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Abstract Cranes are underactuated systems with less control inputs than degrees of free-
dom. Dynamics and control of such systems is a challenging task, and the existence of
solution to the inverse dynamics simulation problem in which an r-degree-of-freedom sys-
tem with m actuators, m < r , is subject to m specified motion task (servo-constraints) is
conditioned upon the system is differentially flat (all the system states and control inputs
can be algebraically expressed in terms of the outputs and their time derivatives up to a cer-
tain order). The outputs are often designed as specified in time load coordinates to model
a rest-to-rest maneuver along a trajectory in the working space, from the initial load posi-
tion to its desired destination. The flatness-based methodology results then in the required
control inputs determined in terms of the fourth time derivatives of the imposed outputs,
and the derivations are featured by substantial complexity. The DAE formulation motivated
in this contribution offers a more convenient approach to the prediction of dynamics and
control of cranes executing prescribed load motions, and only the second time derivatives of
the specified outputs are involved. While most of the inverse simulation formulations, both
flatness-based and DAE ones, are performed using independent state variables, the use of
dependent coordinates and velocities may lead to substantial modeling simplifications and
gains in computational efficiency. An improved DAE formulation of this type is presented
in this paper.

Keywords Inverse dynamics · Underactuated systems · Crane dynamics and control

1 Introduction

Cranes are underactuated systems with less control inputs than degrees of freedom; see, e.g.,
[1–6] for the backgrounds and other relevant technical examples. For underactuated systems,
the inverse dynamics simulation problem in which an r-degree-of-freedom system with m
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actuators, m < r , is subject to execute m specified motion task, is a challenging task. While
this problem is rather well understood for fully actuated systems whose motion is explicitly
specified, m = r , with numerous applications to robot and process control, the existence of
solution to the inverse simulation problem of underactuated systems is conditioned upon the
system is differentially flat, which is explained in more detail in, e.g., [4] and [6]. All the
system states and control inputs can then be algebraically expressed in terms of the outputs
and their time derivatives up to a certain order.

In the modeling of a crane’s conventional mode of operation, the desired outputs are com-
monly assumed as specified in time load coordinates that describe a rest-to-rest maneuver
along a trajectory in the working space, from the initial load position to its desired destina-
tion [7]. The flatness-based methodology results in the required control inputs determined
in terms of the fourth time derivatives of the imposed outputs, and the related derivations are
featured by substantial complexity. The DAE formulation proposed in [5], and motivated in
this contribution as well, offers an alternative and more convenient approach to the predic-
tion of dynamics and control of cranes executing prescribed payload motions, where only
the second time derivatives of the specified outputs are involved, and the solution consists
in numerical estimation of crane’s states and control inputs in the specified motion.

The mathematical models of cranes, used in both the flatness-based and DAE formula-
tions of the inverse simulation studies, are typically built using minimal sets of independent
coordinates [5, 7–12], leading to the minimal-dimension constraint reaction-free dynamic
equations. The equations are of relative high complexity, however, assisted with further
complexity of the so-called servo-constraints [12–14] or control constraints [5, 15] on the
system, resulted from the specified motion requirements expressed in the independent vari-
ables. The final governing equations for the inverse dynamics analysis are then of rather
elaborate structure. By contrast, the use of dependent (nonminimal) coordinates may lead
to some simplifications in formulation of the problem, which was exploited in, e.g., [16]
and [17] for the flatness based solution of control of kinematically undetermined cable sus-
pension manipulators. In this paper, we adopt this idea to improve our previous DAE formu-
lation [11] for the dynamics and control of cranes executing prescribed motions of payloads.
In the dependent variable formulation, the robot (crane without the load) dynamics and the
load dynamics are initially described separately, and are then coupled through a simple pas-
sive constraint due to the inextensible hoisting cable. Since the load motion is explicitly
specified, the followed formulation of the inverse dynamics problem simplifies compared
to the independent variable formulations [5, 10–12] in many modeling and computational
issues. The advantages are emphasized in the sequel with reference to a three-dimensional
rotary crane model executing a specified motion of the load.

