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Abstract
This article addresses the thermomechanical thermal buckling and free vibration response
of a novel smart sandwich nanoplate based on a sinusoidal higher-order shear deforma-
tion theory (SHSDT) with a stretching effect. In the proposed sandwich nanoplate, an aux-
etic core layer with a negative Poisson’s ratio made of Ti-6Al-4V is sandwiched between
Ti-6Al-4V rim layers and magneto-electro-elastic (MEE) face layers. The MEE face lay-
ers are homogenous volumetric mixtures of cobalt ferrite (CoFe2O4) and barium titanate
(BaTiO3). The mechanical and thermal material properties of the auxetic core and MEE face
layers are temperature-dependent. Using Hamilton’s principle, governing equations are con-
structed. To characterize the size-dependent behavior of the nanoplate, governing equations
are adapted with the nonlocal strain gradient theory (NSGT). By applying the principles of
Navier’s technique, closed-form solutions are obtained. Parametric simulations are carried
out to examine the effects of auxetic core parameters, temperature-dependent material prop-
erties, nonlocal parameters, electric, magnetic, and thermal loads on the free vibration and
thermal buckling behavior of the nanoplate. According to the simulation results, it is de-
termined that the auxetic core parameters, temperature-dependent material properties, and
nonlocal factors significantly affect the thermomechanical behavior of the nanoplate. The
outcomes of this investigation are expected to contribute to the advancement of smart nano-
electromechanical systems, transducers, and nanosensors characterized by lightweight, ex-
ceptional structural integrity and temperature sensitivity. Also, the auxetic core with a nega-
tive Poisson’s ratio provides a metamaterial feature, and thanks to this feature, the proposed
model has the potential to be used as an invisibility technology in sonar and radar-hiding
applications.
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1 Introduction

Auxetic structures characterized by a negative Poisson’s ratio, a type of metamaterial, have
found widespread use in structural applications due to their distinctive mechanical attributes
such as ultra-lightweight, high strength-to-weight ratio, acoustic dampening, and enhanced
energy absorption capacities (Nouraei and Zamani 2023). Under uniaxial compression con-
ditions, auxetic structures undergo transverse contraction, while under uniaxial tension,
they undergo transverse expansion (Ren et al. 2018). These unique characteristics of aux-
etic metamaterials make them suitable for potential uses including smart sensors, nano-
electromechanical systems (NEMs), sonar systems, smart dampers, and acoustic isolators.
The auxetic structures are lightweight and have a high shear modulus, but their mechanical
performance is constrained by their low stiffness. In order to enhance the mechanical proper-
ties of auxetic structures, it has become essential to sandwich lightweight auxetic core layer
between face layers that are more stiff. As face layers, piezoelectric plates, magneto-electro-
elastic plates, and composite plates reinforced with carbon nanotubes (CNTs) or graphene
platelets (GPLs) are frequently used (Fatih Pehlivan and Aktas 2024; Mahapatra et al. 2024;
Nouraei and Zamani 2023). The integration of auxetic, honeycomb, and foam structures has
been a subject of interest in various studies, shedding light on different aspects of their me-
chanical behavior and performance (Guo and Zhang 2023; Tian 2023; Xia et al. 2023; Zhang
et al. 2022). Pawlus (2022) investigated the static stability of composite annular plates with
auxetic properties, highlighting the composition of three-layered plates with auxetic fac-
ings and a soft foam core. This study provides insights into the structural behavior of plates
with auxetic cores, offering valuable information for understanding the static performance
of such composite structures. Janus-Michalska and Jasinska (2017) conducted a compar-
ative study of the bending stiffness of sandwich plates with cellular cores, including those
with cellular auxetic cores. By considering the bending behavior of plates with different core
types, this study contributes to understanding the mechanical response of sandwich plates
with auxetic cores, providing valuable insights into their structural performance. Further-
more, Mahesh (2023) delved into the integrated effects of auxetic and pyro-coupling on the
nonlinear static behavior of MEE sandwich plates subjected to multifield interactive loads.
Zhang et al. (2023b) presented an experimental investigation on the application of a carbon
fiber-reinforced plastic plate to externally attach an advanced composite beam. While this
study focused on MEE plates, it underscores the impact of blast loads on the dynamic be-
havior of plates with auxetic cores, offering valuable insights into the potential applications
and performance of auxetic cores in sandwich structures under dynamic loading conditions.

Sandwich structures, a class of composite materials, have gained significant attention
due to their versatile application in various engineering fields. These structures typically
consist of two thin, stiff face sheets separated by a lightweight core material, forming a high-
strength and lightweight configuration. The design of sandwich structures presents a unique
challenge in load introduction, as highlighted by Janus-Michalska and Jasinska (2017), em-
phasizing the need for innovative concepts to efficiently distribute and manage loads within
the structure. The mechanical behavior and stability of sandwich structures have been the
focus of extensive research, with studies such as (Arefi et al. 2020) providing insights into
the size-dependent free vibration analysis and stability of these structures. Additionally,
the introduction of novel core materials, as demonstrated by Iftimiciuc et al. (2023), has
further expanded the design possibilities and performance capabilities of sandwich struc-
tures. The unique properties of sandwich structures have led to diverse applications, ranging
from flexible energy harvesters (Fu et al. 2020) to aerospace components (Joubaneh et al.
2018). Furthermore, the introduction of advanced materials and manufacturing techniques,



Mechanics of Time-Dependent Materials

as explored by Wang et al. (2022) and Khan et al. (2017), has significantly enhanced the
performance and functionality of sandwich structures. The introduction of innovative mate-
rials, such as graphene oxide and bismuth ferrite, has further expanded the capabilities of
sandwich structures, as evidenced by studies from Yin et al. (2020) and Wu et al. (2011).
In summary, sandwich structures represent a crucial area of research and development, with
ongoing efforts focused on enhancing their mechanical properties, introducing novel mate-
rials, and exploring diverse applications across engineering disciplines (Sayyad and Avhad
2022; Shokravi and Jalili 2019; Tran et al. 2023; Wang et al. 2021).

MEE materials have gained significant attention due to their ability to convert one form of
energy to another, their simple geometry, and their economic design, making them useful in
smart or intelligent structure applications (Yildirim and Simsek 2022). These materials are
composed of piezoelectric and piezomagnetic phases, and they have found vast applications
in different industries owing to their predictable and controllable ability to couple differ-
ent phases (Moshtagh et al. 2019). The mechanics of MEE composites have been exten-
sively studied over the past few decades, with research focusing on various aspects such as
wave propagation, vibration control, and free vibration analysis (Li et al. 2021; Vinyas et al.
2018; Zhang et al. 2020b; Zhou et al. 2020). Additionally, the development of new mod-
els, such as the microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate
model, has contributed to a deeper understanding of the behavior of MEE materials (Qu et al.
2020). Furthermore, MEE materials have been investigated for their potential applications
in nanotechnology, with studies focusing on the vibration performance evaluation of smart
magneto-electro-elastic nanobeams and the buckling analysis of magneto-electro-thermo-
elastic cylindrical nanoshells (Gui and Li 2023; Liu and Lv 2019). The unique properties
of MEE materials have also led to the development of new models, such as the transversely
isotropic magneto-electro-elastic Timoshenko beam model, which incorporates microstruc-
ture and foundation effects, providing valuable insights for the design of MEE nanodevices
(Wang and Jin 2022; Zhang et al. 2020a).

