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Abstract As for biological mechanisms, which provide a specific functional behavior, the
kinematic synthesis is not so simply applicable without deep considerations on require-
ments, such as the ideal trajectory, fine force control along the trajectory, and possible
minimization of the energy consumption. An important approach is the comparison of ac-
knowledged mechanisms to mimic the function of interest in a simplified manner. It helps
to consider why the motion trajectory is generated as an optimum, arising from a hidden bi-
ological principle on adaptive capability for environmental changes. This study investigated
with systematic methods of forward and inverse kinematics known as multibody dynamics
(MBD) before going to the kinematic synthesis to explore what the ideal end-effector co-
ordinates are. In terms of walking mechanisms, there are well-known mechanisms, yet the
efficacy is still unclear. The Chebyshev linkage with four links is the famous closed-loop
system to mimic a simple locomotion, from the 19th century, and recently the Theo Jansen
mechanism bearing 11 linkages was highlighted since it exhibited a smooth and less-energy
locomotive behavior during walking demonstrations in the sand field driven by wind power.
Coincidentally, Klann (1994) emphasized his closed-loop linkage with seven links to mimic
a spider locomotion. We applied MBD to three walking linkages in order to compare factors
arising from individual mechanisms. The MBD-based numerical computation demonstrated
that the Chebyshev, Klann, and Theo Jansen mechanisms have a common property in ac-
celeration control during separate swing and stance phases to exhibit the walking behavior,
while they have different tendencies in the total energy consumption and energy-efficacy
measured by the ‘specific resistance’. As a consequence, this study for the first time re-
vealed that specific resistances of three linkages exhibit a proportional relationship to the
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walking speed, which is consistent with human walking and running, yet interestingly it is
not consistent with older walking machines, like ARL monopod I, II. The results imply a
similarity between biological evolution and robot design, in that the Chebyshev mechanism
provides the simplest walking motion with fewer linkages and the Theo Jansen mechanism
realizes a fine profile of force changes along the trajectory to reduce the energy consumption
acceptable for a large body size by increasing the number of links.

Keywords Walking mechanism - Multilegged robot - Closed-loop linkage - Energy
consumption - Biological motion - Specific resistance

1 Introduction

Multibody dynamics (MBD) has been developed to analyze multibody systems, finite ele-
ment systems, and continuous systems in a unified manner by Schiehlen [54] based on the
Kane’s Method [34] and computer-aided analysis initially introduced by Nikravesh [42]. For
planar and spatial systems, Haug [26] and Schiehlen [56] organized the MBD according to
the generalized coordinate system for biological complex systems [59]. In a recent trend,
data-driven analyses have shown a large potential [3, 19] in specifying possible coordinates
from high degrees of freedom in recording data derived from the observation of biologi-
cal movements, such as using principal component analysis (PCA) to reduce the number of
degrees of freedom of a mechanism after the noise removal. On the other hand, the tradi-
tional model-based approach is still the fastest pathway to reach the actual physical system
to build the target mechanism. Closed-linkages were frequently used to provide a specific
repetitive motion by reducing the degrees of freedom, as to be bio-inspired robots, especially
for walking mechanisms. The most famous mechanism is the Chebyshev linkage walking
mechanism, which was developed by Pafnuty Chebyshev [10] in the 19th century. Recently
Theo Jansen [31], a Dutch kinematic artist, proposed a system with 11 linkages inspired by
biological evolution. The linkage effectively provided a smooth trajectory of leg motion and
demonstrated a real locomotive behavior on irregular ground only using wind power. From
an engineering perspective, the Klann mechanism proposed by Joe Klann [35] succeeded
in reproducing a spider’s locomotion. The Theo Jansen mechanism can be considered as a
tool for elucidation of how the mechanism moves like an animal, which has the potential
to generate a smooth trajectory and improve energy efficiency. The linkage may represent a
biological mechanism with inevitable physical constraints, similar to the coupling of pulling
and pushing forces; however, only limited theoretical analyses have been reported, such as
the center-of-mass approximation [29] and a focused mechanical analysis [40], which did
not perform any serious comparative studies with other similar walking systems. Here we
introduce the MBD approach for comparing the effectiveness of movement mechanisms, in-
cluding earlier proposed walking machines, using the common criterion such as the specific
resistance. We hypothesized that closed-loop mechanisms have a consistent property with
the energy consumption of animals and the Theo Jansen mechanism in particular maximizes
the resemblance to the trajectory smoothness.

This paper is divided into the following sections. Section 2 introduces common MBD for-
mulations. Section 3 contains model descriptions of three closed-loop mechanisms, while
Sect. 4 describes their characteristic analyses including placement, posture, velocity, accel-
eration, and torque. Section 5 focuses on walking trajectory investigations on the duty factor,
which are extended to analyses of energy consumption in Sect. 6. The final result of the com-
parison of specific resistances among the three closed linkages is in Sect. 7, which broadens
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to the comparison with walking machines proposed in the past, including monopods, biped,
quadruped, six-legged, and human walking and running behaviors. Section 8 discusses the
potential and limitation. This systematic analysis is devoted to clarifying which property
of the closed linkages has an advantage with respect to older walking machines, and the
accomplishment of the qualitative comparison with the MBD reveals a similar property
and dissimilarity of the three types, which is a clue to how biological walking mechanisms
evolved.

2 Formulations of the equations of motion for legged robots with
closed-loop mechanisms

In order to analyze the forward kinematics and inverse kinematics of a constrained dynamics
system, it is necessary to describe the behavior of a multibody system (MBS) by using the
equation of motion. The MBS is constructed by a group of rigid and flexible bodies, which
depend on kinematic constraints and forces. Kinematic constraints demonstrate linear or
quadratic dependence on the generalized Cartesian coordinate. Various approaches for the
generation of the equation of motion in the MBS have been suggested [26, 42, 53, 58].

If a planar mechanism is made up of nb rigid bodies, the number of planar Cartesian gen-
eralized coordinates is nc = 3 x nb. The vector of generalized coordinates for the systems
is written as

a=[a].ql.....q%]". )

where q; = [x;, yi, 6; ]I.T is the vector of planar Cartesian generalized coordinates for an MBS.

A kinematic constraint between body i and body j imposes conditions on the relative
motion between the pair of bodies at an arbitrary joint &, and it is described, if it is a rotary
joint, as

oKD _ (r; + Asst) — (rj +AjS/jk)

=0, 2)

"k koo "k 'k o
(xi +x;" cos; — y;" sinf; — x; —X; cos0; +y; st,»)

ko 'k ko 'k
Yi +x; sind; + y;"cost; — y; —x; sinf; — y; cosb;

where r; is the vector to the centroid of the body, A; is the rotation transformation matrix,
and s;k is the local representation of the body fixed vector to point .

According to the configuration of the MBS defined by n vectors of generalized coordi-
nates of q where 7 is the time, a set of kinematic constraint equations ® is obtained as

K
(g0 = [;L(é"z)} =, ®

where ®X(q) is the kinematic constraint equation and ®?(q, ) denotes the driving con-
straints of the MBS.

