mode of a plate having only deflections normal to the plate plane. In
that case the averaged deflection S̄

p

a2 can be approximated as

S̄
p

a2 = 1√
mt

. (22)

In Fig. 4 the averaged modal deflection is plotted vs total mass.
In case when kilogram and meter are used as units, a mass of 1 kilogram leads to an

averaged modal deflection of 1 meter. A structure of 100 kilograms still leads to an averaged
deflection of around 0.1 meter. When ton and millimeter are in use, a mass of 0.001 tons
(=1 kg) would lead to an averaged modal deflection of around 40 millimeters. A mass of 0.1
tons (=100 kg) implies an averaged deflection of 4 millimeters. Note once again that these
are averaged deflections, the maximum deflection is probably at least a factor of 2 higher.
In order to fulfill the restriction of small deformations, modal coordinates smaller than one
seem to be a valid assumption. However, heavy structures may not fulfill that assumption.

The former conclusion that the modal coordinates are normally smaller than one depends
on the units employed; in this case, kilogram and meter and ton and millimeter, respectively.
This conclusion may not be valid for all combinations of length and mass units. Neverthe-
less, the investigations on the relevance of certain terms in the equations of motion are of
general nature since these terms describe mechanical effects like the change of inertia due
to deformation, coupling between rotation and deformation, centrifugal and Coriolis forces.
These phenomena are of a fundamental nature and their relevance does not depend on the
units.
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Fig. 5 Maximum von Mises stress of mode shapes

Fig. 6 First mode of the car and
plate, scaled with 1 and −1

5.2.1 Numerical examples

In order to estimate the potential maximum modal amplitudes of the investigated FE struc-
tures the maximum von Mises stress for the first 16 modes is given in Fig. 5. A modal
coordinate of one would imply that the stress contribution of this mode is of the same mag-
nitude, as shown in Fig. 5.

It can be seen that for almost all structures a modal amplitude lower than one can be
expected, because otherwise material nonlinearities take place. Only the car and plate require
a more detailed investigation.

Car The first mode of the car, scaled by 1, leads to a stress contribution of 258 N/mm2

(von Mises). This is already a high stress level, but one may argue that a very good mate-
rial could handle that. Figure 6 shows the deflection due to this mode for scaling factors 1
and −1. It can be seen that a vibration with such an amplitude is an unrealistic scenario for
a passenger car during operation.

Plate The stresses inside the plate caused by the modes scaled with 1 are definitely in
the linear range with respect to material nonlinearity. Figure 6 shows the deflection for the
first mode when scaled with −1 and 1, together with the undeformed state (black). The
maximum displacement of 42 mm is far beyond the plate thickness of 0.5 mm and occurs
at the plates corners. It can be assumed that geometric nonlinear effects take place in case
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Fig. 7 Maximum modal coordinates for the given Finite Element examples

of such deformations. Therefore, the assumption that the modal coordinates remain smaller
than 1 is probably a good estimate for that structure, too.

Based on the previous observations, the maximum modal coordinate for the first mode
of the Finite Element structures given in this paper is 1 when the stress of the corresponding
mode is lower than 500 N/mm2. Otherwise the maximum modal coordinate is chosen, so
that the stress of the mode becomes 500 N/mm2. The maximum modal coordinate of all
other modes is scaled by the ratio of the modes eigenvalue and the eigenvalue of the first
mode. This is because the eigenvalue acts as stiffness (=Ω2) in Eq. (14). The maximum
modal coordinates of the first ten modes for the examples in this paper are depicted in
Fig. 7. The latter figure reveals a general tendency: The stiffer and compacter a structure,
the smaller the expected modal amplitudes. For very stiff and very compact structures, like
the connecting rod, modal amplitudes much smaller than 1 can be expected.

6 Magnitude of entries in invariants W1, W2 and W3

In the key section of this paper, the significance of the terms holding the matrices W 1, W 2

and W 3 is investigated. This chapter is devoted to the magnitude of the entries of the latter
matrices in order to estimate whether a certain effect may be negligible with respect to
another one.

6.1 Magnitude of entries in matrix W1

Matrix W 1 is constructed using submatrices Ī kl , see (17). The components of Ī kl are com-
puted along (15), which leads to the evaluation of an integral in the form of

∫
V

ū0kS
m
l ρ dV .

An application of the Cauchy–Schwarz inequality delivers

(∫
V

ū0kS
m
l ρ dV

)2

≤
(∫

V

(ū0k)
2ρ dV

)(∫
V

(
Sm

l

)2
ρ dV

)
. (23)

According to (15), the terms (
∫

V
(ū0k)

2ρ dV ) are defined as Ikk , which are the main diagonal
entries of I 0. Equation (19) shows that the maximum value of

∫
V
(Sm

l )2ρ dV is 1. Due to
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Table 2 Maximum absolute values in W1 and the Euclidean norms of W1 and I0

Maximum
absolute
entry W1

Average of
magnitudes of all
nonzero entries
in W1

Euclidean
norm of W1

Euclidean
norm of I0

GenStruct1 3.2 0.18 2.2 7.5

GenStruct2 8.5 0.47 2.3 8.4

Jeffcott rotor 18.6 0.66 10.5 118.2

Car body 32.6 35.6 444.1 343673

Beam 18.4 0.13 9.2 85.7

Plate 42.1 1.58 21.1 65.74

Conrod 2.5 0.09 1.8 3.3

inequality (23), it can be expected that the Euclidean norm of W 1 is normally significant
less than the norm of I 0. This assumption is confirmed by the numerical examples in the
next section.