2 Modeling preliminaries

Consider the three-dimensional rotary crane model seen in Fig. 1a, which constitutes a five-
degree-of-freedom (r = 5) system consisting of the girder, referenced further to as the rotat-
ing bridge (rotation ϕ, mass moment of inertia Jb with respect to the tower axis), the trolley
(position s on the bridge, mass mt), the winch (radius rw, moment of inertia Jw), and the
payload lumped with the hook and modeled as a point of mass ml. It is assumed that the
hoisting line is a longitudinally stiff and massless cable, and the winch radius rw is negli-
gible compared to the cable length l. The three (m = 3) control inputs are the torque Mb

regulating the bridge rotation angle ϕ, the force F actuating the trolley position s on the
bridge, and the winch torque Mw changing the rope length l,u = [Mb F Mw]T . As m < r ,
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Fig. 1 The rotary crane model

the system at hand is underactuated, and the desired m outputs of the system are specified
in time load coordinates, rd(t) = [xd(t) yd(t) zd(t)]T .

The rotary crane position can be described using r independent coordinates

q = [ϕ s l θ1 θ2]T (1)

where θ1 and θ2 are the swing angles defined in Fig. 1a. The other possibility is to use
n = r + 1 = 2m dependent coordinates

y = [ϕ s l x y z]T = [
pT rT

]T
(2)

composed of m robot (i.e., crane without the load) coordinates p = [ϕ s l]T and m load
coordinates r = [x y z]T , related through the passive constraint (Fig. 1b)

Φ(y) ≡ L − l =
√

(x − s cosϕ)2 + (y − s sinϕ)2 + z2 − l = 0 (3)

where L(ϕ, s, x, y, z) defined above will be of some use in the sequel.
One important advantage of using the dependent coordinates y = [pT rT ]T is that the

dynamic equations for the separated robot (p = [ϕ s l]T ) and load (r = [x y z]T ) can easily
be introduced in the following simple forms:

Mp(p)p̈ + dp(p, ṗ) = fp(ṗ) − BT
p u (4)

Mrr̈ = fr (5)

which, given explicitly, are respectively:
⎡

⎣
Jb + mts

2 0 0
0 mt 0
0 0 Jw/r2

w

⎤

⎦

⎡

⎣
ϕ̈

s̈

l̈

⎤

⎦ +
⎡

⎣
2sṡϕ̇

0
0

⎤

⎦

=
⎡

⎣
−Dϕϕ̇

−Dsṡ

−Dl l̇

⎤

⎦ −
⎡

⎣
−1 0 0
0 −1 0
0 0 −1/rw

⎤

⎦

⎡

⎣
Mb

F

Mw

⎤

⎦

⎡

⎣
ml 0 0
0 ml 0
0 0 ml

⎤

⎦

⎡

⎣
ẍ

ÿ

z̈

⎤

⎦ =
⎡

⎣
0
0

−mlg

⎤

⎦
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where g is the gravitational acceleration, and Dϕ,Dα , and Ds are the viscous damping co-
efficients related to the respective motions. Equations (4) and (5) can then be aggregated to
formulate the crane dynamic equations

M(y)ÿ + d(y, ẏ) = f(ẏ) − BT u − CT (y)λ (6)

where M = diag(Mp,Mr),d = [dT
p 0T ]T , f = [fTp fTr ]T ,BT = [BT

p

... 0]T , and λ is the La-
grange multiplier related to the passive constraint of (3), which is the cable tension force
seen in Fig. 1b, and C = ∂Φ/∂y is the associated 1 × n constraint matrix (Jacobian). By
contrast, the crane dynamic equations in independent coordinates q, whose symbolic form
is Mq(q)q̈ + dq(q, q̇) = fq(q, q̇) − BT

q u, are of much more complex explicit form and are
much more laborious to derive (see [10, 11] for the details).