The first derivative of Eq. (3) with respect to time is used to obtain the velocity constraint
equation while the second derivative of Eq. (3) with respect to time yields the acceleration
constraint equation as:

by q=v, “
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q)qq =Y, )

where @, is the Jacobian matrix of the kinematic constraint equations, v is the velocity
equation, and y is the acceleration equation.

The equations of motion for a constrained MBS are described through the virtual power
principle as shown by Nikravesh [42] and Haug [26]:

Mi+ @1 =g, (6)

where M is the mass matrix, { is the generalized acceleration vector, A is the vector of
Lagrange multipliers, and g is the generalized external force vector.

As for dynamics analysis, the kinematic constraint equations determine the algebraic
configuration, and then dynamical behavior can be defined by the second order differen-
tial equations. Therefore, Egs. (5) and (6) are described in the matrix form of differential-

algebraic equations (DAEs) as
T ..
M, 14| _|g| ™
@, 0|2 %

where y = y — 2a® — 2@ is the stabilization equation obtained by the Baumgarte stabi-
lization method [8] with parameters & = 10 and 8 = +/2« for maintaining stability in the
system [22, 62], which is truly important in effectively reducing the accumulation error in
numerical simulations to obtain an accurate solution.

Since the system has only one degree of freedom, the inverse dynamic analysis introduces
rearranged DAEs as

adMg—g)

Dq

where 1 is a driving torque and ’D is the Jacobian of the driver constraints. It should be

noted here that the array ¢ does not have to contain the actual velocity components of the
system [42, 43].

3 Modeling legged robots with three different closed-loop mechanisms

The common framework of preliminaries and definitions in Sect. 2 is applied to specific
cases. In this section, three different closed-loop mechanisms are treated by using MBD:
the Chebyshev linkage, the Klann mechanism, and the Theo Jansen mechanism. Individual
DAE:s allow for analysis of the placement, velocity, acceleration, and torque of these three
legged robots.

3.1 Chebyshev linkage
The mathematical model for the Chebyshev linkage is illustrated in Fig. 1. The vector q with
18 elements including placements and attitude angles is shown as generalized coordinates

as follows:

T
q=[a].4}.q}.q}.al.qf ] . ©)
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Fig. 1 Generalized coordinates
on the Chebyshev linkage. This
figure shows x and y coordinate
axes for the rotational angle of
each joint

D

Vs

=
4

Although the original Chebyshev linkage is known as the four link mechanism, in this
comparative analysis, an attachment on the toe (the end effector) with the ground and an
extension link to project the original trajectory drawing in the air onto the bottom are in-
troduced for the purpose of comparison with other two mechanisms in a simple manner.
Therefore, 18 (=6 x 3) elements are obtained in the generalized coordinates in the present

analysis.

A set of kinematic constraint equations ® is given by Eq. (3). The first 17 elements of
the column matrix ®X (q) are derived from kinematic constraint equations. The last element
&P (q, t) is derived by the driving constraint equation, the equation of kinematic constraints
and the driving constraint as shown below:

®(q.1) =

x1 — [ cos O,
Y1 —11 sin91
Xy — lzCOSQz — X — 11 COSQ|
Y2 —leiH@z - V1 — Zl sin91
X3+ 13c0863 — xo — [ cos 6,
Y3 +l3 sin93 — Y2 — 12 Si]flgz
X3—Z3COS93 +a
y3 —I3sin6;
X4 —l4c0804 — xp — I coS6,
y4—l4 SiIl04 ) —12 sin62
X5 + 15 COSQS — X4 — 14 COS@4
Vs +15 Sin@_s — Y4 — l4 Si1’194
)
65— 2
X6 — lﬁ COSQ(, — X5 +l5 COS@5
Y6 — l(, sinQ(, — Vs +l5 SiIlgS
05 — 05
91 + wt

18x1

=0, (10)
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Table 1 Parameters of link

length in the Chebyshev linkage Parameter Sides Length (x 103 m) Mass (x 103 kg)

I 01A 46.9 48.58
%) AB 132.2 136.84
I3 OB 132.2 136.84
Iy BC 132.2 136.84
Is5 CD 396.7 410.51
lg D 1.0 0.97
a 010, 207.6 -

where [, to ¢ are link lengths, ¢ is time, and w is the angular velocity of the driving link
(practically called ‘crankshaft’) in the mechanism. Table 1 presents a set of parameter values
of the Chebyshev linkage with the half-circle attachment. Parameters are normalized to be
the same total weight, the same movement length at the stance phase (stride length), and the
same driving link size with other two mechanisms.

The Jacobian matrix @, is obtained as

0®(q, f)]
o, =—— s 11
! [ aq 18x18 (an

which allows us to investigate placement, velocity, and acceleration analyses kinematically.
In forward dynamics analysis, the mass matrix M (18 x 18) and the generalized external
force vector Q4 (18 x 1) are described as follows:

M = diag(M,, M,, ..., My), (12)
M; =[m;,m;, 1" |i=1,...,6}, (13)
Q' =[0f", Q¢,....Q ], (14)
{Q}=10,-m;g,01" |i=1,...,6}, (15)
where m; is the mass of the rigid linkage to point i, J; = miliz/3 (i=1,...,5) is the polar

moment of inertia of the rigid linkage to point i, g is the gravitational acceleration, and
Jo = mﬁlé /2 is the polar moment of inertia of the half-circle attachment. In addition, the
reaction force from the ground at the stance phase is given as the external force (the total
mass of the mechanism) into the generalized coordinate [xg, V] in a numerical manner.

3.2 Klann mechanism
The mathematical model of the Klann mechanism is illustrated in Fig. 2. According to the
vectors q with 39 elements including placements and attitude angles, the generalized coor-

dinates are defined as follows:

T
q=[q].4d}.4}.q}.4!.4{.4].q}.qa] . q]y. qf,.q). q];] - (16)

Although the original Klann mechanism is known as the system with 12 links, in this
comparative analysis, an attachment with the ground and an extension link of the end-
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effector for normalization of the stride length and the total size against the driving link
size are introduced for the purpose of comparison with other two mechanisms in a simple
manner. Therefore, 39 (= 13 x 3) elements are obtained in the generalized coordinates in

the present analysis.

A set of kinematic constraint equations @ is given by Eq. (3). The first 38 elements of
the column matrix ®X (q) are derived from kinematic constraint equations. The last element
&P (q, t) is derived by the driving constraint equation, the equation of kinematic constraints,
and the driving constraint as shown below:

®(q.1) =

B X]—11C089]