6.1.1 Numerical examples

The following quantities are computed for matrix W 1 and summarized in Table 2:

• Maximum absolute entry.
• The average of the magnitude of all nonzero entries. This value gives an idea of whether

most of the entries are around the maximum entry or much smaller.
• Euclidean norms of W 1 and I 0.

It can be seen in Table 2 that the Euclidean norm of I 0 is always greater than that of W 1.
Moreover, it is interesting to observe that the average value of the magnitude of all nonzero
entries is always significantly less than the maximum entry. This leads to the conclusion that
most of the entries in W 1 hold a magnitude which is significantly smaller than the maximum.

6.2 Magnitude of entries in matrices W 2 and W 3

Matrices W 2 and W 3 are constructed using the submatrices S̄kl (see (17)). The components
of S̄kl are computed as in (15), which leads to the evaluation of an integral in the form of∫

V
S

p

k Sm
l ρ dV . An application of the Cauchy–Schwarz inequality delivers

(∫
V

S
p

k Sm
l ρ dV

)2

≤
(∫

V

(
S

p

k

)2
ρ dV

)(∫
V

(
Sm

l

)2
ρ dV

)
. (24)

Recalling Eq. (19), it is clear that the theoretical maximum value of
∫

V
(S

p

k )2ρ dV is 1.
Therefore, the entries of S̄kl have to be between −1 and 1. Consequently, the entries of W 2

and W 3 have to be between −2 and 2 (see (17)). Based on the evaluated integrals it can be
stated that the norms of W 2 and W 3 are typically much lower than the norms of I 0 and W 1.
Due to the conservative assumption that the maximum value is 1, it can be expected that the
magnitude of most of the entries is much smaller than 1. Both assumptions are confirmed
by the numerical examples below.
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Table 3 Maximum absolute values in W2 and W3

Max. abs.
entry W2

Max. abs.
entry W3

Average of
magnitudes of all
non-zero entries
in W2

Average of
magnitudes of all
non-zero entries
in W3

Euclidean
norm W2

Euclidean
norm W3

GenStruct1 1.0 0.8 0.04 0.05 2.0 1.1

GenStruct2 1.0 0.9 0.05 0.05 1.9 1.2

Jeffcott
rotor

0.02 0.03 6e−4 7e−4 0.07 0.04

Car body 0.99 0.6 0.05 0.03 1.9 1.1

Beam 1.0 1.0 0.04 0.02 2.0 1.4

Plate 1.0 0.6 0.08 0.05 2.0 1.2

Conrod 0.1 0.05 0.004 0.003 0.15 0.09

6.2.1 Numerical examples

The following quantities are computed for matrices W 2 and W 3 and summarized in Table 3:

• Maximum absolute entry.
• The average of the magnitude of all nonzero entries. This value gives an idea whether

most of the entries are around the maximum entry or much smaller.
• Euclidean norm.

It can be seen that the maximum values are always below 2, which is in accordance with the
theoretical considerations. In comparison to the entries in Table 2, it turns out that the norms
of W 2 and W 3 are smaller than those of I 0 and W 1. It is notable that the average value of
the magnitude of all nonzero entries is significant less than the maximum entry. This leads
again to the conclusion that the entries of both matrices are mostly significantly smaller than
the maximum entry. Finally, it can be stated that the entries of W 3 tend to be less than the
entries of W 2.

7 Investigations on the relevance of the single terms in the equations
of motion

The following considerations are based on the full set of equations of motion (14), or when
expressed in matrix notation (16). By setting all the terms related to W 1, W 2 and W 3 to
zero, the simplest possible representation of (16) is

Mq̈ + Kq = Qv

M =
⎡
⎢⎣

mI 3 0 0

Ḡ
T
I 0Ḡ 0

sym I nf

⎤
⎥⎦ K =

⎡
⎣ 0 0 0

0 0
sym Ω2

⎤
⎦ Qv =

⎡
⎢⎣

0

−2 ˙̄GTI 0ω̄

0

⎤
⎥⎦ .

(25)
An alternative way to obtain Eqs. (25) is by a strict application of the small deformation
assumption to the kinetic energy (2). This means that in case of a sum of the body’s exten-
sion and its deformation, the deformation is always neglected, as reported in [12] (and the
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reference therein to [13]). The obvious advantage of (25) is its simplicity and the fact that
for the free body all coordinates are decoupled. The intention of this key chapter is to clarify
whether and when all terms have to be considered (like (16)) or just the simplest possible
form (like (25)), or something in-between has to be used.

For the following investigations, a free floating flexible body is assumed as described by
(14) and (16). If the body is connected to other bodies via constraining or imposed forces,
the situation is somehow different and the resulting consequences are discussed as well.