MEE materials at the microscale and nanoscale have gained significant attention due to
their unique properties and potential applications. MEE materials exhibit coupling of me-
chanical, electrical, and magnetic fields, providing excellent magneto-electrical coupling at
smaller scales (Ebrahimi and Barati 2017a). The smaller size and larger surface-to-volume
ratio of MEE nanoscale structures have been noted to offer enhanced magneto-electrical
coupling, making them suitable for applications in nano-electromechanical systems (NEMs)
(Ebrahimi and Barati 2017a). Additionally, the material surface has been shown to have a
marked effect on the mechanical behavior of MEE structures at the nanoscale (Wu et al.
2015). Classical theories are scale-free and fail to account for small scales. Moreover, these
methods cannot accurately estimate the mechanical properties of nanostructures. The in-
vestigation of small-scale nonlocal impacts and size effects has been a key area of study
for almost half a century, primarily through the nonlocal elasticity theory (NET) (Eringen
and Wegner 2003; Eringen 1983a, 1972a,b; Eringen and Edelen 1972; Eringen and Suhubi
1964). Within this theory, the nonlocal parameter e0a is precisely described. Both practical
and theoretical research has demonstrated that the structure experiences a softening effect
that is contingent upon the magnitude of this parameter. Subsequently, the impact of material
size on microbeams was investigated using the strain gradient elasticity theory (SGT) (Kong
et al. 2009; Wang et al. 2010). SGT (Kong et al. 2009, 2008a; Mindlin 1964), designed for
small-scale systems, indicates the presence of a nonlocal characteristic that results in the
substance becoming stiffer rather than softer. The property of being nonlocal is commonly
known as the material size parameter. The modified coupled stress theory (MCST) was in-
troduced with the advancement of the SGT (Kong et al. 2008b; Ma et al. 2008). MCST
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(Şimşek and Reddy 2013; Yang et al. 2002) is explained by variables similar to the size
parameter with an equivalent hardening influence. Due to scaling inconsistencies between
nonlocal elasticity and strain gradient theories, a novel approach capable of capturing the
two softening and hardening stiffness size impacts is required (Alghanmi 2023). Finally
NSGT, which combines Eringen’s nonlocal theory with the strain gradient elasticity theory,
was developed (Alghanmi 2022; Ebrahimi and Barati 2017b; Li et al. 2015; Lim et al. 2015).
In recent years, this theory has grown increasingly popular. Research has delved into various
aspects of MEE materials at the micro and nanoscales, including wave propagation analy-
sis, bending behavior, buckling analysis, and the development of exact solutions for different
configurations (Hong et al. 2022; Pan 2001; Pan and Han 2005). Zhang et al. (2023a) showed
unprecedented mechanical and microstructural features of advanced composites that include
nanoparticles. Furthermore, the effective properties of MEE composites and the impact of
interfacial cracks on their properties were investigated (Bhangale and Ganesan 2006; Huang
et al. 2009). The potential applications of MEE materials in transducers, sensors, and ac-
tuators were highlighted, emphasizing their significance in various technological domains
(Huang et al. 2009). Ferroelectric artificial application for high-performance neuromorphic
computing was presented by Zhao et al. (2024), and tunable conductivity and ferromag-
netism was studied by Guo et al. (2024). The interdisciplinary nature of this research, span-
ning physics, materials science, and engineering, underscores the significance of MEE ma-
terials in advancing technological innovation and addressing diverse engineering challenges.
The development of novel formulations and exact solutions has enabled the analysis of MEE
materials at the micro and nanoscales, contributing to the understanding of their mechanical
behavior and potential applications (Pan and Han 2005; Yakhno 2018). In conclusion, ex-
tensive research on micro and nanoscale MEE materials has provided valuable insights into
their behavior, properties, and potential applications. The unique coupling of mechanical,
electrical, and magnetic fields in these materials has opened new avenues for technological
advancements and the development of tailor-made materials with promising applications
(Tiwari et al. 2021).

Extensive research has been conducted on functionally graded structures and function-
ally graded reinforced composite structures. These studies have particularly focused on the
application of higher-order shear deformation theories, as evidenced by the literature (Al-
ghanmi and Zenkour 2021; Daikh et al. 2023a,b, 2022; Koç et al. 2023; Melaibari et al.
2022; Özmen 2023; Saini and Pradyumna 2022; Yıldız and Esen 2023).

When employed at high temperature, MEE materials exhibit enhanced pyroelectric and
pyromagnetic interactions. In addition, the mechanical, electrical, and magnetic character-
istics of composite structures can change significantly with temperature. For this reason,
it is essential to consider the temperature-dependent material attributes for the mechani-
cal analysis of systems operated at high temperatures. The static reaction of a multilayer
FG-MEE plate in a thermal environment was investigated by Vinyas and Kattimani (2017)
for various temperature variations and boundary conditions utilizing the FEM. Addition-
ally, Vinyas and Kattimani performed static deflection analysis of an FG-MEE structure
using FEM under hygrothermal effects. Ebrahimi and Barati (2016a) used the HSDT to
assess the impacts of distinct temperature distributions on the frequency performance of
magneto-electro-thermo-elastic functionally graded (METE-FG) nanostructures. Ebrahimi
and Barati (2016b) investigated the thermo-electro-mechanical buckling behavior of func-
tionally graded piezoelectric (FGP) nanobeams with HSDT. Wang et al. (2023) conducted an
investigation on the thermal properties of high-entropy RE-disilicates, which were regulated
through high throughput composition design and optimization.

Having conducted an extensive review of the existing literature, it was concluded that
the five-layer smart sandwich nanoplate with an auxetic core and MEE face layers is a
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novel nanostructure that has not been previously investigated, particularly in relation to the
temperature-dependent properties of the MEE face layers (BaTiO3 and CoFe2O4) and aux-
etic core layer. Thus, the temperature dependent free vibration and thermal buckling analysis
of the presented sandwich smart nanoplate with a metamaterial property will be presented
for the first time. Models developed by neglecting the auxetic core and MEE face layers’s
actual temperature behavior will produce inaccurate findings in practice because they do not
accurately represent the physical behavior of the presented sandwich structure. Therefore,
with this study, a model in which the thermomechanical properties of these materials are
obtained through rigorous simulation studies has been created and presented to the reader.
Auxetic core has a negative Poisson’s ratio, and it can be adjusted with auxetic core param-
eters. This feature gives smart nanoplates additional metamaterial properties, and thanks to
this feature, they provide potential for use in hiding applications from sonar and radar waves.
Additionally, nano electromechanical systems that will operate in high noise environments
have the potential to be used in sound or noise insulation applications. Moreover, they can
be used in military applications such as impact dampening, target confusion, and personal
protective equipment. This research aims to help understand the effect of auxetic core pa-
rameters (inclination angle, length of the horizontal wall, length of the inclined cell wall, and
thickness of the cell wall), temperature-dependent material properties, nonlocal parameters,
electric, magnetic, and thermal loads on the thermal buckling and free vibration character-
istics of sandwich plate systems and to gain more insight into their possible applications in
nanotechnology.