The only nuisance concerning the dependent coordinate formulation is derivation of the
passive constraint conditions at the velocity and acceleration levels:

Φ̇ ≡ C(y)ẏ = 0, (7)

Φ̈ ≡ C(y)ÿ − ξ(y, ẏ) = 0 (8)

While the 1 × n passive constraint matrix C = ∂Φ/∂y is

C =
[

(x sinϕ − y cosϕ)s

L

s − x cosϕ − y sinϕ

L
−1

x − s cosϕ

L

y − s sinϕ

L

z

L

]
(9)

where, as defined in (3), L = √
(x − s cosϕ)2 + (y − s sinϕ)2 + z2, the derivation of the

constraint-induced acceleration ξ = −Ċẏ in an analytical form is somewhat more demand-
ing, mainly due to L(ϕ, s, x, y, z) appears in the denominators of C elements. Some simpli-
fications can, however, be achieved by introducing C∗ = CL(with no denominators in C∗).
Then, since Ċ∗ = ĊL + CL̇, the constraint-induced acceleration ξ is

ξ = −Ċẏ = (
CL̇ − Ċ∗)ẏ/L (10)

Both L̇ and Ċ∗ are relatively easy to derive compared to the direct derivation of Ċ. Al-
ternatively, one can also formulate the passive constraint equation in a more tractable way
as Φ ′(y) = (x − s cosϕ)2 + (y − s sinϕ)2 + z2 − l2 = 0, which leads to substantial sim-
plifications in C′ = ∂Φ ′/∂y and ξ ′ = −Ċ′ẏ. The generalized constraint reaction vector
fc = −CT (y)λ in (10) should then be replaced with fc = −C′T (y)λ′. However, while λ de-
notes the tensile force in the cable (its dimension is kgm/s2), the Lagrange multiplier λ′ has
no denotation of a physical force (its dimension is kg/s2), and obtainment of the cable tensile
force from λ′ is not straightforward. This is why the cable length condition is recommended
to be formulated in the “length” form (3), and not in the “square length” form.

The crane performance goal is to execute a prescribed motion of the load. The desired
m = 3 outputs of the crane are s pecified in time load coordinates,

rd(t) = [
xd(t) yd(t) zd(t)

]T
(11)

which can conveniently be defined by setting a straight line or curvilinear trajectory
	
r d (s)

in the crane working space (from the initial load position to its desired destination), and
then imposing an appropriately smooth reference function s(t) that describes the load mo-
tion along the trajectory, rd(t) =	

r d[s(t)]. Such procedures for the load motion planning,
patterned on the propositions posed in [18], were described in detail in [19].
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The time-specified system outputs lead to servo-constraints [12–14] (or control con-
straints [5, 15]) on the system. Using the dependent coordinates y = [pT rT ]T , the m servo-
constraint equations simplify to the following trivial form

�(y, t) ≡ r − rd(t) = 0 (12)

and the resultant m × n servo-constraint matrix S = ∂�/∂y is

S = [0 ... I] =
⎡

⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎦ (13)

where 0 and I are the zero and identity matrices of dimension m × m. As shown in
[5, 10–12], the use of independent coordinates q results in the much more complex servo-
constraint equations, which must then be twice differentiated with respect to time (further
substantial complexity) when involved in the governing equations for the inverse dynam-
ics analysis. The present formulation is free from those demanding derivation tasks. The
other profit of using y = [pT rT ]T is that the load coordinates r, being explicitly specified
by r = rd(t), can be excluded from the unknowns in the inverse simulation study. Assumed
rd(t) are appropriately smooth functions, explicitly specified are also the load velocities and
accelerations, ṙ = ṙd(t) and r̈ = r̈d(t).