Vi —ll sin91
)C2+12C0892—X] —11 COSQ]
Y2 +lzsin92—y1 —ll Sil’lgl
x3 —Il3c08603 — x, + 1>, cosb,
y3 —l3 sin93 ) +ZzSiIl92
X4 —l4c0864 — x3 — 130863
y4—l4sin94—y3 —l3 sin93
X7 +17c0867 — x6 — lgcOS Oy
y7 +l7 sin97 — Y6 _16 Sil’l@ﬁ
X9 — lgcos By — xg + [g cos Oy
o — lgsinfBy — yg + Ig sinbg

x11 —hicosfy — x10 +lipcos By
Yy — iy sin®y; — yio + Lo sinbio
X12 +1lipcosB1p — x11 — Ij1 cos Oy
yiz +1li2sinby — yi; — Iy sinfyy
X4+I4COSQ4—X2—1200892
y4+l4 sin94 - —12 sin92
x5 +1l5c0805 — x5 + [, cos b,
vs + I5sinfs — y, + [ sin6,
x7 —1l7c08607 — x4 + 14 cos0,
y7 —Z7 sin97 — V4 +l4 sin94
xg + lgcosBg — x3 — [z cosbs
y8 +lg SiIng -y —13 Sil’l@j;
X9+1900599—X7—Z7COS97
¥o + lg sinfy — y; — l7sin6;
X10 + Lip cos By
yio + Lo sinfyg
X12 +112C08912
yi2 +li2sinfp,
X5 —15 00595 —X]0+l|00059]0
¥s — Issinfs — yig + 1o sinbyo
X6 — 16 COS@ﬁ — X2 — 112 COS@]Z
Y6 — lgsinOs — y12 — l128in 6
0 —3
X13 — 113 008913 — X9 +19 COSQL)
y13—l|3sin913 — Y9 +lgSiI’l99
013 — 09
01 + wt

39x1

05

a7
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Fig. 2 Generalized coordinates
on the Klann mechanism. This
figure shows x and y coordinate
axes for the rotational angle of
each joint

Table 2 Parameters of link

length and mass in the Klann Parameter Sides Length (x 103 m) Mass (x 103 kg)

mechanism
I8 01A 50.9 25.83
) AB 133.3 67.64
I3 BC 102.8 52.14
Ig AC 234.8 119.13
I5 OB 60.2 30.53
I 03D 84.3 42.74
l7 CcD 122.7 62.24
Ig CE 226.8 115.08
Iy DE 347.9 176.51
) 010, 137.1 69.57
I 0,03 88.6 44.96
112 0103 126.5 64.15
113 E 1.0 0.52

where /; to I3 are link lengths, ¢ is time, and w is the angular velocity of the crankshaft in
the mechanism. Table 2 shows a set of parameter values of the Klann mechanism with the
half-circle attachment. Parameters are normalized as in the previous section.

Therefore, the Jacobian matrix ®,, is obtained as

0®(q, f)]
o, =— s 18
! [ aq 39%39 (1%

which allows us to investigate placement, velocity, and acceleration analyses kinematically.
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Fig. 3 Generalized coordinates
on the Theo Jansen mechanism.
This figure shows x and y
coordinate axes for the rotational
angle of each joint [36]

The forward dynamics analysis introduces the mass matrix M (39 x 39), and the gener-
alized external force vector Q# (39 x 1) are described as follows:

M =diag(M;, M,, ..., M;3), (19)
M; =[m;,m;, J1" |i=1,...,13}, (20
Q' =[Q}, Q. ..., ], 1)
{Q} =10,—m;g.01" |i=1,...,13}, 22)

where m; is the mass of the rigid linkage to point i, J; =2/;/3 (i =1,...,12) is the polar
moment of inertia of the rigid linkage to point i, and g is the gravitational acceleration, and
Jiz =msl 123 /2 is the polar moment of inertia of the half-circle attachment. In addition, the
reaction force from the ground at the stance phase is given as the external force (the total
mass of the mechanism) into the generalized coordinate [x;3, y;3] in a numerical manner.

3.3 Theo Jansen mechanism

Finally, the mathematical model of the Theo Jansen mechanism is described in the same
manner (Fig. 3). According to the vectors q with 39 elements including placements and
attitude angles, the generalized coordinates are defined as follows:

T
q=[q].49}.4}.q}.4}.4{.4].q{.qa] . q]y. af,. a4 qf;] - (23)

Although the original Theo Jansen mechanism is known as the system with 11 links,
in this comparative analysis, an attachment with the ground and an extension link of the
end-effector for normalization of the stride length and the total size against the driving link
size are introduced as well as the previous section. Therefore, 39 (= 13 x 3) elements were
obtained in the generalized coordinates in the present analysis.

A set of kinematic constraint equations @ is given by Eq. (3). The first 38 elements of
the column matrix ®X (q) are derived from kinematic constraint equations. The last element
&P (q, t) is derived by the driving constraint equation, the equation of kinematic constraints
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and the driving constraint as shown below:

x1 — 1 cos O,
y1 — 1 sinf;
Xo —lpcos0y — x; — 1 cosb,
Y2 —12 SiIl@Q i 11 sin91
X3+ l3 COSQ3 — Xy — 12 COS@Q
y3 —}—13 sin@; — Y2 — 12 Sil’l@z
X3—l3COSG3—d
y3 — [38in0;
xs+l5 COS@S — X4 +Z4C0894
vs + I5sinfs — y, + 14 sin 6y
X7 —l7COS@7 — X6 +Z600596
y7 — l78in607 — yg + lg sinbg
X9+1900899—x8 +lgC0$98
Yo + lg sinfy — yg + Ig sin g
x11 —hicosfy — x10 +lipcos By
yi1 — i sinfyy — yio +ligsinfyg
X12 — l1pc08612 — x10 + (Lo + 2112) cos Oy
yi2 —li2sinf — yio + (Lio + 212) sinbyo
X6 + lgcos g — x; — [1 cos b,
d(q, 1) = V6 + lgsinBg — y; — 1 sin6;
X4+ 14c0864 — xy — 1, cOSH,
V4 +1ysinby — y, — I, sinb,
x5 — I5c08 05

0, (24)

ys — 5 sinOs
x7 + 17 cos6;
v7 + 17 sin6;
xg + Igcosfy — x4 + 14 co86,
v + lgsinfg — y, + 14 sin 6y
X9 — lgcos By — xg + I cos Og
Yo — lgsinfy — yg + g sin b
x10 + Lo co8B19 — xg + lg COS B¢
10 + Lo sinbyg — ye + lg sin b
X11 + 11 cosb — xg + I3 cos g
yii + 11 sin6y — yg + lgsinfg
012 — 6o
x13 — l13cos 013 — x12 + 112 cos Opp
yi3 —li3sinf13 — yip + l125in 6y,
013 — 012

- b1 — wt -39x1

where /; to ;3 are link lengths, ¢ is time, and o is the angular velocity of the crankshaft
in the mechanism. Table 3 lists a set of parameter values of the Theo Jansen mechanism
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Table 3 Parameters of link

length and mass in the Theo Parameter Sides Length (x 1073 m) Mass (x 1073 kg)

Jansen mechanism
I8 01A 50.0 25.00
I AB 200.0 100.00
I3 0>B 137.5 68.75
In BC 200.0 100.00
I5 0,C 147.5 73.75
lg AD 200.0 100.00
I7 02D 137.5 68.75
Ig CE 142.5 71.25
ly DE 145.0 72.50
lo DF 140.0 70.00
I EF 200.0 100.00
l12 FG 40.0 20.00
13 G 1.0 0.5
a 010, 143.0 -

with additional two links for the grounding condition. Parameters are normalized as in the
previous sections.
Therefore, the Jacobian matrix ®,, is obtained as

a®(q, t)}
P, =|— , 25
! [ dq 39%39 *)

which allows us to investigate placement, velocity, and acceleration analyses kinematically.
The forward dynamics analysis introduces the mass matrix M (39 x 39), and the gener-
alized external force vector Q# (39 x 1) are described as follows:

M =diag(M;, M,, ..., M;3), (26)
M; =[m;,m;, ;1" |i=1,...,13}, (27
Q*=[of". ...} 28)
{Q} =10,—m;g,01" |i=1,...,13}, (29)
where m; is the mass of the rigid linkage to point i, J; = m;I?/3 (i = 1, ..., 12) is the polar

moment of inertia of the rigid linkage to point i, and g is the gravitational acceleration, and
Jiz =mysl 123 /2 is the polar moment of inertia of the half-circle attachment. In addition, the
reaction force from the ground at the stance phase is given as the external force (the total
mass of the mechanism) into the generalized coordinate [x;3, y13] in a numerical manner.