2 Theory and formulation

2.1 Summary of the suggested sandwich nanoplate

With this study, we consider a smart sandwich nanoplate with two MEE layers, an auxetic
core layer, and two rim layers, which has length a, width b, and thickness h as illustrated in
Fig. 1. x and y are in-plane axes located at the middle layer of the auxetic core, and z is the
direction that extends along the thickness of the plate. hs , hr , and hp are the thicknesses of
the core layer, rim layer, and MEE layer, respectively.

The auxetic core layer with a negative Poisson’s ratio is sandwiched between two MEE
nanoplate layers and two metal rim layers. The materials used for the auxetic core and

Fig. 1 An auxetic core sandwich nanoplate composed of thermo-magneto-electro-elastic face layers
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rim layers are biocompatible material Ti-6Al-4V. In addition, CoFe2O4 and BaTiO3 are
considered to be homogeneously distributed in the MEE lower and upper face plates. Also,
an external electrical voltage and magnetic field are applied through the thickness of the
MEE layers, causing these layers to expand and contract along the z-axis.

2.2 Auxetic core

The core layer of the proposed sandwich plate is made of an auxetic material with a negative
Poisson’s ratio. The auxetic core layer consists of honeycomb cells placed in a systematic
way, where θ , d , l, and t represent the angle of inclination, the length of the horizontal
wall, the length of the inclined cell wall, and the thickness of the cell wall, respectively. The
material properties such as Young modulus (E), shear modulus (G), and density (ρ) of the
auxetic core can be expressed using the following equations (Li and Yuan 2022; Nouraei
and Zamani 2023):

EC
11 = ET i

[
(β1 − sin θ)β3

3[(
β1sec2 (θ) + tan2 (θ)

)
β2

3 + 1
]
cos3 (θ)

]
(1)

EC
22 = ET i

[
β3

3(
β2

3 + tan2 (θ)
)
(cos (θ)β1 − cos (θ) sin (θ))

]
(2)

GC
12 = GT i

[
β3

3(
2β2

1 + β1
)

cos θ

]
(3)

GC
13 = GT i

[
2sin2 (θ) + β1

2 (β1 − sin (θ))
+ − sin (θ) + β1

2β1 + 1

]
β3

2 cos (θ)
(4)

GC
23 = GT i

[
β3 cos (θ)

β1 − sin (θ)

]
(5)

ρC = ρT i

[
(2 + β1)β3

2 (β1 − sin (θ)) cos (θ)

]
, (6)

in which β1 = d/l and β3 = t/ l. Also, the superscript c and subscript T i represent the
core layer and titanium, respectively. Furthermore, Poisson’s ratio (v) can be derived from
the geometric parameters in the form that follows (Li and Yuan 2022):

vC
12 = (sin (θ) − β1) (sin (θ))

(
1 − β2

3

)
cos2 (θ)

[
β2

3

(
β1sec2 (θ) + tan2 (θ)

)+ 1
] (7)

vC
21 =

(
β2

3 − 1
)

sin (θ)

(β1 − sin (θ))
(
β2

3 + tan2 (θ)
) . (8)

For the thermal expansion coefficients of the auxetic core, αC
11 and αC

22 can be described
by (Hoang et al. 2023)

αC
11 = αT i

β3 cos (θ)

β1 + sin (θ)
, (9)

αC
22 = αT i

β3 (β1 + sin (θ))

(2β1 + 1) cos (θ)
. (10)
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2.3 Magneto-electro-elastic face layers

The mechanical, electrical, thermal, and magnetic properties of the face plates vary uni-
formly with volumetric ratio of CoFe2O4 and BaTiO3 along the z-axis. Using the rule of
mixture, the effective material parameters of MEE face layers can be defined as follows
(Amini et al. 2015):

P
lp

eff (z) = Cf PC + Bf PB, h1<z<h2,

P
up

eff (z) = Cf PC + Bf PB, h5<z<h6,

Cf + Bf = 1,

(11)

where Peff (z) defines the effective material parameters, including the modulus of elasticity
E, mass density ρ, Poisson’s ratio v, piezoelectric stress coefficient e, and dielectric constant
ε. The length from the neutral plane is represented by z; Cf and Bf are the volumetric ratios
of CoFe2O4 and BaTiO3, respectively; PC and PB define the properties of CoFe2O4 and
BaTiO3 for the upper and lower face layers, respectively; and superscripts up and lp are the
upper MEE plate and lower MEE plate, respectively.

Both the host structure and the face layers have temperature-dependent material charac-
teristics that can be described by a nonlinear temperature equation, involving the modulus
of elasticity E, Poisson’s ratio ν, thermal conductivity ψ , and thermal expansion κ (Reddy
and Chin 1998; Touloukian 1967, 1966):

P = P0

(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3
)
. (12)

Here, P represents any temperature-dependent material coefficient. Table 1 lists the prop-
erties of CoFe2O4 and BaTiO3 as a function of temperature, whereas Table 2 lists the prop-
erties of Ti-6Al-4V as a function of temperature. The temperature-dependent thermome-
chanical coefficients given in Table 1 for CoFe2O4 and BaTiO3 were obtained as a result of
partial experimental studies in the literature (Reddy and Chin 1998; Touloukian 1967), and
from the analysis and simulations conducted and developed in this study.

2.4 Temperature increment on the sandwich nanoplate

In this subsection, we present the relevant formulations for three different types of temper-
ature rises throughout the nanoplate: uniform (UTR), linear (LTR), and nonlinear (NLTR).
A nanoplate with an initial temperature of T0 = 300K is consistently increased to its peak
temperature T with a uniform temperature rise (UTR) using the following equation (Özmen
and Esen 2023):


T = T − T0. (13)

The temperature of a horizontal surface that extends in the z-axis with the temperatures of
its lower and upper surfaces Tb and Tt , respectively, can be calculated as follows, assuming
that the temperature rises linearly (LTR) from Tb to Tt through the thicknesses (Kiani and
Eslami 2013):

T (z) = Tb + (Tt − Tb)

(
h + 2z

2h

)
. (14)
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Table 1 Temperature-dependent material coefficients for CoFe2O4 and BaTiO3 (Koç et al. 2023)

Material Properties P−1 P0 P1 P2 P3

CoFe2O4 C11 (Pa) 0 298.87 × 109 −1.552 × 10−4 6.125 × 109 −9.0 × 10−11

C55 (Pa) 0 47.33 × 109 −1.552 × 10−4 6.125 × 109 −9.0 × 10−11

υ 0 0.3 0 0 0

α
(

1K−1
)

0 7.5 × 10−6 −3.01 × 10−4 4.02 × 10−6 −1.01 × 10−9

κ (W/mK) 0 4.7030 −0.0011 1.6612 × 10−6 −9.9670 × 10−9

ρ (kg/m3) 0 5300 0 0 0

BaTiO3 C11 (Pa) 0 174 × 109 −1.552 × 10−4 6.125 × 10−9 −9.0 × 10−11

C55 (Pa) 0 44.93 × 109 −1.552 × 10−4 6.125 × 10−9 −9.0 × 10−11

υ 0 0.30 0 0 0

α
(

1K−1
)

0 10 × 10−6 −3.0 × 10−4 4.0 × 10−6 −1.0 × 10−9

κ (W/mK) 0 3.7624 −8.50521 × 10−4 1.32894ex10−6 −7.97363 × 10−10

ρ (kg/m3) 0 5800 0 0 0

Table 2 Temperature-dependent material coefficients of Ti-6Al-4V (Reddy and Chin 1998)

Material Properties P−1 P0 P1 P2 P3

Ti-6Al-4V E (Pa) 0 122.56 × 109 −4.586 × 10−4 0 0

υ 0 0.2884 1.121 × 10−4 0 0

α
(

1K−1
)

0 7.5788 × 10−6 6.638 × 10−4 −3.147 × 10−6 0

κ (W/mK) 0 1 1.704 × 10−2 0 0

ρ (kg/m3) 0 4512 0 0 0

In the presence of a nonlinear temperature increase (NLTR) across the thickness direction
of the nanoplates, the one-dimensional heat transfer problem given below can be addressed
with specific temperature boundary limits to figure out the upper and lower surface temper-
atures (Tt and Tb) of the plate (Zhang 2014).