3 Governing equations

The initial governing equations for the inverse dynamics analysis of the crane executing the
load prescribed motion can be formulated as the following set of 2n + m + 1 = 5m + 1
differential-algebraic equations (DAEs)

ẏ = w

M(y)ẇ = f(w) − d(y,w) − BT u − CT (y)λ

0 = �(y, t)

0 = Φ(y)

(14)

in 2n states y and w, m control inputs u, and the Lagrange multiplier λ.
An important characteristic of a DAE system is its index, which is a measure of singu-

larity of DAEs and indicates ‘how far’ the DAE system is from an equivalent set of ODEs
(ordinary differential-equations) [20]. Roughly speaking, the index of a DAE system is the
number of times one needs to differentiate the algebraic equations to get an equivalent sys-
tem of differential equations [21]. The index of the initial governing DAEs gathered in (14)
is equal to five [5], which yields difficulties in their direct numerical treatment (most com-
mercial DAE solvers are designed for index-one DAEs [22, 23]). Therefore, it is desirable to
transform the above initial index-five DAEs into an equivalent, numerically more tractable
form of index-three DAEs. The present index reduction procedure described below is quali-
tatively similar to that proposed in [5] for the independent variable formulation.

Before going further, it may be worth to look on the problem at hand from the geometri-
cal point of view; see also [24] for more geometrical insight. For the present formulation of
crane dynamics in the dependent coordinates y, the linear n-space Y related to ẏ, n = 2m,
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Fig. 2 The subspace Y and the
related subspaces

is split into two complementary and disjoint m-subspaces: the robot subspace P (related
to ṗ) and the load subspace R (related to ṙ), P ∪ R = Y and P ∩ R = 0, which is illustrated
symbolically in Fig. 2. The P and R subspaces are equivalent, respectively, to the controlled
subspace B spanned by the vectors represented as rows in B and to the specified subspace S
spanned by the vectors represented as rows in S, P = B and R = S . There exists also a one-
dimensional constrained subspace C , spanned by the passive constraint gradient represented
in C. The constrained subspace C has a nonzero inner product with both P = B and R = S
subspaces, i.e. C ∩ P �= 0 (C ∩ B �= 0) and C ∩ R �= 0 (C ∩ S �= 0), which reflects the fact that
the passive constraint defined in (3) couples the robot and load motions, and the physical
representation of the coupling is the constraint reaction λ (the cable tension force). The di-
mension of subspace S ∪ C is then m+1, and its complement in N is the m − 1-dimensional
tangential subspace D in which the crane motion is neither specified nor constrained, i.e.,
(S ∪ C) ∪ C = Y and (S ∪ C) ∩ D = 0. The latter condition shows that the D subspace can
be defined by m − 1 vectors contained as columns in an n × (m − 1) matrix D such that

[
S
C

]
D = 0 ⇔ SD = 0

CD = 0
⇒ DT ST = 0

DT CT = 0
(15)

Matrix D is thus an orthogonal complement matrix to the (m + 1) × n-dimensional matrix
[ST

... CT ]T . For the rotary crane model, owing to the trivial structure of S defined in (13),
the 6 × 2 matrix D can be found by inspection, i.e.,

DT =
[

1 0 C1 0 0 0
0 1 C2 0 0 0

]
(16)

where C1 and C2 are the first and the second entries of C defined in (9). The simplicity in
obtaining D is another triumph of the dependent variable formulation, which is not the case
of the independent coordinate formulation (see [10, 11] for the details).

The mentioned index reduction procedure of the governing DAEs reported in (14) con-
sists first in projecting the dynamic equations (14)2 into, respectively, the tangential sub-
space D, the specified subspace S , and the constrained subspace C . The projection is then
associated with the substitution of rd(t), ṙd(t), and r̈d(t) instead of r, ṙ and r̈, respectively,
which allows one to exclude the load states from the unknowns in the subsequent inverse
simulation study. With these simplifications and some other rearrangements, the projection
of the dynamic equations into D, S , and C is represented in matrix notation by (see [24] for
the background)

⎡

⎣
DT (p, t)

SM−1

C(p, t)M−1

⎤

⎦
([

Mpp̈
Mrr̈d(t)

]
+

[
dp(p, ṗ)