7.1 Rotational inertia of the deformed body

7.1.1 Theoretical considerations

In this section the change of the inertia due to deformation is investigated. The corresponding
term in the mass matrix is the (nΘ ×nΘ ) matrix mΘΘ . According to (14) and (16), this matrix
can be given as

mΘΘ = Ḡ
T
IΘΘḠ = Ḡ

T
∫

V

˜̄uT ˜̄uρ dV Ḡ = Ḡ
T[

I 0 + W 1Qf + QT
f W 2Qf

]
Ḡ. (26)

The (3 × 3) matrix IΘΘ holds the inertia of the deformed body. This matrix can be found in
the first term of (Qv)Θ in (14) as well. An evaluation of the integral in (26) gives

IΘΘ,kk =
∫

V

(
ū2

0l + ū2
0m

)
ρ dV + 2

∫
V

(ū0l ūf m + ū0mūf l)ρ dV

+
∫

V

(
ū2

f l + ū2
f m

)
ρ dV k, l,m ∈ 1,2,3, (27)

where IΘΘ,kk holds the kth main diagonal entry of IΘΘ , ū0l holds the lth component of
the vector ū0, and ūf m holds the mth component of the vector ūf . The symbols k, l and
m represent the three directions in space. The first integrand contains the inertia of the un-
deformed body and can be found in the matrix I 0, which is a diagonal matrix due to the
assumption of principal axis of inertia. The second integrand contains a linear change in in-
ertia and is represented in matrix form by W 1Qf . The third integrand contains a quadratic
change of inertia and is given by QT

f W 2Qf . Under the assumption that the deformation is
one or two magnitudes smaller than the largest dimension and within the linear range, just
two special scenarios can occur, for which the inertia tensor changes significantly due to the
body’s deformation:

• The second and the third terms (W 1Qf and QT
f W 2Qf ) cannot be neglected if neither the

body’s dimension in the direction l nor m in (27) is significantly greater than the flexible
deformations in the same directions. A long beam with a small cross-section would be
such a structure. In this case, the deformation may have a similar magnitude as the body’s
dimension in that direction and the two state-dependent terms may be important for an
accurate result. A close look at (27) gives no reason to assume that the quadratic term is
less important than the linear part if such a beam-like structure is considered.

• The state-dependent terms may also be non-negligible in case of structures being partic-
ularly soft with respect to centrifugal forces, like GenStruct1. For such structures, small
displacements may have a considerable impact on the moment of inertia. If such a struc-
ture is considered, it can be assumed that the linear term will dominate the quadratic term
since the product of the body’s extension and the elastic deformation will dominate the
square of the elastic deformation, see Eq. (27).
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Fig. 8 Maximum change in rotational inertia due to maximum modal coordinate of first ten modes

Note that the former two considerations are just meaningful when the body’s state is domi-
nated by its own inertia. Let us assume a body which fulfills one of the former two criteria
for the consideration of the state-dependent terms. If such a body is stiffly connected to an-
other body with remarkable inertia, it is sufficient to consider I 0 only. An example for such
a situation is a rigid flywheel which is mounted on a flexible slender beam. As a general
observation, it can be stated that the influence of W 1Qf and QT

f W 2Qf decreases when
other bodies are stiffly connected to the flexible body under consideration.

7.1.2 Numerical examples

In order to quantify the influence of the deformation on the inertia, the following two quan-
tities are defined:

�IL,kk,max = max

( |IL,kk,p|
I0,kk

)
�IQ,kk,max = max

( |IQ,kk,p|
I0,kk

)

k ∈ 1,2,3, p ∈ 1 . . . nf , (28)

where I0,kk holds the principle moment of inertia of the undeformed body around the axis k;
IL,kk,p contains the result of W 1Qf at the same position when the pth mode is scaled with
a certain amplitude; IQ,kk,p gives the corresponding quantity due to QT

f W 2Qf . Therefore
�IL,kk,max and �IQ,kk,max are measures of the change in the inertia around axis k due to the
linear and the quadratic part of Eq. (27). In Fig. 8, �IL,kk,max and �IQ,kk,max are given for
the first ten modes of the investigated structures. Thereby the maximum modal amplitudes
have been chosen as depicted in Fig. 7. It can be seen that all changes are below 5% except
in GenStruct1 and the beam. This is in good accordance with the former theoretical consid-
erations. The beam structure is characterized by a mass distribution which is dominated by
one dimension in space, namely direction ‘3’. Therefore, �IQ,33,max comes into the range
of I0,33. It is interesting to note that the linear change is negligible in comparison to the
quadratic one. As it was already assumed in the theoretical part, it is wrong to argue that the
quadratic part is less important than the linear one in case of a beam-like structure.

The structure GenStruct1 is very soft around axis 1. Its first bending mode is depicted in
Fig. 9 together with the undeformed structure. Due to the special mass distribution and the
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Fig. 9 First bending mode of
GenStruct1 (scaled)

particular softness, a remarkable effect on the inertia around axis 1 can be expected; even the
deformation may remain in the linear range. Therefore �IL,11,max and �IQ,11,max come into
the range of 10% of I0,11. A similar structure GenStruct2 does not show this effect because
of its stiffer character.

7.1.3 Summary

The deformation-related change of a body’s rotational inertia can be mostly neglected. Ex-
ceptions are only possible if the body has either a dominant extension in one direction or a
very particular mass distribution in combination with particular (soft) stiffness properties.
If one of those two situations takes place, an additional requirement needs to be fulfilled,
which is that the body is a free body or at least very softly connected to other bodies, so
that its state is mainly determined by its own inertia. Consequently, in nearly all industrial
applications the terms W 1Qf and QT

f W 2Qf can be neglected, except when the previously
mentioned criteria are fulfilled.