− d

dz

(
κ (z)

dT

dz

)
= 0, T

(
h

2

)
= Tt , T

(
−h

2

)
= Tb. (15a)

Here, κ (z) denotes the thermal conductivity coefficient. For a given boundary condition,
the temperature of any point through the thickness z-axis can be calculated as follows (Esen
and Özmen 2022a):

T (z) = Tb + (Tt − Tb)∫ h
2

− h
2

1
κ(z)

d (z)

∫ z

− h
2

κ (z) dz. (15b)

2.5 Application of nonlocal strain gradient theory to MEE sandwich nanoplates

According to Eringe’s work (Eringen 1983b), the stress at any place on the structure is a
function of the stresses at all points in the body. In this theory, the stiffness of the body de-
pends on the strength of the nonlocal and material scale effects. In proportion to the strength
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of the nonlocal effect, the structure acts in a manner that is less rigid than traditional forms.
On the other hand, the SGT presumes that just the material scale effect, which contributes
to an increase in the object’s stiffness, is taken into consideration. In conclusion, Eringen’s
NETs and SGTs illustrate two separate material properties. The NSGT models nonlocal ef-
fects by combining these two distinct effects into a single effect (Li et al. 2016; Lim et al.
2015). In the NSGT, the stress can be calculated as (Lim et al. 2015)

σ =
∫

V

α0(x
′
,x, e0a)C : ε′

(
x

′)
dV ′, (16)

σ (h) = l2
m

∫
V

α1(x
′
,x, e1a)C : ∇ε′(x

′
)dV ′, (17)

where e0a and e1a represent the nonlocality constants with e1 and e0 material coefficients,
and α0 and α1 are the kernel and higher-order nonlocal functions, respectively. C and ∇
represent the fourth-order material coefficient and Laplacian operator (∇ = ∂/∂x + ∂/∂y) ,
respectively. ∇ε and ε are the strain tensor and the strain gradient, respectively. lm is the
material length size factor. The stress tensor can be expressed as follows based on the NSGT
(Farajpour and Rastgoo 2017; Lim et al. 2015):

σ t = σ − ∇2σ (1). (18)

By using the notations given in Ref. (Eringen 1983a) for α1(x
′
,x, e1a) and α0(x

′
,x,

e0a), and assuming e0 = e1 = e0a, utilizing the linear differentiation operator to Eq. (18)
gives [

1 − (e0a)2∇2
]
σ = C : ε, (19)

[
1 − (e0a)2∇2

]
σ (1) = l2

mC : ∇ε. (20)

Using Eqs. (18)–(20), the total stress can be obtained as follows:[
1 − (e0a)2∇2

]
σ = C : ε − l2

m∇C : ∇ε. (21)

The stress–strain relations of the plate structure are defined by (Li et al. 2016; Lim et al.
2015) [

1 − (e0a)2∇2
]
σxx = [

1 − l2
m∇2

]
E(z)εxx[

1 − (e0a)2∇2
]
σyy = [

1 − l2
m∇2

]
E(z)εyy[

1 − (e0a)2∇2
]
σxz = [

1 − l2
m∇2

]
G(z)γxz[

1 − (e0a)2∇2
]
σyz = [

1 − l2
m∇2

]
G(z)γyz

(22)

where σxx , σyy and εxx , εyy , represent the stresses and strains, respectively. Additionally,
σxz, σyz, γxz, and γyz represent the shear stresses and strains, respectively. E (z) is the Young
modulus, while G (z) is the shear modulus. As a result, taking into account the MEE char-
acteristics of the NGST nanostructure under thermal effects may be expressed as follows
(Eringen 1983a):

σ (x, y, z)
(
1 − e0a

2∇2
)= (

1 − l2
m∇2

) [
C (z)ε − e (z)E − q (z)H

]− C (z)α (z)
T
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D (x, y, z)
(
1 − e0a

2∇2
)= (

1 − l2
m∇2

) [
eT (z)ε − ε (z)E + g (z)H

]
(23)

B (x, y, z)
(
1 − e0a

2∇2
)= (

1 − l2
m∇2

) [
qT (z)ε + g (z)E + μ (z)H

]
,

where e, q , ε, g, and μ represent the piezoelectric, magneto strictive, dielectric, magneto-
electric, and magnetic permeability constants, respectively; E, H , D, and B denote the
electrical field, magnetic field, electrical displacement, and magnetic induction, respec-
tively. The mechanical, electrical, magnetic, and thermal material properties of CoFe2O4

and BaTiO3 are presented in Table 3.

2.6 Displacement fields and strains

The sinusoidal high-order shear deformation theory was applied to the five-layer sandwich
nanoplate presented in this study under the following assumptions (Żur et al. 2020):

1. Because the displacements are small compared to the thickness of the plate, the strains
involved are also very small.

2. The in-plane displacements u and v comprise extension u0, bending wb , and shear ws

components, respectively.
3. The transverse strains (εxz, εyz, εzz) and stresses (σxz, σyz, σzz) are considered as a result

of the transverse displacement w, which includes components of bending wb , shear ws ,
and stretching wst .

4. Including the shear components (w transverse displacements and wst in v, u in-plane)
leads to a rise in the trigonometric variation of the shear stresses (σxz, σyz) and strains
(εxz, εyz) throughout the thickness of the plate. Consequently, the plate’s top and bottom
faces experience no shear stresses (σxz, σyz).

By using SHSDT, the nanoplate’s displacement field is described as follows (Żur et al.
2020):

u (x, y, z, t) = u0 (x, y, t) − z
∂wb (x, y, t)

∂x
− f (z)

∂ws (x, y, t)

∂x
, (24a)

v (x, y, z, t) = v0 (x, y, t) − z
∂wb (x, y, t)

∂y
− f (z)

∂ws (x, y, t)

∂y
, (24b)

w (x,y, z, t) = wb (x, y, t) + ws (x, y, t) + wst (x, y, z, t) , (24c)

where u, v, and w are the movements of any point in the x, y, and z axes, respectively. wb ,
ws , and wst represent bending, shear, and stretching, respectively. Additionally, u0, v0, and
wb are the displacements of the mid-plane. Here, f (z), wst , and g (z) are defined as (Tahir
et al. 2021)

f (z) = z −
2z sin

(
z2

h2

)
2 sinh

(
1
4

)+ cosh
(

1
4

) , (25)

wst (x, y, z, t) = g (z)∅ (x, y, t) , (26)

g (z) = df (z)

dz
. (27)
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Table 3 Electromechanical material properties of CoFe2O4 and BaTiO3 (Esen and Özmen 2022b)