0

]
−

[
fp(ṗ)

fr

]
+

[
BT

p

0

]
u + CT (p, t)λ

)
= 0

(17)
where D(y) = D(p, rd(t)) = D(p, t) and C(y) = C(p, rd(t)) = C(p, t).
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Taking into account that, according to (15), DT CT = 0, and then, according to (16),
DT = [DT

p

... 0], the projection into D leads to the following m − 1 = 2 differential equations

DT
p Mpp̈ + DT

p (dp − fp) + DT
p Bpu = 0 ⇔ H(p, t)p̈ + h(p, ṗ,u, t) = 0 (18)

The projection into S , considering that S = [0 ... I] and M−1 = diag(M−1
p ,M−1

r ), results then
in the following m algebraic equations

r̈d − M−1
r fr + M−1

r CT
r λ = 0 ⇔ s(p, λ, t) = 0 (19)

where Cr denotes the last m entries of C. Finally, the projection into C , after replacing Cÿ
with ξ(y, ẏ) = ξ(p, rd(t), ṗ, ṙd(t)) = ξ(p, ṗ, t), results in one equation

ξ + CM−1(d − f) + CM−1BT u + CM−1CT λ = 0 ⇔ c(p, ṗ,u, λ, t) = 0 (20)

Using (18)–(20), the final reduced-dimension governing equations for the inverse dy-
namics analysis are the following m + (m − 1) + m + 1 + 1 = 3m + 1 = 10 index-three
DAEs in p, ṗ = v, u, and λ :

ṗ − v = 0

H(p, t)v̇ + h(p,v,u, t) = 0

s(p, λ, t) = 0

c(p,v,u, λ, t) = 0

Φ(p, t) = 0

(21)

The solution to the above DAEs are the variations in time of the robot state variables that
ensure execution of the load prescribed motion, pd(t) and vd(t), the control variations ud(t)

required to enforce the robot motion, and the resultant cable tension force variations λd(t).
The solution covers thus both the dynamic analysis of motion of the underactuated system
in the partly specified motion as well as the determination of the required control inputs.

It may be worth to note that the reduction in dimension of the above DAEs is mainly due
to the fact that the servo-constraint conditions as well as the load state variables are excluded
from the analysis. This cannot be achieved when using the independent coordinates q. The
servo-constraint equations expressed in these coordinates must be included in the respec-
tive governing DAEs, whose number, for the sample rotary crane [10, 11], is 2r + m =
5m − 1 = 14, compared to the number 3m + 1 = 10 of the present governing DAEs. The
governing DAEs formulated in q are also inherently more complex compared to the present
ones. An additional advantage of the present formulation is that the cable tension force λ

is involved, which makes it possible to monitor its value during the simulated maneuvers.
This may be of importance since the passive constraint of (3) is unilateral, and λ should
never become negative. In the independent coordinate formulation, the passive constraint
(and as such λ) are eliminated from the analysis, and are treated as bilateral constraints in
the elimination procedure.
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4 Solution codes

The explicit forms of m = 3 algebraic equations (21)3, s(p, λ, t) = 0, followed from the
projection of the dynamic equations in the specified subspace are:

ẍd + xd − s cosϕ

mlL
λ = 0; ÿd + yd − s sinϕ

mlL
λ = 0; z̈d + g + zd

mlL
λ = 0 (22)

where L2 = (xd − s cosϕ)2 + (yd − s sinϕ)2 + z2
d. These are three nonlinear equations in

s, ϕ, and λ, from which, after some manipulations, one obtains:

λd(t) = ml

√
ẍ2

d + ÿ2
d + (z̈d + g)2; sd(t) =

√
A2

x + A2
y; ϕd(t) = arctan(Ay/Ax)

(23)
where Ax = xd − zdẍd/(z̈d + g) and Ay = yd − zdÿd/(z̈d + g), and then, from the passive
constraint condition of (21)5 or (3), it comes that

ld(t) = zd

√
ẍ2

d + ÿ2
d + (z̈d + g)2

z̈d + g
(24)