7.2 Inertia coupling

7.2.1 Theoretical considerations

In this section the coupling effect of mΘf q̈f on Θ (second line in equations of motion (14))
and mT

Θf Θ̈ on q̈f (third line in equations of motion (14)) is investigated. For the subsequent

investigations, the second line in (14) and (16) is pre-multiplied with Ḡ. This leads to

[∫
V

˜̄uT
0
˜̄u0ρ dV

]
ᾱ +

[∫
V

˜̄uf Sρ dV

]
q̈f = Q̄v,θ

[∫
V

ST ˜̄uT
f ρ dV

]
ᾱ +

[∫
V

STSρ dV

]
q̈f + Ω2qf = Qv,f

(29)

and

Q̄v,θ = −4 ˜̄ω
[∫

V

˜̄uT
0
˜̄u0ρ dV

]
ω̄ − 4

[∫
V

˜̄uT ˙̄̃u + ˙̄̃uT ˜̄uρ dV

]
ω̄ − 4 ˜̄ω

[∫
V

˜̄uf
˙̄uf ρ dV

]
, (30)

where the relations

ḠḠ
T = 4I 3 Ḡ ˙̄GT = 2 ˜̄ω ḠΘ̈ = ᾱ (31)
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[1, Eqs. (2.87), (2.69) and (2.84)] have been used. The same equations in matrix form, using
the definition of the inertia integrals (15), can be given as

I 0ᾱ + QT
f W 3q̈f = Q̄v,θ

WT
3 Qf ᾱ + I q̈f + Ω2qf = Qv,f

(32)

with

Q̄v,θ = −4 ˜̄ωI 0ω̄ − 4
[
W 1Q̇f + 2QT

f W 2Q̇f

]
ω̄ − 4 ˜̄ωQT

f W 3q̇f . (33)

Note that the change of the inertia due to the body’s deformation has already been inves-
tigated in the preceding section and is therefore neglected in the mass matrix and in the
quadratic velocity vector. Another obvious observation is that the inertia coupling depends
on the modal deflection but not on velocity, like the quadratic velocity vector does. As a
consequence, it is not necessary to distinguish between moderate and high angular veloci-
ties, which is the case when the terms of Q̄v are investigated. In the next step, q̈f of the first
line in (29) is expressed by the second line, which leads to

[[∫
V

˜̄uT
0
˜̄u0ρ dV

]
−

[∫
V

˜̄uf Sρ dV

][∫
V

ST ˜̄uT
f ρ dV

]]
ᾱ

= Q̄v,Θ +
[∫

V

˜̄uf Sρ dV

][
Ω2qf − Qv,f

]
. (34)

Expressing ᾱ of the second line in (29) by the first line leads to

[
I −

[∫
V

ST ˜̄uT
f ρ dV

][∫
V

˜̄uT
0
˜̄u0ρ dV

]−1[∫
V

˜̄uf Sρ dV

]]
q̈f + Ω2qf

= Qv,f −
∫

V

ST ˜̄uT
f ρ dV

[∫
V

˜̄uT
0
˜̄u0ρ dV

]−1

Q̄v,Θ . (35)

In (34) the modal coordinates’ inertia is reduced to the rotational coordinates while the
rotational inertia is reduced to the flexible coordinates in (35). The reduced inertias can be
given in integral and matrix form as

I f →Θ =
[[∫

V

˜̄uT
0
˜̄u0ρ dV

]
−

[∫
V

˜̄uf Sρ dV

][∫
V

ST ˜̄uT
f ρ dV

]]
= [

I 0 − QT
f W 3W

T
3 Qf

]
(36)

and

IΘ→f =
[
I −

[∫
V

ST ˜̄uT
f ρ dV

][∫
V

˜̄uT
0
˜̄u0ρ dV

]−1[∫
V

˜̄uf Sρ dV

]]

= [
I − WT

3 QT
f I−1

0 Qf W 3
]
, (37)

where I f →Θ has dimension (3×3) and IΘ→f has dimension (nf ×nf ). The main diagonal
entries of I f →Θ and IΘ→f can be given as

If →Θ,kk =
∫

V

(
ū2

0l + ū2
0m

)
ρ dV +

nf∑
p=1

(∫ (
Sp

mūf l + S
p

l ūf m

)
ρ dV

)2
k, l,m ∈ 1,2,3 (38)
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and

IΘ→f,pp = 1 −
(

(
∫
(S

p

3 ūf 2 + S
p

2 ūf 3)ρ dV )2∫
(ū2

02 + ū2
03)ρ dV

+ (
∫
(S

p

3 ūf 1 + S
p

1 ūf 3)ρ dV )2∫
(ū2

01 + ū2
03)ρ dV

+ (
∫
(S

p

1 ūf 2 + S
p

2 ūf 1)ρ dV )2∫
(ū2

01 + ū2
02)ρ dV

)
p ∈ 1 . . . nf , (39)

where the symbol S
p

k holds the kth component of the pth shape function. A closer look
at Eq. (38) reveals that the second integral is not dominated by the first integral when the
deformations are in the range of the body’s extension in two directions. This may happen
in cases of beam-like structures with one dominating spatial extension. This is basically
the same observation as in the section before. For the inertia coupling from the rotational
unto the flexible degrees of freedom, the same conclusion can be drawn when Eq. (39) is
investigated. The part of the inertia which comes from the angular acceleration may have a
reasonable magnitude with respect to 1 (=inertia of mass normalized modes) due to the same
reason as mention before, considering Eq. (38). Although Eqs. (38) and (39) look different,
the conclusion is the same for both. It can be expected that the inertia coupling is only
relevant for those bodies for which the change of rotational inertia may be relevant. These
are beam-like structures and structures with a particular mass and stiffness distribution, as
in the previous section. This estimation is numerically confirmed in the following section.

Note again that the former considerations hold true for a body which is not stiffly con-
nected to other bodies with remarkable inertia. In that case the coupling effect loses impor-
tance and can be neglected for all kinds of flexible body.