Properties CoFe2O4 BaTiO3

Elastic constants (GPa)

C11 = C22 286 166

C33 269.5 162

C12 173 77

C13 = C23 170.5 78

C44 = C55 45.3 43

C66 56.5 44.5

Piezoelectric constants (C/m2)

e31 = e32 0 −4.4

e15 = e24 0 –

e33 0 −18.6

Dielectric constants (nF/m)

ξ11 = ξ22 0.08 11.2

ξ33 0.093 12.6

Magnetic constants (N/A.m)

q31 = q32 580.3 0

q33 699.7 0

Magnetic permeability (10−6 Ns2/C)

χ11 = χ22 590 5

χ33 157 10

Pyroelectric constant (10−7 C/m2K)

p11 = p22 0 0

p33 0 −11.4

Pyromagnetic constant (10−5 C/m2K)

λ11 = λ22 0 0

λ33 −36.2 0

Thermal expansion coefficient (10−6K−1)

α11 = α22 10 15.8

Density (kg/m3)

ρ 5300 5800

The displacement field in Eq. (24a)–(24c) is related to the strain-displacement interac-
tions, which have the following general form (Żur et al. 2020):⎧⎨

⎩
εxx

εyy

2εxy

⎫⎬
⎭=

⎧⎨
⎩

ε(0)
xx

ε(o)
yy

γ (0)
xy

⎫⎬
⎭+ z

⎧⎨
⎩

ε(b)
xx

ε(b)
yy

γ (s)
xy

⎫⎬
⎭+ f (z)

⎧⎨
⎩

ε(s)
xx

ε(s)
yy

γ (s)
xy

⎫⎬
⎭ (28a)

{
2εxz

2εyz

}
= g(z)

{
γ (0)

xz

γ (0)
yz

}
(28b)
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εzz = g′(z)ε(0)
zz . (28c)

The spatial derivative of g(z) with respect to z is represented here by g′(z). The specific
strain elements can be written as follows:

⎧⎨
⎩

ε(0)
xx

ε(0)
yy

γ (0)
xy

⎫⎬
⎭=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂vo

∂x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎨
⎩

ε(b)
xx

ε(b)
yy

γ (b)
xy

⎫⎬
⎭=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂2wb

∂x2

−∂2wb

∂y2

−2
∂2wb

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(29a)

⎧⎨
⎩

ε(s)
xx

ε(s)
yy

γ (s)
xy

⎫⎬
⎭=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂2ws

∂x2

−∂2ws

∂y2

−2
∂2ws

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

{
γ (0)

xz

γ (o)
yz

}
=

⎧⎪⎨
⎪⎩
(
1 − f ′ (z)

) ∂ws

∂x
+ g(z)

∂∅
∂x(

1 − f ′ (z)
) ∂ws

∂y
+ g(z)

∂∅
∂y

⎫⎪⎬
⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

g(z)

(
∂ws

∂x
+ ∂∅

∂x

)

g(z)

(
∂ws

∂y
+ ∂∅

∂y

)
⎫⎪⎪⎬
⎪⎪⎭ .

(29b)

2.7 Constitutive equations

In this study, an auxetic core is considered to be sandwiched between orthotropic piezomag-
netic face layers and isotropic rim layers. Using the differential form of Eringen’s consti-
tutive relations, we can formulate the following definitions of the auxetic core (s) and rim
layer (r) (Żur et al. 2020):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L (σxx)

L
(
σyy

)
L (σzz)

L
(
σyz

)
L (σxz)

L
(
σxy

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

s,r

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

s,r ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (30)

Here, Cn
ij represents the elastic constant and can be calculated as follows:

C
s,r
11 = 1 − v

v
λ(z) (31a)

C
s,r
12 = λ(z) (31b)

C
s,r
66 = μ(z) (31c)

C
s,r
11 = C

s,r
22 = C

s,r
33 (31d)

C
s,r
12 = C

s,r
13 = C

s,r
23 (31e)

C
s,r
44 = C

s,r
55 = C

s,r
66 , (31f)
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where λ(z) and μ(z) are the Lamé constants
(
λ (z) = vE(z)

(1+v)(1−2v)
, μ (z) = E(z)

2(1+v)

)
.

The MEE face layer (p) constitutive relations are provided by Pan and Heyliger (2002)
using nonlocal and strain-gradient differential operators. L (∗) ≡ 1 − (e0a)2∇2 and � (∗) ≡
1 − (lm)2∇2.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(σ
p
xx)

L(σ
p
yy)

L(σ
p
zz)

L(σ
p
yz)

L(σ
p
xz)

L(σ
p
xy)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= �

⎡
⎢⎢⎢⎢⎢⎢⎣

C
p

11 C
p

12 C
p

13 0 0 0
C

p

12 C
p

22 C
p

23 0 0 0
C

p

13 C
p

23 C
p

33 0 0 0
0 0 0 C

p

44 0 0
0 0 0 0 C

p

55 0
0 0 0 0 0 C

p

66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

− �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e31

0 0 e32

0 0 e33

0 e24 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
⎧⎨
⎩

Ex

Ey

Ez

⎫⎬
⎭− �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 q31

0 0 q32

0 0 q33

0 q24 0
q15 0 0
00 0

⎤
⎥⎥⎥⎥⎥⎥⎦
⎧⎨
⎩

Hx

Hy

Hz

⎫⎬
⎭

(32a)

⎧⎨
⎩
L(Dx)

L(Dy)

L(Dz)

⎫⎬
⎭= �

⎡
⎣ 0 0 0 0 e15 0

0 0 0 e24 0 0
e31 e32 e33 0 0 0

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ �

⎡
⎣ε11 0 0

0 ε22 0
0 0 ε33

⎤
⎦
⎧⎨
⎩

Ex

Ey

Ez

⎫⎬
⎭+ �

⎡
⎣g11 0 0

0 g22 0
0 0 g33

⎤
⎦
⎧⎨
⎩

Hx

Hy

Hz

⎫⎬
⎭

(32b)

⎧⎨
⎩
L(Bx)

L(By)

L(Bz)

⎫⎬
⎭= �

⎡
⎣ 0 0 0 0 q15 0

0 0 0 q24 0 0
q31 q32 q33 0 0 0

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ �

⎡
⎣ε11 0 0

0 ε22 0
0 0 ε33

⎤
⎦
⎧⎨
⎩

Ex

Ey

Ez

⎫⎬
⎭+ �

⎡
⎣μ11 0 0

0 μ22 0
0 0 μ33

⎤
⎦
⎧⎨
⎩

Hx

Hy

Hz

⎫⎬
⎭ .

(32c)

The elements of electric Ei and magnetic loads Hi are defined with three-dimensional
electric ϕ̆ and magnetic potentials ψ̆ as follows (Żur et al. 2020):

Ei = {−ϕ̆i} ,Hi =
{
−ψ̆,i

}
, i = x, y, z. (33)

The electric and magnetic potentials in three dimensions satisfying Maxwell’s equations
are defined with a cosine function, as given below (Arefi and Zenkour 2018, 2016):{

ϕ̆(x, y, z, t)

ψ̆(x, y, z, t)

}
=
{

ϕ0

ψ0

}
2ẑ

Ht

−
{

ϕ (x, y, t)

ψ (x, y, t)

}
cos

(
πẑ

Ht

)
, (34)
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where ϕ0 and ψ0 represent the initial conditions for electric and magnetic charges, respec-
tively; ϕ(x, y, t) and ψ(x, y, t) are the time-dependent electric and magnetic potential dis-
tributions, respectively; ẑ variable is defined for the upper and lower MEE face layers. ẑ is
denoted as ẑ = z + hs/2 + hr + hp/2 for the upper face layer and ẑ = z − hs/2 − hr − hp/2
for the lower face layer.