The above analytical solutions for λd(t) and pd(t) are a part of the flatness-based solution
to the differentially flat problem of the inverse dynamics analysis for the crane executing the
prescribed load motion, denoted that all the system state variables and control inputs can
be algebraically expressed in terms of the desired outputs and their time derivatives up to
a certain order (see, e.g., [4] and [6] for the theoretical background of differential flatness).
For the case at hand, the general symbolic form of this flatness-based solution is [12]

λd(t) = λ(rd, ṙd, r̈d), pd(t) = p(rd, ṙd, r̈d),

vd(t) = v
(
rd, ṙd, r̈d, r(3)

d

)
,

ud(t) = u
(
rd, ṙd, r̈d, r(3)

d , r(4)

d

)
.

(25)

As seen in (23) and (24), the solutions λd(t) and pd(t) depend on the specified outputs rd(t)

and their time derivatives up to the second order (actually, they do not depend here on ṙd).
Further differentiation with respect to time of the algebraic equations of governing DAEs
reported in (21), combined with (extremely complex) algebraic manipulations, would then
lead, firstly (after the first time-differentiation), to the algebraic expression (25)2 for vd(t),
and then (after the second time-differentiation), to the algebraic expression (25)3 for the
required control inputs ud(t). The latter solution will depend on the specified outputs and
their time derivatives up to α = 4 order, and α is by one smaller than the index (i = 5) of
the initial governing DAEs reported in (14). The flatness-based solutions were demonstrated
in [16] for a 2D overhead crane model, and in [17] for a 3D cable suspension manipulator.

The flatness-based solutions of (25), especially those for vd(t) and ud(t), are featured by
enormous complexity, and, as such, they may be considered as impractical in applications.
Using the governing index-three DAEs in the form of (19), and solving them numerically is
much more straightforward and applicable. The solution methodology proposed in [5] can
directly be applied to the present DAEs. The numerical code is based on Euler backward
differentiation scheme, in which the time derivatives ṗ and v̇ are approximated with their
backward differences, respectively, (pk+1 − pk)/
t and (vk+1 − vk)/
t , where 
t is the
integration time step. Given pk and vk at time tk(uk and λk are not involved), the values
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pk+1,vk+1,uk+1 and λk+1 at time tk+1 = tk + 
t can be determined as a solution to the
following nonlinear algebraic equations:

pk+1 − pk − 
tvk+1 = 0

H(pk+1, tk+1)(vk+1 − vk) + 
th(pk+1,vk+1,uk+1, tk+1) = 0

s(pk+1, λk+1, tk+1) = 0

c(pk+1,vk+1,uk+1, λk+1, tk+1) = 0

Φ(pk+1, tk+1) = 0

(26)

and in this way the solution is advanced from tk to tk+1 = tk + 
t . As motivated in [5, 12],
the numerical solutions for pd(t) and λd(t) obtained from (26), which corresponds to the
analytical solutions of (23) and (24), are exact with numerical accuracy. The rough backward
difference scheme influences only the accuracy of determination of vd(t) and ud(t). The
truncation errors do not accumulate in time, however, as the approximations for vk+1 and
uk+1 at time tk+1 are always based on the numerically exact values pk,pk+1, and λk+1. The
above simple (and effective) scheme leads thus to stable solutions. More details concerned
with the proposed solution procedure can be found in [5, 11].

5 Case study

The rotary crane data used in calculations were: Jb = 30000 kg m2, mt = 50 kg,
ml = 500 kg, Jw = 0.1 kg m2, rw = 0.1 m, and the damping coefficients Dϕ,Ds, and Dl

were all set to zero for simplicity. The specified trajectory of the load is illustrated in
Fig. 3, with the initial load position at (14 m,0 m,−15 m) and the destination point in
(0 m,−5 m,−3 m). In order to avoid the obstacle seen in the figure as well as not to trans-
port the load too close to the tower, the load motion was initially modeled in cylindrical
coordinates γ = [r φ z]T , i.e.,