7.2.2 Numerical examples

In order to quantify the influence of the inertia coupling, the following two quantities are
defined:

�If →Θ,kk,max = max

(
If →Θ,kk,p

I0,kk

)
�IΘ→f,max = max(IΘ→f,rr,p)

k ∈ 1,2,3, p, r ∈ 1 . . . nf . (40)

The scalar value If →Θ,kk,p contains the result of QT
f W 3W

T
3 Qf at the main diagonal

entry k due to a scaling of mode p. The scalar value IΘ→f,rr,p contains the result of
W T

3 QT
f I−1

0 Qf W 3 at the main diagonal entry r due to a scaling of mode p. A value of 1
indicates for both quantities an influence of the coupled inertia, which is of the same mag-
nitude as the inertia of the corresponding degrees of freedom.

In Fig. 10, the quantities defined by (40) are given for the first ten modes of the inves-
tigated structures. Thereby the maximum modal amplitudes have been chosen as depicted
in Fig. 7. It can be seen that only the structures GenStruct1 and “Beam” have the potential
that the inertia coupling may significantly influence the equations of motion. The same two
structures have been denoted as “critical” in the preceding subsection (see Fig. 8). This was
predicted due to the theoretical considerations before. If we consider the conservative as-
sumption for the maximum modal displacement, just the beam remains potentially sensitive
to the inertia coupling.
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Fig. 10 Maximum influence of inertia coupling

7.2.3 Summary

The inertia coupling is relevant for the same type of structures, which are critical in terms
of deformation induced inertia changes. The influence of the inertia coupling decreases with
the number of stiff connections to other bodies. Similar to the preceding section, it can be
concluded that inertia coupling is an effect of minor practical relevance.

7.3 Quadratic velocity vector

The quadratic velocity vector is formed by centrifugal, Coriolis and Euler forces. The latter
evaluate to zero when Euler parameters are used. In such cases, along with the assumptions
on which this paper is based, the quadratic velocity vector can be repeated as

Q̄v =
⎡
⎢⎣

Q̄v,R

Q̄v,θ

Q̄v,f

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

0

−4 ˜̄ω
[∫

V
˜̄uT

0
˜̄u0ρ dV

]
ω̄ − 4

[∫
V

˜̄uT ˙̄̃u + ˙̄̃uT ˜̄uρ dV
]
ω̄ − 4 ˜̄ω

[∫
V

˜̄uf
˙̄uf ρ dV

]
[∫

V
ST ˜̄ω ˜̄uρ dV

]
ω̄ − 2

[∫
V

ST ˙̄̃uT
f ρ dV

]
ω̄

⎤
⎥⎥⎥⎦

(41)

(see (14) and (30)). The centrifugal forces are described by the first terms in each line,
which contain the square of the angular velocity. The Coriolis forces are given by the terms
where a product of the angular and modal velocities can be found. A subdivision of (41) into
centrifugal and Coriolis forces gives
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Q̄v = Q̄v,centrifual + Q̄v,Coriolis

=

⎡
⎢⎢⎢⎣

0

−4 ˜̄ω
[∫

V
˜̄uT

0
˜̄u0ρ dV

]
ω̄[∫

V
ST ˜̄ω ˜̄uρ dV

]
ω̄

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

−4
[∫

V
˜̄uT ˙̄̃u + ˙̄̃uT ˜̄uρ dV

]
ω̄ − 4 ˜̄ω

[∫
V

˜̄uf
˙̄uf ρ dV

]

−2
[∫

V
ST ˙̄̃uT

f ρ dV
]
ω̄

⎤
⎥⎥⎥⎦ .

(42)

The quadratic velocity vector is responsible for the so-called rotordynamics effects, such
as the gyroscopic effect and a meaningful coupling between rotational and elastic degrees
of freedom. There is a lot of literature available on this subject (see Gasch [17]). From the
literature it is known that rotor dynamic effects are of minor importance when the quotient
of rotational speed and lowest eigenfrequencies of the assembled system is small enough.
Note that the lowest eigenfrequencies of the assembled system are the relevant ones and not
the first eigenfrequencies of a free single flexible body which is the square root of the first
entries in the Ω2 matrix. An example would be a multibody system where a rigid disk is
constrained to an elastic beam. In that case, the lowest eigenfrequencies of the entire system
(beam plus disk), depend on the inertia data of the disk, the position where the disk is fixed
to the beam, and on the mounting of the beam.

7.3.1 Theoretical considerations

Rotational part of quadratic velocity vector The rotational part of the quadratic velocity
vector can be given in integral form as

Q̄v,θ = −4 ˜̄ω
[∫

V

˜̄uT ˜̄uρ dV

]
ω̄ − 4

[∫
V

˜̄uT ˙̄̃u + ˙̄̃uT ˜̄uρ dV

]
ω̄ − 4 ˜̄ω

[∫
V

˜̄uf
˙̄uf ρ dV

]
, (43)

and in matrix form as

Q̄v,θ = −4 ˜̄ω [
I 0 + W 1Qf + QT

f W 2Qf

]
ω̄ − 4

[
W 1 + 2QT

f W 2
]
Q̇f ω̄ − 4 ˜̄ωQT

f W 3q̇f .