2.8 Equations of motion

To get the differential equations of the MEE nanoplate, the virtual displacement approach
(Reddy 2020), a variant of the Hamilton method, is applied:

∫ T

0
(δU − δE − δM− δK + δV) dt = 0. (35)

Here, δU , δK, and δV represent the virtual strain energy, kinetic energy, and virtual work
obtained by applied external forces, respectively. Also, δE and δM define the electric and
magnetic energy, respectively. The strain energy, denoted by δU , is obtained by

δU =
∫

�

[∫ h2

h1

(
σ lp

xxδεxx + σ lp
yyδεyy + σ lp

zz δεzz + 2σ lp
yzδεyz + 2σ lp

xzδεxz + 2σ lp
xyδεxy

)
dz

+
∫ h3

h2

(
σ lr

xxδεxx + σ lr
yyδεyy + σ lr

zz δεzz + 2σ lr
yzδεyz + 2σ lr

xzδεxz + 2σ lr
xyδεxy

)
dz

+
∫ h4

h3

(
σ s

xxδεxx + σ s
yyδεyy + σ s

zzδεzz + 2σ s
yzδεyz + 2σ s

xzδεxz + 2σ s
xyδεxy

)
dz

+
∫ h5

h4

(
σur

xx δεxx + σur
yy δεyy + σur

zz δεzz + 2σur
yz δεyz + 2σur

xz δεxz + 2σur
xy δεxy

)
dz

+
∫ h6

h5

((
σup

xx δεxx + σup
yy δεyy + σup

zz δεzz + 2σup
yz δεyz

+ 2σup
xz δεxz + 2σup

xy δεxy

)
dz
)]

dxdy.

(36)

The electric δE and magnetic δM energy contributions can be defined by

δE =
∫

�

[∫ h2

h1

(
DxδEx + DyδEy+DzδEz

)
dz

+
∫ h6

h5

(
DxδEx + DyδEy+DzδEz

)
dz

]
dxdy,

(37)

δM =
∫

�

[∫ h2

h1

(
BxδHx + ByδHy+BzδHz

)
dz

+
∫ h6

h5

(
BxδHx + ByδHy+BzδHz

)
dz

]
dxdy.

(38)
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Additionally, the kinetic energy is given by

δK =
∫

�

[∫ h2

h1

ρlp (u̇δu̇ + v̇δv̇ + ẇδẇ) dz +
∫ h3

h2

ρlr (z) (u̇δu̇ + v̇δv̇ + ẇδẇ) dz

+
∫ h4

h3

ρs (z) (u̇δu̇ + v̇δv̇ + ẇδẇ) dz +
∫ h5

h4

ρur (z) (u̇δu̇ + v̇δv̇ + ẇδẇ) dz

+
∫ h6

h5

ρup (u̇δu̇ + v̇δv̇ + ẇδẇ)

]
dxdy,

(39)

where ρp(z), ρs (z), and ρr(z) are the densities of the piezomagnetic face layers, auxetic
core layer, and rim layers, respectively. The virtual work can be calculated by

δV = −
∫

�

[
(Nxx0 + NxxE + NxxM)

∂wb

∂x

∂δwb

∂x

+ (
Nyy0+NyyE + NxxM

) ∂wb

∂y

∂δwb

∂y
+
]

dxdy,

(40)

where, the 0, E , and M subscripts define the compressive mechanical, electrical, and mag-
netic forces, respectively. The following equation represents the thickness-integrated resul-
tant forces and moments:⎧⎨

⎩
Nxx Nyy Nxy

M(b)
xx M(b)

yy M(b)
xy

M(s)
xx M(s)

yy M(s)
xy

⎫⎬
⎭

=
∫ h2

h1

(
σ lp

xx, σ
lp
yy, σ

lp
xy

)⎧⎨⎩
1
z

f (z)

⎫⎬
⎭dz +

∫ h3

h2

(
σ lr

xx, σ
lr
yy, σ

lr
xy

)⎧⎨⎩
1
z

f (z)

⎫⎬
⎭dz

+
∫ h4

h3

(
σ s

xx, σ
s
yy, σ

s
xy

)⎧⎨⎩
1
z

f (z)

⎫⎬
⎭dz +

∫ h5

h4

(
σur

xx , σ ur
yy , σ ur

xy

)⎧⎨⎩
1
z

f (z)

⎫⎬
⎭dz

+
∫ h6

h5

(
σup

xx , σ up
yy , σ up

xy

)⎧⎨⎩
1
z

f (z)

⎫⎬
⎭dz,

(41a)

Nzz =
∫ h2

h1

σ lp
zz g′(z)dz +

∫ h3

h2

σ lr
zzg

′(z)dz +
∫ h4

h3

σ s
zzg

′(z)dz

+
∫ h5

h4

σur
zz g′(z)dz +

∫ h6

h5

σup
zz g′ (z) dz,

(41b)

{
Sxz, Syz

}=
∫ h2

h1

{
σ lp

xz, σ
lp
yz

}
g (z) dz +

∫ h3

h2

{
σ lr

xz, σ
lr
yz

}
g (z) dz

+
∫ h4

h3

{
σ s

xz, σ
s
yz

}
g (z) dz +

∫ h5

h4

{
σur

xz , σ ur
yz

}
g (z) dz

+
∫ h6

h5

{
σup

xz , σ up
yz

}
g (z) dz.

(41c)
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Additionally, the strain energy can be rearranged as follows:

δU =
∫

�

(
Nxxδε

(0)
xx + Nyyδε

(0)
yy + Nzzδε

(0)
zz + Nxyδε

(0)
xy + Nxzδε

(0)
xz

+ Nyzδε
(0)
yz + Mxxδε

(b)
xx + Myyδε

(b)
yy + Mxyδε

(b)
xy + Mxxδε

(b)
xx

+ Myyδε
(b)
yy + Mxyδε

(b)
xy

)
dxdy.

(42)

The thickness-related electric and magnetic constants are defined as follows:

{
Dx,Dy,Dz

}=
∫ h2

h1

(
Dx,Dy,Dz

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos
(

πz2
hlp

)
cos

(
πz2
hlp

)
π

hlp
sin

(
πz2
hlp

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz

+
∫ h6

h5

(
Dx,Dy,Dz

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos
(

πz1
hup

)
cos

(
πz1
hup

)
π

hup
sin

(
πz1
hup

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz,

(43a)

{
Bx,By,Bz

}=
∫ h2

h1

(
Bx,By,Bz

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos
(

πz2
hlp

)
cos

(
πz2
hlp

)
π

hlp
sin

(
πz2
hlp

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz

+
∫ h6

h5

(
Bx,By,Bz

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos
(

πz1
hup

)
cos

(
πz1
hup

)
π

hup
sin

(
πz1
hup

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz.