4 Characteristic analyses
According to the MBD descriptions in the above sections, characteristic analyses can be

treated numerically, which allows for investigation of the temporal evolution of the place-
ment, posture, velocity, acceleration, and torque in every joint, for elucidation of essential
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Table 4 Parameters in the

numerical simulation Parameter Description Value
g Gravitational acceleration 9.81 m/s?
10} Input angular velocity 27 rad/s (60 rpm)
o Baumgarte parameter o 10
B Baumgarte parameter g V2a
t Time 0<t<4s
dt Time step 1.0x 1073 s
- Solutions of ODE Euler’s method

differences between the three walking mechanisms. As for the limitation, the following anal-
yses were calculated with effects of inertia of links with individual mass, the gravity at every
moment, and the reaction force from the ground at the stance phase (the details are described
in Sect. 5), yet the calculation did not include forces and torques that may arise from actual
locomotion in the horizontal axis. In other words, it is the analysis of the ideal treadmill
condition.

In the following sections, the MATLAB-based numerical simulation was used with the
combinations of the Euler method with the time step of 1.0 x 103 s, as shown in Table 4. For
comparison, parameters in Tables 1, 2, and 3 were normalized by rescaling the individual
link lengths and the link weights, so that the crankshaft (driving link) radius is 0.1 m, the
movement length at individual stance phase is 0.45 m, and the total weight is 0.87 kg. The
constant angular velocity w = 2w rad/s (60 rpm) was commonly given to the crankshaft
rotation, and the Baumgarte stabilization method with parameters o = 10 and g = +/2« for
maintaining stability in the MSD [62], for minimizing the accumulated error in numerical
simulation to obtain the accurate solution. In placement, acceleration and torque analyses,
the end effector (toe) was analyzed by using the generalized placement of the grounding
link, as the half-circle attachment in Figs. 1, 2, and 3. According to the definition, the end-
effector placement D = [D,, D,] of the Chebyshev linkage is placed at the center of mass
of the sixth link [x, ys], the end-effector placement of the Klann mechanism E = [E,, E, ]
is calculated by the center of the 13th link [x;3, y;3] and the end-effector placement of the
Theo Jansen mechanism G = [G,, G, ] is the center of the 13th link [x;3, yi3].

Table 5 showed representative factors obtained from the numerical analyses, which were
calculated as the average from repetitive cycles at ¢ € [0, 4] except unstable periods, in par-
ticular at the beginning for ¢ € [0, 0.5].

4.1 Placements and postures

Placements and postures of the three mechanisms were measured under the normalized con-
dition. Figures 4(a), 5(a), and 6(a) show the results of Chebyshev linkage, Klann mechanism,
and Theo Jansen mechanism, respectively. The input force was given as the circular trajec-
tory with the constant angular velocity w shown as the circle at the origin in the figure, and
the force was transferred to the end-effector (toe), which drew individual trajectory.

As shown in Table 5, the Klann had a maximum trajectory height of 0.36 m, and the
Chebyshev and Theo Jansen mechanisms had similar trajectory heights. In the capability
of lifting, which was defined as the ratio of the trajectory height to the mechanism height
including movements, the Klann mechanism exhibited the maximum value of 52.17 % suit-
able for obstacle avoidance, and Theo Jansen mechanism showed the minimum of 8.05 %,
which suggests less-energy consumption when in lifting motion.
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Table 5 Results of characteristic analyses

Factor Chebyshev Klann Theo Jansen
Height with movements [m] 0.80 0.69 0.87
(Highest placement [m]) (0.44) 0.22) (0.26)
(Lowest placement [m]) (—0.36) (—0.47) (—0.61)
Trajectory height [m] 0.09 0.36 0.07
(Maximum height of the leg [m]) (=0.27) (—0.14) (—0.54)
(Minimum height of the leg [m]) (—=0.36) (—=0.50) (—0.61)
Capability of lifting [ %] 11.25 52.17 8.05
Average velocity [m/s] 0.95 1.43 0.93
(Maximum velocity [m/s]) (2.72) (3.15) (2.08)
(Minimum velocity [m/s]) (0.22) 0.15) (0.03)
#Local maxima of velocity change 2 3 2
Va [m/s] 2.72 3.15 1.02
) (t =0.507) (t =0.074) (t =0.081)
Vb [m/s] 0.86 2.24 2.08

(t =0.996) (t=0.378) (t =0.546)
Ve [m/s] - 1.62 -

- (t = 0.815) -
Average acceleration [m/52] 7.96 14.73 6.61
(Maximum acceleration [rn/sz]) (23.17) (32.24) (15.17)
(Minimum acceleration [m/s2]) (0.08) (0.59) (0.33)
#Local maxima of acceleration change 2 4 3
Aa [m/s?] 23.17 22.74 12.76
) (t =0.445) (t =0.237) (t =0.388)
Ab [m/sQ] 23.41 24.21 13.85

(t=0.571) (t =0.443) (t=0.497)
Ac [m/s?] - 5.15 15.17

- (t=0.702) (t =0.630)
Ad [m/s?] - 32.24 -

- (t =0.945) -
Average absolute torque [Nm] 0.84 0.52 0.23
(Maximum torque [Nm]) (3.87) (2.73) (0.80)
(Minimum torque [Nm]) (—4.11) (—1.21) (—0.68)
#Local maxima of torque change 2 4 2
Ta [Nm] 0.21 0.19 0.80
) (t =0.025) (r=0.141) (r =0.499)
Tb [Nm] 3.87 2.73 0.10

(t =0.557) (t=0.424) (t=0.971)
Tc [Nm] - —-0.24 -

- (t =0.634) -
Td [Nm] - 0.50 -

- (t =0.893) -

t represents time of the local maximum with respect to the single cycle (the period 7 = 1), which was
calculated as the average time from multiple cycles; All the values were obtained as averages from repetitive

cycles
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Fig. 4 Characteristic analyses including the end-effector placement [Dy, Dy] (a), velocity 4/ sz + Dy2

(b), acceleration 4/ D. x2 + D"y2 (¢), and driving torque t (d) of the Chebyshev linkage. Horizontal lines show
the average of each set of values

4.2 Velocity and acceleration

Velocity and acceleration analyses of the three mechanisms are shown in Figs. 4(b)—(c),
5(b)—(c), and 6(b)—(c), respectively. For the sake of simplicity, the velocity vector [x, y] and
acceleration vector [, y/] of the end-effector obtained from MBD analyses were respectively
plotted by using the absolute values of /%2 + y2 and /¥2 4 32 with respect to time.