(44)
The subdivision into the centrifugal and Coriolis forces can be written as

Q̄v,centrifual,θ = −4 ˜̄ω
[∫

V

˜̄uT ˜̄uρ dV

]
ω̄ = −4 ˜̄ω [

I 0 + W 1Qf + QT
f W 2Qf

]
ω̄

Q̄v,Coriolis,θ = −4

[∫
V

˜̄uT ˙̄̃u + ˙̄̃uT ˜̄uρ dV

]
ω̄ − 4 ˜̄ω

[∫
V

˜̄uf
˙̄uf ρ dV

]

= −4
[
W 1 + 2QT

f W 2

]
Q̇f ω̄ − 4 ˜̄ωQT

f W 3q̇f .

(45)

The centrifugal force holds the inertia tensor of the deformed body and is responsible for
the gyroscopic effects. The importance of the change in inertia due to the deformation of the
body has already been discussed in the section “Rotational inertia of the deformed body”.
In this chapter it has been shown that the terms W 1Qf and QT

f W 2Qf are only important
for beam-like structures and for structures which are soft with respect to centrifugal forces.
Therefore, the terms W 1Qf and QT

f W 2Qf can almost always be neglected and the inertia
tensor of the undeformed body is sufficient. In this work it is suggested to always consider
the gyroscopic effects based on I 0, since the angular velocity needs to be computed anyway
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and, hence, the computation of the centrifugal force is cheap. Furthermore, it is worth men-
tioning that such a consideration of the centrifugal force does not couple the rotational and
flexible degrees of freedom of the free flexible body.

The Coriolis force couples the modal and the rotational degrees of freedom via a product
of the angular and the modal velocities. It stems from the fact that the elastic body is charac-
terized with respect to a co-rotating reference frame. It can be observed that all three terms
of the Coriolis force consist of a matrix–matrix or a matrix–vector product of the angular
and modal velocities together with a kind of inertia. One term holds a constant inertia (W 1)
while the other terms hold an inertia which is scaled by the modal coordinates (QT

f W 2 and
QT

f W 3). From a former section it is known that the entries of W 1 are typically significantly
higher as those of W 2 and W 3. Moreover, the latter two matrices are scaled by modal co-
ordinates smaller than 1, which leads to even smaller values. Based on the insights of the
former sections, it can be expected that exceptions may occur in case of beam-like bodies
and when a body is particularly soft with respect to the centrifugal force.

Flexible part of quadratic velocity vector In the next subsection, the flexible part of the
quadratic velocity vector is investigated in terms of its relevance for the overall solution.
The (nf × 1) vector Q̄v,f contains the effect of centrifugal and Coriolis forces on the modal
coordinates. This vector evaluates to zero, when the small deformation assumption is applied
to the kinetic energy; see (25). The flexible part of the quadratic velocity vector can be given
as

Q̄v,f =
[∫

V

ST ˜̄ω ˜̄uρ dV

]
ω̄ − 2

[∫
V

ST ˙̄̃uT
f ρ dV

]
ω̄, (46)

or in matrix form

Q̄v,f = [
ω̄1I ω̄2I ω̄3I

][
1

2
WT

1 + W 2Qf

]
ω̄ − 2WT

3 Q̇f ω̄. (47)

A subdivision into the centrifugal and Coriolis forces can be written as

Q̄v,centrifugal,f =
[∫

V

ST ˜̄ω ˜̄uρ dV

]
ω̄ =

[
ω̄1I ω̄2I ω̄3I

][
1

2
W T

1 + W 2Qf

]
ω̄

Q̄v,Coriolis,f = −2

[∫
V

ST ˙̄̃uT
f ρ dV

]
ω̄ = −2WT

3 Q̇f ω̄.

(48)

A well-known effect of the centrifugal force is the elastic expansion (widening) of a flexible
body when it rotates around one axis. The general question of considering or neglecting
this kind of deformation cannot be answered in general and is application dependent. In
case of compliant structure with respect to the centrifugal force, like GenStruct1, it seems
obvious to consider the deformation induced by the centrifugal force. However, even small
deformations of actually stiff structures can be important in some applications. Such an
example would be the fatigue life prediction of a crankshaft based on modal stress recovery
(see [15] and [16]). Although the crankshaft deformation due to the rotational speed is small,
the thereby induced stress can have significant impact on the fatigue life prediction. This
is because it acts as kind of mean stress which has considerable impact on fatigue lifetime.
Elastic deformations caused by centrifugal forces are a fundamental effect of rotating elastic
bodies. Their complete negligence only makes sense when either the rotational speed is low
or the body is stiff and the neglected small deformations are non-critical. It can be seen
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that the centrifugal force consists of a part with constant inertia (=W 1) and a second one
where the matrix W 2 is scaled by the modal coordinates. As in the section before, it can be
stated that the entries of W 1 are much larger than those of W 2. Moreover, W 2 is multiplied
with modal coordinates, which are typically smaller than one. Therefore, the constant term
normally dominates the state-dependent one. The numerical examples below underline the
latter considerations. Exceptions may be special structures, which are particularly soft in
terms of centrifugal forces or beam-like bodies.

It may be interesting to note that the term holding W 2 represents a reduction of the
structure’s effective stiffness since the centrifugal force leads to an expansion of the body,
which leads to a higher centrifugal force. If the rotational speed exceeds a certain limit, the
effective stiffness becomes negative and the system is instable. This is a more academic
scenario, however, because under such conditions the structure will not fulfill the small
deformation assumption.

Once again, it is emphasized that the former considerations do not contain the centrifugal
and Coriolis forces due to other bodies which are somehow stiffly connected to the flexible
body under consideration. Even if the body is just connected to ground the mounting forces
may influence the body’s behavior much more than the latter discussed quadratic velocity
vector. Again, a tendency can be assumed: The more the flexible body interacts with the
ground or other bodies, the more the previously discussed terms become irrelevant for the
overall solution.