γd(t) = γ0 + (γf − γ0)s(t); γ̇d(t) = (γf − γ0)ṡ(t); γ̈d(t) = (γf − γ0)s̈(t) (27)

where γ0 = [r0 φ0 z0]T and γf = [rf φf zf]T are the initial and destination load positions in
these coordinates, r0 = 15 m, rf = 5 m, φ0 = 0 deg, φf = 270 deg, z0 = −15 m and zf =
−3 m. The load motion specification introduced in (11), rd(t) = [xd(t) yd(t) zd(t)]T , and
the first and the second derivatives with respect to time of rd(t), are then determined as:

rd(t) =
⎡

⎣
xd(t)

yd(t)

zd(t)

⎤

⎦ =
⎡

⎣
rd cosϕd

rd sinϕd

zd

⎤

⎦

ṙd(t) =
⎡

⎣
ẋd(t)

ẏd(t)

żd(t)

⎤

⎦ =
⎡

⎣
cosϕd −rd sinϕd 0
sinϕd rd cosϕd 0

0 0 1

⎤

⎦

⎡

⎣
ṙd

ϕ̇d

żd

⎤

⎦

r̈d(t) =
⎡

⎣
ẍd(t)

ÿd(t)

z̈d(t)

⎤

⎦ =
⎡

⎣
cosϕd −rd sinϕd 0
sinϕd rd cosϕd 0

0 0 1

⎤

⎦

⎡

⎣
r̈d

ϕ̈d

z̈d

⎤

⎦ +
⎡

⎣
−2ṙdϕ̇d sinϕd − rdϕ̇

2
d cosϕd

2ṙdϕ̇d cosϕd + rdϕ̇
2
d sinϕd

0

⎤

⎦

(28)

Following the idea posed in [18], the reference function s(t) was designed so that to divide
the maneuver into the acceleration (I ), steady velocity (II), and deceleration (III) phases.
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Fig. 3 The specified trajectory
of the load

For τ = tf − t0 and the same acceleration and deceleration time τ0, the three-stage reference
function s(t) is

sI (t) = 1

τ − τ0

(
− 5t8

2τ 7
0

+ 10t7

τ 6
0

− 14t6

τ 5
0

+ 7t5

τ 4
0

)

sII(t) = 1

τ − τ0

(
t − τ0

2

)

sIII(t) = 1 + 1

τ − τ0

(
5(τ − t)8

2τ 7
0

− 10(τ − t)7

τ 6
0

+ 14(τ − t)6

τ 5
0

− 7(τ − t)5

τ 4
0

)

(29)

Given τ = 40 s and τ0 = 10 s for the present maneuver, the reference function s(t) of (29),
and its first and second time derivatives are as in Fig. 4.

Selected results of the inverse dynamics simulation, obtained as the solution to the gov-
erning DAEs represented in (21) by using the integration scheme of (24) for 
t = 0.1 s,
are seen in Fig. 5. The execution of the load specified motion requires adequate changes
in the bridge rotation, the trolley position on the bridge and the rope length, respectively,
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Fig. 4 The reference function
and its time derivatives

Fig. 5 Motion and control of the robot executing the load specified motion
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ϕd(t), sd(t), and ld(t), enforced by the appropriate control reactions Mbd(t),Fd(t), and
Mwd(t). The variations of the tensile force in the rope λd(t) are also obtained. The swing
angles θ1 and θ2, defined in Fig. 1a, were then calculated from the solution pd(t) and the
load motion specification rd(t).

6 Conclusion

The advantages in modeling and simulation of cranes using the dependent coordinates over
the independent variable formulation are the following: (•) both the dynamic equations of
motion and the servo-constraint equations are considerably simpler, resulting in much sim-
pler governing equations of the inverse simulation problem, (•) the actual number of the
governing equations is smaller, 3m + 1 compared to 5m − 2, and (•) more physical insight
into the problems solved is brought by directly involving the tensile force in the rope as one
of the variables of the analysis, which is not the case of the independent variable formula-
tion. Evidently, the numerical simulations based on the dependent and independent variable
formulations lead to exactly the same results.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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