According to the velocity analysis, the Klann mechanism had the highest average veloc-
ity of 1.43 m/s compared to the others, and it reached the maximum velocity of 3.15 m/s in
the cycle, with respect to the shape of the trajectory (Fig. 5(a)). In the case of the Chebyshev
linkage, the maximum velocity appeared at the highest point of the trajectory denoted as the
positive peak Va (Fig. 4(a)), while the Klann Va appeared at the midpoint of the trajectory
when in lifting motion before reaching the highest point, which was consistent with a pos-
itive peak of acceleration change Aa. The increase of the number of peaks denoted as Va,
Vb, and Vc with respect to other mechanisms may help the maximization of the speed of
lifting.

Comparing the shape of motion trajectories, the Chebyshev linkage and Theo Jansen
mechanism did not exhibit a large difference, in comparison with the Klann mechanism,
however, they differed in the temporal profile of velocity and acceleration. The Chebyshev
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Fig.5 Characteristic analyses including the end-effector placement [Ey, Ey] (a), velocity 4/ E x2 +E y2 (b),

acceleration 4/ E"X2 + Elyz (¢), and driving torque t (d) of the Klann mechanism. Horizontal lines show the
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linkage had a symmetric shape in up and down motion trajectories, while Theo Jansen mech-
anism provided a break of the symmetry.

Acceleration analysis showed that the Klann mechanism moves fast when the leg takes
off from the ground and maximizes the acceleration just before touching the ground as
shown in Fig. 5(c), and the acceleration vector may turn to the opposite direction for braking
inertia force and preventing a large impact of the leg on the ground. Although the Chebyshev
linkage (Fig. 4(b)—(c)) demonstrated profiles with a symmetric velocity and acceleration
control, the Theo Jansen mechanism moved fast when the leg took off from the ground
and maximized the acceleration just before touching the ground with less height of the leg,
which provides a smooth grounding and contributes to the asymmetric acceleration control
with three peaks Aa, Ab and Ac as shown in Table 5 and Fig. 6(c).

4.3 Torque analysis

Torque analyses of the three mechanisms are shown in Figs. 4(d), 5(d), and 6(d), respec-
tively.

In the torque analysis as shown in Table 5, the Chebyshev linkage had maximum and
minimum torques with a large amplitude in the interval [3.87, —4.11] Nm, Klann mech-
anism had the torque range of [2.73, —1.21] Nm, while for the Theo Jansen mechanism
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torques were in a small range of [0.80, —0.68] Nm. The range will be mirrored in the en-
ergy consumption.

As a common property of the three closed-loop linkages, we observed a large peak point
of the torque (T, in the Chebyshev linkage and Klann mechanism, and T, in the Theo Jansen
mechanism) which was located at the swing phase before landing, and negative torque was
observed at the stance phase, which contributes to separation of the swing and stance phases.

4.4 Acceleration on trajectory

Interestingly, the above characteristic analyses revealed a similarity of trajectory shapes of
the Chebyshev linkage and Theo Jansen mechanism, while a dissimilarity appeared in the
temporal evolutions of their acceleration and torque In the analysis of the detailed relation-
ship between the trajectory and acceleration change, we investigated temporal evolutions of
acceleration vectors of individual end-effector with respect to the trajectory position, such

[Dl, D ] in the Chebyshev linkage, [Er, E ] in the Klann and [Gx, G y] in the Theo
J ansen mechamsms, and then visualized their relatlonshlps as vector fields superimposed on
individual trajectories as shown in Fig. 7.
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Fig.7 Relationships between the leg’s placement [x, y] and the acceleration vector [X, ¥] by using the vector
field on the trajectory. The Chebyshev linkage (a), the Klann mechanism (b), and the Theo Jansen mechanism
(c¢) were shown on the same scale

The length of each vector in Fig. 7 represents the absolute acceleration /X2 + ¥? in
temporal evolutions of Figs. 4(c), 5(c), and 6(c). The amount of the acceleration, i.e., the
force generation, changes depending on the position of the trajectory to realize the fine
tuning motion. Consistently, this superimposed image exhibited a symmetric pattern in the
Chebyshev linkage, representing the same amount of force generated in the leg movement
of lifting up and down at the swing phase. The characteristic acceleration peak at the top
of the trajectory in the Klann mechanism maximizes the force generation just before falling
down and changes the direction of force for braking the speed of the leg before touching the
ground, and a similar vector rotation phenomenon appeared in the Theo Jansen mechanism,
which works for a less-fluctuation landing. It is because the vectors in the latter part of the
swing phase clearly fit the trajectory’s tangential line. This is a clear evidence of how the
Theo Jansen mechanism smoothly behaves in locomotion.

By extending the analysis to focus on the curvature property, the swing and stance phases
were divided in the next section as the common criterion in the case of the closed-loop
mechanism. This allows for the preparation of the detail analysis of energy consumption,
thus providing further fair comparisons with walking machines in past studies.

5 Phases and duty factors

In order to detect walking phases in the three closed-loop mechanisms, the stance and swing
phases can be divided by using the curvature property. The original curvature is defined as

i — iy

K(t) = 7
(X2 +y%)2

(30)

where x and y are placements of the end-effector. For practical use as the criterion to deter-
mine edges of the stride length at the stance phase, we introduced the normalized curvature
K as

k@) =«k(t)/k, E:%ZKU), 31

t=tgy

where T = [ty, #;] is the single cycle and N denotes the number of samples in the cycle.
The first and second order derivatives in the equation were obtained by using the approxi-
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Fig. 8 Representative curvature peaks of the Chebyshev linkage (a), the Klann mechanism (b), and
the Theo Jansen mechanism (c¢). The properties were required to determine the common stride length
Lc =Lk = Lj =0.45 m. The normalized curvature £ was calculated by Eq. (31) for a sample of N = 1000
observations. The high curvature points £ > 0.5 were obtained as the average from the latter three cycles in
the period [1, 4] s in the numerical simulation, and they were plotted at the same individual points. The points
used for the definition of the stance phase, i.e., start and end points of the stride length, were selected in a
heuristic way by human inspection. The open and closed circles respectively represent points eligible for the
decision of the stance phase and other ineligible points

mate derivative function based on the difference of neighboring points. As shown in Fig. §,
curvature peaks were found at moments when the leg is leaving and touching the ground,
and then the representative two points were commonly used for the definition of the stance
phase to determine the start and end points of the stride length. By using this criterion, the
pure circle trajectory takes k = 1 at every point, and an ellipse with the ratio of 2 to 1 takes
2 at the higher peak point independent the radius.

In fact, we applied this formulation numerically to data under the assumption that neigh-
boring points are smoothly interpolated, and then it matches the start and end points practi-
cally as shown in Fig. 8. In the viewpoint of the analytic solution of the trajectory curvature,
especially on the Theo Jansen mechanism, the curvature, i.e., a function of differentials,
does not exactly determine the turning points appearing in the numerical solution because
there exists a zero-length loop at the point Ca in Fig. 8(c) analytically, which implies that
the Theo Jansen mechanism’s trajectory is a shrinkage of the figure-eight shape as recently
revealed by Komoda and Wagatsuma [37].