7.3.2 Numerical examples

Rotational part of quadratic velocity vector In the discussion of the Coriolis force, it
has been assumed that the term holding W 1 is normally dominating. Exceptions are ex-
pected in cases of slender structures and structures with a special mass distribution and an
extraordinary sensitivity to centrifugal forces.

In Table 4 the ratio of the Euclidian norm of the deformation-dependent terms with re-
spect to the non-deformation-dependent term can be seen. For the construction of QT

f the
maximum modal deformation is used for the first ten modes, see Fig. 7. The modal coor-
dinates of the remaining modes have been set to zero. For the construction of the modal
velocities it has been assumed that those ten modes vibrate with the modes’ eigenfrequen-
cies. The angular velocity has been set to ω̄T = [1 1 1 ]. Note that a scaling of the angular
velocity does not change the ratio given in Table 4. It can be seen that the norm of the
deformation-dependent terms is of two to three magnitudes smaller than that with the non-
deformation-dependent term, except in the case of the Beam and GenStruct1. This is in
accordance with the theoretical considerations mentioned before. It should be emphasized
at this point that the assumptions made for the latter ratio are very conservative. Firstly, the
maximum modal coordinates themselves are conservative (see the discussion around Fig. 7)
and secondly, the fact that all maximum coordinates and velocities act (without phase shift)
simultaneously is even more conservative. Therefore, it seems that in reality the ratio of the
norms is expected to be even smaller.

Flexible part of quadratic velocity vector It has been assumed that the state-dependent
part of the centrifugal force can normally be neglected in comparison to the constant one.
Table 5 contains the ratio of the Euclidean norm of the two parts of the centrifugal force
when the maximum modal coordinates are applied for the first ten modes simultaneously. It
can be seen that the contribution of the deformation-dependent term is at least of two mag-
nitudes smaller than that with the constant term, excluding GenStruct1. This was expected
because of the special characteristics of this structure.
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Table 4 Ratio of the Euclidean
norm of deformation depended
terms of the Coriolis force with
respect to the
non-deformation-dependent term

|QT
f

W2Q̇f ω̄|
|W1Q̇f ω̄|

| ˜̄ωQT
f

W3q̇f |
|W1Q̇f ω̄|

GenStruct1 0.2 0.06

GenStruct2 0.03 0.005

Jeffcott rotor 0.0005 6e–5

Car body 0.04 0.003

Beam 85 0.06

Conrod 0.003 3e–19

Table 5 Ratio of the Euclidean
norm of the
deformation-dependent and the
non-deformation-dependent term
of the centrifugal force

∣∣∣W2Qf

∣∣∣
|W1|

GenStruct1 0.2

GenStruct2 0.02

Jeffcott rotor 0.0005

Car body 0.005

Beam 0.03

Conrod 0.0009

Plate 0.07

7.3.3 Summary

Considering the gyroscopic forces due to the undeformed body is suggested in any case,
since they do not couple the equations of motion and are cheap to evaluate. If the body’s
widening due to centrifugal force has to be considered, it is necessary to add the term
[ ω̄1I ω̄2I ω̄3I ][ 1

2W T
1 ]ω̄. For very special rotational soft structures (in the sense of Gen-

Struct1) the term [ ω̄1I ω̄2I ω̄3I ][W 2Qf ]ω̄ may be relevant as well.
From rotor dynamics it is known that the Coriolis force can be neglected when the ratio of

the assembled systems’ first eigenfrequency and the rotational speed are considerable lower
than 1. If this is not the case, the Coriolis forces should be taken into account, whereby,
for the rotational degrees of freedom, the term W 1Q̇f ω̄ is sufficient. Exceptions are beam-
like structures and, once again, rotational soft structures in the sense of GenStruct1, when
the inertia forces of those structures are dominated by themselves and not by other bodies
which are stiffly attached.

8 “Set of guidelines” for practical use

I. The simple and decoupled equations of motion

⎡
⎣

mI 0 0
Ḡ

T
[I 0] Ḡ 0

sym I

⎤
⎦

⎡
⎣ R̈

Θ̈

q̈f

⎤
⎦ +

⎡
⎣ 0 0 0

0 0
sym Ω2

⎤
⎦

⎡
⎣ R

Θ

qf

⎤
⎦ =

⎡
⎣

0

−2 ˙̄GT [I 0] ω̄
0

⎤
⎦ (49)

which are obtained by the strict application of the small deformation assumption on the level
of the kinetic energy can be used in the following cases:
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• Moderate angular velocities when the body is neither a beam nor an extraordinary rota-
tional soft structure (in the sense of GenStruct1). Examples are ground vehicles, housings,
aircrafts, and so on.

• In cases of flexible bodies which are stiffly connected to other bodies, so that the effective
inertia or effective stiffness of the assembled system is different to that of the free body.
Examples are crankshafts, connecting rods, or a beam with a mounted flywheel.

In industrial operations, the latter cases will probably cover most the applications.
II. If, in addition, the widening due to the centrifugal force is of interest, Eq. (50) should

be considered. In this equation the centrifugal force acting on the flexible coordinates is
additionally regarded.