(43b)

The virtual form of electric and magnetic loads may be rearranged as follows:

δE =
∫

�

(
Dx

∂δϕ

∂x
+ Dy

∂δϕ

∂y
− Dzδϕ

)
dxdy, (44)

δM =
∫

�

(
Bx

∂δψ

∂x
+ By

∂δψ

∂y
− Bzδψ

)
dxdy. (45)

The virtual kinetic energy mass inertia can be defined as

δK =
∫

�

[m0 (u̇0δu̇0 + v̇0δv̇0 + ẇbδẇb + ẇbδẇs + ẇsδẇ0 + ẇsδẇs)

− m1

(
u̇0

∂δẇb

dx
+ ∂ẇb

dx
δu̇0 + v̇0

∂δẇb

dy
+ ∂ẇb

dy
δv̇0

)

− m2

(
∂ẇb

dx

∂ ˙δwb

dx
+ ∂ẇb

dy

∂ ˙δwb

dy

)

− m3

(
u̇0

∂δẇb

dx
+ ∂ẇb

dx
δu̇0 + v̇0

∂δẇb

dy
+ ∂ẇb

dy
δv̇0

)
(46)
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+ m4

(
∂ẇb

dx

∂ ˙δwb

dx
+ ∂ẇb

dx

∂ ˙δwb

dx
+ ∂ẇb

dy

∂ ˙δwb

dy
+ ∂ẇb

dy

∂ ˙δwb

dy

)

+ m5

(
∂ẇs

dx

∂ ˙δws

dx
+ ∂ẇs

dy

∂ ˙δws

dy

)
+ m6

(
ẇbδφ̇ + ẇsδφ̇ + φ̇δẇb + φ̇δẇs

)
+ m7φ̇δφ̇

]
dxdy,

in which

mi =
∫ h2

h1

ρlpzidz +
∫ h3

h2

plr (z) zidz +
∫ h4

h3

ps (z) zidz

+
∫ h5

h4

pur (z) zidz +
∫ h6

h5

ρupzidz,

(47a)

mi+3 =
∫ h2

h1

ρlpf (z)zidz +
∫ h3

h2

plr (z) f (z)zidz

+
∫ h4

h3

ps (z)f (z)zidz +
∫ h5

h4

pur (z)f (z)zidz +
∫ h6

h5

ρupf (z)zidz,

(47b)

m6 =
∫ h2

h1

ρlpg (z) dz +
∫ h3

h2

plr (z)g (z) dz

+
∫ h4

h3

ps (z)g (z) dz +
∫ h5

h4

pur (z)g (z) dz +
∫ h6

h5

ρupg (z) dz,

(47c)

m7 =
∫ h2

h1

ρlpg2 (z) dz +
∫ h3

h2

plr (z)g2 (z) dz

+
∫ h4

h3

ps (z)g2 (z) dz +
∫ h5

h4

pur (z)g2 (z) dz + +
∫ h6

h5

ρupg2 (z) dz,

(47d)

where i = 0,1,2. In its final form, the virtual information resulting from applied external
forces is presented by

δV =
∫

�

[(
px0 + pe31 + pq31

) ∂wb

∂x

∂δwb

∂x
+ (

py0

)+ pe32 + pq32)
∂wb

∂x

∂δwb

∂x

]
dxdy. (48)

The mechanical compression forces are assumed to be equal to px0 = N0 and py0 =
γN0. The electric force pe3i and the magnetic force pq3i are expressed as

pe3i = −
[∫ h2

h1

e3i

(
2V0

hlp

)
dz +

∫ h3

h2

e3i (z)

(
2V0

hs

)
dz +

∫ h4

h3

e3i

2V0

hup

dz

]
, (49a)

pq3i = −
[∫ h2

h1

q3i

(
2H0

hlp

)
dz +

∫ h3

h2

q3i (z)

(
2H0

hs

)
dz +

∫ h4

h3

q3i

(
2H0

hup

)
dz

]
, (49b)
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where i = 1, 2. Due to the temperature rise, the thermomechanical loads NT
x and NT

y in the
x-y directions are given by

NT
x = b

[∫ h2

h1

C
p

11αlp
T dz +
∫ h3

h2

Clr
11αlr
T dz +

∫ h4

h3

Cs
11αs
T dz

+
∫ h5

h4

Cur
11 αur
T dz +

∫ h6

h5

C
p

11αup
T dz

]
,

(50a)

NT
y = a

[∫ h2

h1

C
p

11αlp
T dz +
∫ h3

h2

Clr
11αlr
T dz +

∫ h4

h3

Cs
11αs
T dz

+
∫ h5

h4

Cur
11αur
T dz +

∫ h6

h5

C
p

11αup
T dz

]
.

(50b)

Differential equations representing the motion of the sandwich nanoplate can be obtained
by substituting the virtual energy contributions δU , δE , δM, δK, and δV from Eqs. (42),
(44–46), and (48) into Eq. (35).

δu0 : ∂Nxx

∂x
+ ∂Nxy

∂x
= m0ü0 − m1

∂ẅb

∂x
− m1

∂ẅs

∂x
(51a)

δv0 : ∂Nyy

∂y
+ ∂Nxy

∂x
= m0v̈0 − m1

∂ẅb

∂y
− m3

∂ẅs

∂y
(51b)

δwb : ∂2M(b)
xx

∂x2
+ 2

∂2M(b)
xy

dxdy
+ ∂2M(b)

yy

dy2
− (

NT
x + px0 + pe31 + pq31

) ∂2wb

∂x2

− (
NT

y + px0 + pe31 + pq31

) ∂2wb

∂y2

= m0 (ẅb + ẅs) + m1

(
∂ü0

∂x
+ ∂v̈0

∂y

)
− m2

(
∂ẅb

∂x2
+ ∂ẅb

∂y2

)

− m4

(
∂2ẅs

dx2
+ ∂2ẅs

dy2

)
+ m6φ̈

(51c)

δws : ∂2M(s)
xx

∂x2
+ 2

∂2M(s)
xy

dxdy
+ ∂2M(s)

yy

dy2
+ ∂Sxz

∂x
+ ∂Syz

∂y

= m0 (ẅb + ẅs) + m3

(
∂ü0

∂x
+ ∂v̈0

∂y

)
− m4

(
∂2ẅb

dx2
+ ∂2ẅb

dy2

)

− m5

(
∂2ẅs

dx2
+ ∂2ẅs

dy2

)
+ m6φ̈

(51d)

δφ : ∂Sxz

∂x
+ ∂Syz

∂y
− Nzz = m6 (ẅb + ẅs) + m7φ̈ (51e)

δϕ : ∂Dx

∂x
+ ∂DYZ

∂y
+ Dz = 0 (51f)
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δψ : ∂Bx

∂x
+ ∂Byz

∂y
+ Bz = 0. (51g)

The boundary conditions of the sandwich nanoplate are given as

δu0 : 0 = Nxxnx + Nxyny − m1ẅbnx − m3ẅsnx (52a)

δv0 : 0 = Nyyny + Nxynx − m1ẅbny − m3ẅsny (52b)