In these mechanisms, the duty factor is consistently defined as:

D=1 =1,k 32
i=7 (E=L....h, (32)
where T is a walking cycle, ¢; is the stance phase time, and k is the number of legs. Here
periods [£5*0, £5*!] and [¢#'0, £5'!] denote the swing and stance phases of the Chebyshev
linkage; periods [t,fwo, t,f“’l] and [t,ﬁto, £ ! denote the swing and stance phases of the Klann
mechanism; and periods [tf“’o, tt“”l] and [tt”o, tf”] denote the swing and stance phases of
the Theo Jansen mechanism.

According to the definition, the Chebyshev linkage’s duty factor was 0.66, the Klann
mechanism’s duty factor was 0.42, and the Theo Jansen mechanism’s duty factor was 0.61
as shown in Fig. 9. In accordance with the investigation by McGhee [39], walking behaviors
have duty factors greater than 0.5 and running behaviors have duty factors less than 0.5.
Thus, the Chebyshev linkage and the Theo Jansen mechanism corresponded to walking
behaviors, while the Klann mechanism exceeded this level, and so is more representative of
running behavior.
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Fig. 9 Phase analysis of the Chebyshev linkage (a), the Klann mechanism (b), and the Theo Jansen mecha-
nism (c¢)

6 Power and energy

6.1 Power consumption

Mechanical power is considered to be transmitted from the crankshaft input to the individual
joints of linkages, and finally reaches the end-effector where the mechanical output of motor
represents the power of the crankshaft. Considering the relationship between the driving
torque of motor 7 and the angular velocity w, the power is the product of T and w as follows:

P=rtw. (33)

Table 6 shows representative factors obtained from the numerical analyses, which were
calculated as averages from repetitive cycles for ¢ € [0, 4] except for unstable periods, in
particular at the beginning when ¢ € [0, 0.5].

Power consumptions are obtained from the multiplication of the driving torque t and
the angular velocity w, which was set constant in this analysis, as defined in Eq. (33),
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Table 6 Results of power consumption

Factor Chebyshev Klann Theo Jansen
Average absolute power (Type 1) [W] 5.30 3.29 1.44
Average positive power (Type 2) [W] 3.96 4.70 1.25
(Maximum power [W]) (24.31) (17.13) (5.03)
(Minimum power [W]) (—25.94) (=7.61) (—4.27)
#Peaks of power change 4 8 5
Pa [W] 1.33 —7.61 —4.27
) (t =0.025) (t=0.013) (t=0.312)
Pb [W] —25.94 1.22 5.01

(t =0.456) (t=0.141) (t =0.499)
Pc [W] 24.31 —3.43 —1.11

(t=0.557) (t=0.308) (t=0.610)
Pd [W] —-1.93 17.13 0.14

(r=0.708) (t=0.424) (t=0.726)
Pe [W] - —2.43 0.60

- (t=0.517) (t=0.971)
Pt [W] - —1.50 -

- (t =0.634) -
Pg [W] - —1.83 -

- (t =0.740) -
Ph [W] - 3.15 -

- (t=0.893) -

t represents time of the peak with respect to the single cycle (the period 7' = 1), which was calculated as the
average time from multiple cycles; All the values were obtained as averages from repetitive cycles

and therefore the temporal profiles of results in Sect. 4.3 were consistent with results in
Fig. 10(a)—(c).

When comparing these three different linkages, the following common properties were
clearly demonstrated: (i) positive power is generated when a leg is swinging in the air and
moving quickly, and (ii) negative power is generated when a leg is on the ground at the
stance phase. These common properties similarly appear in human behaviors such as walk-
ing and running. As is discussed in the next section in detail, the energy consumption is
mainly based on the summation of the power consumption in a specific period, and how
much power is needed depends on whether the system has energy storage capability when
it takes negative powers transmitted to the driving link. The conventional definition requires
the summation of the absolute power consumption ignoring the negativity, called ‘Type 1’
[55], while the summation of the power consumption only if it is positive is called ‘Type 2’
[50, 52]. Depending on the type of an animal, except small size insects, biological mecha-
nisms potentially have a capability to store elastic strain energy in muscle and other tissues
under ideal conditions [4, 5], and robots with elastic materials were designed to maximize
the capability [11, 12]. The details will be discussed in Sect. 8.

In the analyses, we simply used Type 1 energy consumption in the next section according
to traditional studies [55]. As a reference, a comparison of power consumptions based on
Type 1 and Type 2 is shown in Fig. 10(d).

@ Springer



Energy-efficacy comparisons of Theo Jansen mechanism. .. 143

30 e 30
c
20 4 20 Pd |
10 : 4 10 ]
= \/ £ Pb Ph
o 15 0 Pf |
N BN
o Pd & pcPe Pg
-10 1 {1 -10 Pa ]
-20 1 -20 |
-30 P . . . i -30 . . . it . . .
1 2 3 4 0 1 2 3 4
Time [s] Time [s]
(@) (b)
30 . . . . . . . 6 . . .
I Type
20 ] 5 C—IType?2| |
s 4.70
10 : 1 =4 —
s Pb 5 3.96
S /\ Pd_Pe A\ — z s
[ Q.
2 \/ \/-’\/ \/’\/ s
o 9]
-10 ] § 2
< [ [ PR —
-20 B 1 1.25] |
-30 . . L . L i 0
0 1 2 3 4 Chebyshebv Klann Theo Jansen
Time [s] Walking Machine
(c) (d)

Fig. 10 Power analyses of the Chebyshev linkage (a), the Klann mechanism (b), and the Theo Jansen mech-
anism (c). Average power was calculated in Type 1 and Type 2 definitions (in text) as the average value in
a cycle (d). Type 2 is larger than Type 1 and represents a sharp peak during the positive period without any
large negative peak

6.2 Energy consumption

Energy consumption of the crankshaft is evaluated by the integral of the absolute value of
the driving torque of the motor and the angular velocity of the crankshaft and described
mathematically if thermal dissipation in the system is assumed to be zero in the ideal case
as

n
E:/ |[Tw|dt, (34)
0]

where ¢; is the time [27, 49-52]. This measurement represents output of the actuators and it
does not include the joints’ energy and transmission efficiency of the mechanism, as well as
the definition of Schiehlen [55].

Figure 11 shows the results of the temporal evolution of individual energy consumptions
E of the Chebyshev linkage, the Klann mechanism, and the Theo Jansen mechanism. As
defined in Eq. (32), the Chebyshev linkage has the swing phase [#] wo, zj“’l] and the stance
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Fig. 11 Cumulative plots of energy consumptions of the Chebyshev linkage (a), the Klann mechanism (b),
and the Theo Jansen mechanism (c). Total energy consumptions E., Ey, and E; are shown in (d)

phase [#:7, £51]; the Klann mechanism has the swing phase [£*?, £2*!] and the stance phase
[t,ﬁ’o, t,f”]; and the Theo Jansen mechanism has the swing phase [#] w0, t,““] and the stance
phase [#70, £5"']. Therefore, the energy consumption of the swing and stance phases of the
Chebyshev linkage are respectively E3"' = [ ;%:;1 |tw|dt and EX'! = S g,;l |tw|dt, and then
the total energy consumption is calculated as E, = E gw' +E ! In the cases of the Klann and
Theo Jansen mechanisms, Ex = E{*! + E{'! and E, = ES*! + E5'! were similarly obtained.
As shown in Fig. 11(a), in the Chebyshev linkage, the energy consumptions of the swing
and stance phases were ES%! =4.62 J and E*'! = 0.69 J, and the total energy consumption
was E. =5.311.