⎡
⎣

mI 0 0
Ḡ

T[I 0]Ḡ 0
sym I

⎤
⎦

⎡
⎣ R̈

Θ̈

q̈f

⎤
⎦ +

⎡
⎣ 0 0 0

0 0
sym Ω2

⎤
⎦

⎡
⎣ R

Θ

qf

⎤
⎦

=
⎡
⎣

0

−2 ˙̄GT [I 0] ω̄[
ω̄1I ω̄2I ω̄3I

] [
1
2 WT

1

]
ω̄

⎤
⎦ . (50)

III. In case of rotating structures, the following extraordinary situations can require addi-
tional terms:

• If the body under consideration is very soft with respect to centrifugal forces (in the
sense of GenStruct1) and this softness is not influenced by connections to other bodies
(or ground), the linear change in inertia should be considered in the form of I 0 + W 1Qf .
If, in addition, the widening of such structures due to centrifugal forces is of interest, the
full centrifugal force acting on the flexible coordinates should be regarded in the form of
[ω̄1I ω̄2I ω̄3I ][ 1

2W T
1 + W 2Qf ]ω̄.

• In cases where a long slender (beam-like) structure with an inertia which is not influenced

by connections to other bodies (or ground) the full change of inertia Ḡ
T[I 0 + W 1Qf +

QT
f W 2Qf ]Ḡ should be computed. In addition, the inertia coupling Ḡ

T
QT

f W 3 in mass
matrix should be regarded as well.

IV. The Coriolis force should be considered when the ratio of the assembled system’s
first eigenfrequency and the rotational speed is not considerably lower than 1 and when
the inertia of the rotating body is determined by itself and not by other bodies which are

stiffly connected. In such a case, the term −Ḡ
T
W 1Q̇f ω̄ is normally sufficient for the rota-

tional degrees of freedom. The full expression (−Ḡ
T[W 1 +2QT

f W 2]Q̇f ω̄−2 ˙̄GTQT
f W 3q̇f )

needs to be regarded only in cases with beam like structures or rotational soft structures,
like GenStruc1. For the flexible coordinates the Coriolis force is then covered by the term
−2W T

3 Q̇f ω̄.

9 Benefit

The well-founded negligence of certain terms in the equations of motion leads to the fol-
lowing benefits:

The first benefit is obviously the reduction of the computational burden. The matrixes
W 1, W 2 and W 3 are involved in matrix–matrix and matrix–vector products which need to
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Fig. 11 6-cylinder V-engine

be computed at each iteration during the numerical time integration. This has to be done for
the equations of motions and also for the computation of the Jacobian matrix. When terms
including W 1, W 2 and W 3 can be neglected, the simulation time decreases significantly in
cases where models with a high number of flexible bodies and/or when flexible bodies with
many modes are considered. Note that the latter becomes more and more relevant because
there is a tendency to consider more and more local effects in flexible multibody dynamics
(see, for example, [18–21] and [26]). In order to illustrate the potential, two examples are
given. The first example deals with an elastic piston rod simulation where the mode base
of Craig [23] is extended by so called “contact modes” so that in total 90 modes are in
use. Those “contact modes” enable an efficient and accurate consideration of the nonlinear
contact forces in the bearing cap, see Sect. 4.2. of [26] for more details. Two simulations are
performed with MSC.ADAMS: one with the default setting “partial coupling” and another
with “full coupling”. In the first case just the terms holding W 1 are considered, while in the
second case all terms of the equations of motion are considered. Even though the results
are almost identical, the difference with respect to the CPU time is almost 50%. For the
second example, the freely available code FreeDyn [27] is used. A 6 cylinder V-engine as in
Fig. 11 has been constructed with rigid bodies and 6 flexible piston rods. For the piston rod,
a Craig mode base [23] is used with 12 constraint interface modes and 15 constraint normal
modes. The crankshaft is mounted to ground by a revolute joint and a moment accelerates
the entire mechanism up to 8000 rpm. The same two kinds of simulation are performed as
in the former example. It can be reported that the difference in the CPU time is around 15%,
while the modal coordinates of both computations are almost identical.

A second benefit is that the computation of W 1, W 2 and W 3 is not necessary at all when
they are not needed. Consequently, the eigenvalues and mode shapes are enough for flexible
multibody dynamics. This is standard output of many Finite Element codes, while W 1, W 2

and W 3 are not. This simplifies the numerical implementation of the equations of motion
enormously.

The third benefit is that negligence of the terms including W 1, W 2 and W 3 leads to
equations of motion where the mass matrix and the quadratic velocity vector are decoupled
with respect to the translational, rotational and flexible degrees of freedom. This fact sim-
plifies considerations with respect to separated time integration [19] or model reduction of
multibody systems [22] tremendously.
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Finally, the set of guidelines given above removes uncertainty concerning the question of
which invariant needs to be considered and which not. In available software packages it is
common to commit this decision to the user without clear guidance. The former suggestions
can be used as such a guidance in order to activate or deactivate the proper invariants.

10 Conclusion

In this work the significance of all inertia related terms of a flexible body in the FFRF were
investigated at the level of the equations of motion. It turned out that for a lot of applications
a remarkably simple and decoupled set of equations are sufficient. This has already been
suggested in the literature when the small deformation assumption is strictly applied at the
level of the kinetic energy (see [12] or [21]). However, there are situations which require ei-
ther the deformation-dependent inertia tensor, or the inertia coupling, or the centrifugal and
Coriolis forces which are related to the elastic deformation. All of these terms were inves-
tigated with respect to their significance and, finally, these results were condensed in a set
of guidelines which give simple advice about which term needs to be considered and which
not. All theoretical considerations have been underlined by simple numerical investigations
which have been applied to a couple of very different Finite Element structures.
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