In the Klann mechanism, the energy consumptions of the swing and stance phases were
Ei"' =2.52J and E{'' = 0.74 J, and then the total energy consumption was E; = 3.26 J
(Fig. 11(b)). In the Theo Jansen mechanism, the energy consumptions of the swing and
stance phases were ES*! =0.71 J and ES"! =0.72 J, and then the total energy consumption
was E, =1.43J (Fig. 11(c)).

Thus, the three mechanisms consistently consume more energy in the stance phase, and
the Theo Jansen mechanism consumes the least total energy when compared to the other two
mechanisms, as summarized in Fig. 11(d), which scores 3.7 times better than Chebyshev
and 2.3 times better than Klann. This result indicated that the Theo Jansen mechanism is the
most effective walking mechanism of the three closed-loop linkages.
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7 Specific resistance

For evaluating the energy efficacy in walking legged robots, the general criterion called
‘specific resistance’ was proposed by Gabrielli and von Kdrman [23] as follows:

P
€=——o, (35)
mgv
where P is the output power, m is the total weight, and v is the walking speed [13]. This
measure allows for the comparison of different locomotion machines with respect to the
energetic performance.

For all three closed-loop mechanisms, as is consistent with the above sections, common
properties were given as follows: the angular velocity of the crankshaft w = 27 rad/s, the
total weight M¢c = Mg = M; = 0.87 kg and the stride length Lc = Lg = L; =0.45 m.

The specific resistance of the Chebyshev linkage was obtained as € = 1.42 with the walk-
ing speed v = 0.49 m/s and the power P = 3.04 W. The Klann’s specific resistance was
€ =0.91 with v =0.45 m/s and P = 3.35 W. In the case of the Theo Jansen mechanism,
the specific resistance was € = 0.31 with v =0.46 m/s and P = 1.21 W. As a consequence,
the energy-efficacy of the Theo Jansen mechanism was the minimum for @ = 27 rad/s.

In further analysis, we investigated the specific resistances with respect to the walking
speed, which can be modified by the angular velocity of the driving link. The result with
angular velocities ranging in [7/4, 10r] with the 7 /4 step is shown in Fig. 12, which
demonstrates the monotonic increase with a consistent exponential property. When com-
paring these three mechanisms, the Theo Jansen mechanism demonstrated the minimum
specific resistance value in the whole range of angular velocities w € [ /4, 10z]. Inter-
estingly, the Klann and Theo Jansen mechanisms had a similar profile with respect to the
walking speed. For the same angular velocity w = 10z rad/s, the Theo Jansen mechanism
showed € = 3.01 and v = 3.83 m/s, while the Klann mechanism increased its walking speed
to v = 5.43 m/s with € = 6.74, which means that the walking speed is 1.42 times greater
and the specific resistance is 2.24 times greater than those of the Theo Jansen’s. The Klann
mechanism is good at increasing of the walking speed, accompanied with the increase of
the specific resistance. In regard to the specific resistance, this result indicated that the Theo
Jansen mechanism has the least energy consumption among the three mechanisms.

Figure 13 shows a log—log scale plot of the general evaluation of the mechanisms in
comparison to other proposed walking machines in the literature, such as monopod, biped,
quadruped, six-legged, and human walking and running. A famous hopping robot, Gre-
gorio’s ARL monopod I [24], which was a 15 kg planar one-legged robot, and an ARL
monopod II [2], which was a 18 kg planar one-legged running robot with hip and leg com-
pliance, were included, and their specific resistances were similar, € € [0.2, 11], to the three
closed-loop mechanisms, even though the mechanism for the hopping movement was quite
different from the controlled passive dynamic running strategy.

Cavagna and Kaneko [15] investigated how human walking and running requires energy
in regards to the specific resistance. They measured the total mechanical energy in the vari-
ations of kinetic and potential energy in the body trunk while walking and running. The
famous McGeer’s gravity walker [38] represented the simplest passive walker with a weight
of 3.5 kg and two legs, which walked smoothly using only the potential energy from its own
gravity. The Cornell walker [18] was a 13 kg passive dynamic walker moving at 0.4 m/s
with € = 0.055, and was composed of solid parts connected by joints. In the case of the
Cornell three-dimensional passive walker [17], the 4.8 kg system was more complex than
the other passive walkers, and it could reach a walking speed of 0.51 m/s with € = 0.054.
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Although these passive dynamic walking machines have no electric actuator and controller,
the system’s interaction with the ground provides an efficient way of bipedal walking, which
resembles human locomotion. Schiehlen [55] developed a bipedal locomotion system with
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a weight of 20 kg in the form of the active biped walking model, in which the walking speed
was about 0.5 m/s and the specific resistance € = 0.05. This model successfully reduced
the energy consumption by using a method for energy efficient control in a biped walking
machine.

StarlETH [28] proposed a 23 kg compliant quadrupedal robot, with a trotting gait walking
at the speed of 0.43 m/s, when electric power equals 360 W. The robot was designed as a
device with an adaptive torque control mechanism. Raibert’s quadrupedal robot [48] was
as heavy as 32 kg, and had multiple modes of running gaits-based legs moving in pairs:
the trot, pace and bound locomotion. Scout II [63] was a 24 kg autonomous four-legged
robot with only one actuator per compliant leg. This robot achieved a running speed of up
to 1.2 m/s when it employed a bounding gait. RHex [14] was an autonomous hexapod with
8 kg power, which consisted of a single actuator per compliant leg. The robot generated
gait patterns, including a tripod gait and a bounding gait. Jin’s hexapod walking robot [33]
weighted 5.26 kg, which was controlled autonomously by the torque distribution algorithm
to minimize the system’s energy cost. VelociRoACH [25] was a 30 x 10~ kg hexapedal
millirobot capable of running at 2.7 m/s. Its creators developed a new gait tuning method for
millirobots, which was designed for finding stable limit cycles which minimized the amount
of rotational energy in their systems.

As shown in Fig. 13, specific resistances of these walking machines were plotted using
the same measures, and they were distributed around the properties of the human walk-
ing and running movements. Naturally, passive dynamic walking machines using potential
energy based on gravity achieved locomotion with lower specific resistances than that of
human walking and running, which was considered a typical biological locomotion system
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with less energy consumption. This result indicated that the specific resistance increases in
passive walking machines and human locomotion with respect to the walking speed, while
it decreases in the cases of monopod, quadruped, and hexapod systems.

Interestingly, for the closed-loop mechanisms, the specific resistance presents a propor-
tional increase with respect to the walking speed, which was not consistent with other multi-
legged walking machines (including monopods) but was consistent with human walking
and running. The minimum specific resistance of the Theo Jansen mechanism was close to
that of human walking. While the monopod based on the air spring has a similar level, the
closed-loop mechanism can reach this level by providing a smooth grounding to prevent loss
of energy at the moment the leg touches the ground.

8 Discussion
8.1 Regeneration energy and inertia torques

In the analysis of the energy consumption in Sect. 6.2, we used an equation that is consistent
with Schiehlen [55] in the form of Eq. (34), focusing on the absolute value of the work
and ignoring the thermal dissipation. In principle, the energy consumption is formulated as
follows [27, 49-52]:

n n
E:/ f(rw)dt—i—/ yidte, (36)
fo fo

where f is a function to calculate the mechanical work from the torque t and the angular
velocity w, and y is the thermal dissipation constant.

As described in Table 7, the energy consumption depends on what type of actuator is
used in the driving motor. In the present comparative study, we simply assumed the Type 1
energy consumption, corresponding to conditions with the slow movement based on conven-
tional actuators. It is plausible for the Chebyshev linkage and the Theo Jansen mechanism
because they showed duty factors to be in a walking mode. In the viewpoint that the Klann
mechanism showed the duty factor as a running mode, it may have a potential to improve
the energy consumption by adding the regeneration system when kicking the ground, such
as a spring system. In the consideration that increasing the size of the Klann is not beneficial
according to our characteristics analysis, it is difficult for the small-sized robot to introduce
the regeneration system, similar to that of insects. Therefore, a comparison of closed-loop

Table 7 Types of the energy consumption depending on the actuator

Type Positive work Static work Negative work f

Type 1 + + + 7o'

Type 2 + 0 0 0 (Tw < 0)2
Type 3 + 0 - T’

1 Conventional actuators without brake [55]; muscles in slow motion
2 Actuators with brake (or geared with a high reduction ratio); muscles of insects [51]

3 Actuators with regeneration brake [6, 20, 57]; Coupling of muscles with the tendon in high speed movements
[4,5,7]
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linkages is considered to be validated enough. On the other hand, the ideal treadmill con-
dition has the limitation in the dynamic aspect of the movement. For actual production of
walking/running machines, forces and torques that may arise from actual locomotion, in-
cluding friction and thermal dissipation in collision of the leg with the ground surface, are
crucial for pre-investigation. In fact, the MBD-based approach allows us to extend such a
further analysis.

In the recent trend of bio-inspired robots, the Type 3 energy consumption is a factor to im-
prove the running speed drastically. The bio-inspired legged robot, MIT Cheetah, achieved
21 km/h (13 mph) as the highest mark in recent running machines [6, 20, 57], using a regen-
erative motor driver connecting its closed linkage legs. The evidence indicates that the same
mechanism can commonly be introduced to closed-loop linkages. Another possible option
of the energy regeneration of the energy is energy storage with passive compliance, which is
obtained from spring and elastic materials [11]. The property of the energy storage is known
in the artificial legs made of elastic materials, such as carbon fiber prostheses [65]. In this
analysis, we used DAEs in the MBD analysis only with rigid bodies, which are treated by
total differential equations, and the hybrid system composed of rigid bodies and elastic ma-
terials requires the extension of DAESs to involve calculations of a set of partial differential
equations simultaneously, such as the finite element method.

8.2 Possible reduction of dimensions

A further possible discussion is the problem of dimensionality. Beside forward kinematics
and inverse kinematics, kinematic synthesis is an important tool to explore the best dimen-
sionality for the target system design [46, 47]. In regard to the target system in the present
study, the inventor of the mechanism, Theo Jansen, practically treated a kinematic synthesis
by using a heuristic approach based on the evolutionary algorithm such that 1500 sets were
randomly generated in the design process, 100 sets were selected automatically with a cost
function, and then the best one was chosen according to a human expert inspection [32].

According to basic principle of generalized coordinates in the MBD [59], we analyzed
the target closed-loop system to assign local coordinates with individual links; however, the
dimension reduction is possible if a set of components can be treated as one rigid body.
For example, in this case, the triangle structure in the mechanism does not change its form
except for parallel movements and rotations, which leads to a reduction of the number of
equations. The downsizing of the Jacobian matrix contributes to a reduction of the compu-
tational cost and prevention of the accumulation error in numerical simulation, while if the
downsizing protocol is not systematic, and is rather heuristic, it impairs the advantage of
the generalized coordinate system in the MBD procedure. A recent topic on the dimension
reduction is discussed in the field of differential geometry. The center manifold reduction
has long been studied in the field [9, 45, 61, 64, 66], recently the Morse theory was high-
lighted [1, 21, 30, 41], and then applied to the dimension reduction for the investigation of
bipedal walking models [44]. A working and plausible hypothesis on dimensions of bio-
logical mechanisms is that many degrees of freedom in the body kinematics are controlled
by nervous systems to reduce the freedom by adding constraints with the purpose that the
whole system provides the target behavior. This concept realizes in the MBD formulation
in ways of increasing the ratio of driving constraints and introducing complex interactions
between rigid bodies.

In contrast, increasing the number of degrees of freedom is also beneficial to provide
multiple functional motions from the single mechanism. As we analyzed, the Theo Jansen
mechanism has an optimal motion for walking to minimize the lifting height of the leg.
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This property is simultaneously an advantage and disadvantage if flexible motions need to
be considered. Recently Komoda and Wagatsuma [37] revealed that the Theo Jansen has a
large expandability to provide multiple functional motions by releasing the fixed node of
0, in Fig. 3 as the second movable node. The modified system provides other functional
trajectories if O; and O, are synchronously moved in a specific phase relationship. This
implies that unexpected and non-intuitive possibilities of the biological mechanism can be
analyzed in the mechanical sense, providing a clue of how it can be utilized in a machine
[16, 60].

9 Conclusions

In our results, the Chebyshev linkage, Klann and Theo Jansen mechanisms showed different
properties in individual acceleration and torque temporal profiles, while they had consistent
tendencies regarding total energy consumptions and energy-efficacies, which were propor-
tional to the walking speed. The Theo Jansen mechanism was the best and the Klann mech-
anism was the worst in regard to the total energy consumption. Since the Klann mechanism
was initially designed as a system to mimic insect motion, it needs to be built in a smaller
size to be able to move with a limited energy, yet it quickly moves in a running mode with
the highest locomotion speed, rather than others. The Theo Jansen is considered to be an
extended version of the Chebyshev linkage due to similarities of basic velocity and acceler-
ation profiles and the existence of additional peak points, and therefore in this comparison
the Theo Jansen mechanism is an optimum solution as the linkage specialized for walking
smoothly.

By using the MBD-based numerical analyses, this study newly revealed that the specific
resistances of three linkages were proportional to their walking speeds, which is not consis-
tent with walking machines in past studies like ARL monopod I and II, yet it is consistent
with human walking and running. Our hypothesis was successfully proved based on the
characteristic analyses of multibody dynamics.

As a similarity of biological and robotic evolutions [16, 60], our results imply that the
Chebyshev linkage provides the simplest motion trajectory in the sense of fewer dimensions
for achieving a function of walking, and in contrast the Theo Jansen mechanism realized a
fine profile of force changes along the trajectory by using complex links, even though the
dimensions are increased. Further properties will be discussed in a combined analysis with
tools of kinematic synthesis [19, 46, 47].
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