δwb : 0 =
[

∂M(b)
xx

∂x
+ ∂M(b)

xy

∂y
− (

NT
x + px0 + pe31 + pq31

) ∂wb

∂x

]
nx

+
[

∂M(b)
yy

∂y
+ ∂M(b)

xy

∂x

∂M(b)
xy

∂y
− (

NT
y + py0 + pe32 + pq32

) ∂wb

∂y

]
ny

+
(

m1ü0 − m2
∂ẅb

∂x
− m4

∂ẅs

∂x

)
nx +

(
m1v̈0 − m2

∂ẅb

∂y
− m4

∂ẅs

∂y

)
ny

(52c)

δ
∂wb

∂n
: 0 = M(b)

nn (52d)

δ
∂ws

∂n
: 0 = M(s)

nn (52e)

δφ : 0 = Sxznx + Syzny (52f)

δϕ : 0 = Dxnx + Dyny, (52g)

where

M(b)
nn = M(b)

xx n2
x + 2M(b)

xy nxny + M(b)
yy n2

y,M
(s)
nn = M(s)

xx n2
x + 2M(s)

xy nxny + M(s)
yy n2

x . (53)

The equilibrium equations for the displacements and MEE coefficients of a nanostructure
may be calculated as follows by combining the nonlocal and strain-gradient differential
operators L (∗) ≡ 1 − (e0a)2∇2 and � (∗) ≡ 1 − (lm)2∇2:

�

[
A

(0)

11

∂2u0

∂x2
− A

(1)

11

∂3wb

∂x3
− A

−(0)

11

∂3ws

∂x3
+
(
A

(0)

12 + A
(0)

66

) ∂v0

∂x∂y

−
(
A

(1)

12 + 2A
(1)

66

) ∂3ws

∂x∂y2
−
(
A

−(0)

12 + 2A
−(0)

66

) ∂3ws

∂x∂y2
+ A

(0)

66

∂2u0

∂y2

+ Ã
(0)

13

∂φ

∂x
+ B

(0)

e31

∂ϕ

∂x
+ B

(0)

q31

∂ψ

∂x

]

= L
[
m0ü0 − m1

∂ẅb

∂x
− m3

∂ẅs

∂x

]
(54a)

�

[
A

(0)

22

∂2v0

∂y2
− A

(1)

22

∂3wb

∂y3
− A

−(0)

22

∂3ws

∂y3
+
(
A

(0)

12 + A
(0)

66

) ∂u0

∂x∂y

−
(
A

(1)

12 + 2A
(1)

66

) ∂3wb

∂x2∂y
−
(
A

−(0)

12 + 2A
−(0)

66

) ∂3ws

∂x2∂y
+ A

(0)

66

∂2v0

∂x2

+ Ã
(0)

13

∂φ

∂y
+ B

(0)

e32

∂ϕ

∂y
+ B

(0)

e32

∂ψ

∂y

]
= L

[
m0v̈0 − m1

∂ẅb

∂y
− m3

∂ẅs

∂y

]
(54b)
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�

[
A

(1)

11

∂3u0

∂x3
− A

(2)

22

∂4wb

∂y4
− A

−(1)

11

∂4ws

∂y4
+
(
A

(1)

12 + 2A
(1)

66

)( ∂3u0

∂x∂y2
+ ∂3v0

∂x2∂y

)

− 2
(
A

(2)

12 + 2A
(2)

66

) ∂4wb

∂x2∂y2
− 2

(
A

−(1)

12 + 2A
−(1)

66

) ∂4ws

∂x2∂y4

+ A
(1)

22

∂3v0

∂x3
− A

(2)

22

∂4wb

∂y4
− A

(1)

22

∂4ws

∂y4
+ Ã

(1)

13

∂2φ

∂x2
+ A

(1)

23

∂2φ

∂y2

+ B
(1)

e31

∂2ϕ

∂x2
+ B

(1)

e32

∂2ϕ

∂y2
+ B

(1)

q31

∂2ψ

∂x2
+ B

(1)

q32

∂2ψ

∂y2

]

= L
[(

NT
x + Px0 + Pe31 + Pq31

) ∂2wb

∂x2
+ (

NT
y + Py0 + Pe32 + Pq32

) ∂2wb

∂y2

+ m0 (ẅb + ẅs) + m1

(
∂ü0

∂x
+ ∂ü0

∂y

)
− m2

(
∂2ẅb

∂x2
+ ∂2ẅb

∂y2

)

− m4

(
∂2ẅb

∂x2
+ ∂2ẅb

∂y2

)
+ m6φ̈

]

(54c)

�

[
A

(0)

11

∂3u0

∂x3
− A

(1)

11

∂4wb

∂x4
− A

(f )

11

∂4ws

∂x4
+
(
A

(0)

12 + 2A
(0)

66

)( ∂3u0

∂x∂y2
+ ∂3v0

∂x2∂y

)

− 2
(
A

(1)

12 + 2A
(1)

66

) ∂4wb

∂x2∂y2
− 2

(
A

(f )

12 + 2A
(f )

66

) ∂4ws

∂x2∂y2
+ A

(0)

22

∂3v0

∂y3

− A
(1)

22

∂4wb

∂y4
− A

(f )

22

∂4ws

∂y4
+ Â

(0)

44

∂2ws

∂y2
+ Â

(0)

55

∂2ws

∂x2
+
(
Ã

(f )

13 + Â
(0)

55

) ∂2φ

∂x2

+
(
Ã

(f )

23 + Â
(0)

44

) ∂2φ

∂y2
+
(
B

(f )

e31 − B
(g)

e15

) ∂2ϕ

∂x2
+ +ẅs) + m3

(
∂ü0

∂x
+ ∂v̈0

∂y

)

− m4(
∂2ẅ0

∂x2

(
B

(f )

e32 − B
(g)

e24

) ∂2ϕ

∂y2
+
(
B

(f )

q31 − B
(g)

q15

) ∂2ψ

∂x2

]

= L
[(

NT
x + Px0 + Pe31 + Pq31

) ∂2wb

∂x2
+ (

NT
y + Py0 + Pe32 + Pq32

) ∂2wb

∂y2

+
(

m0

(
ẅ0 + ∂2ẅb

∂y2

))
− m5

(
∂2ẅs

∂x2
+ ∂2ẅs

∂y2

)
+ m6φ̈

]

(54d)

�

[
−Ã

(0)

13

∂u0

∂x
+ Ã

(1)

13

∂2wb

∂x2
+
(
−Ã

(f )

13 + Â
(0)

55

) ∂2ws

∂x2
− Ã

(0)

23

∂v0

∂y
+ Ã

(1)

23

∂2wb

∂y2

+
(
−Ã

(f )

23 + Â
(0)

44

) ∂2ws

∂y2
− Ã

(g)

33 φ + Â
(0)

44

∂2φ

∂y2
+ Â

(0)

55

∂2φ

∂x2
− B

(g)

e15

∂2ϕ

∂x2

− B
(g)

e24

∂2ϕ

∂y2
− B

(g)

q15

∂2ψ

∂x2
− B

(g)

q24

∂2ψ

∂y2
− B

(g)

e33ϕ − B
(g)

q33ψ + B
(g)

e33 + B
(g)

q33

]

= L
[
m6 (ẅb + ẅs) + m7φ̈

]− Ã
(0)

13

∂u0

∂x
+ Ã

(1)

13

∂2wb

∂x2
+
(
Ã

(f )

13 + Â
(0)

55

) ∂2wb

∂x2
(54e)

− Ã
(0)

23

∂v0

∂y
+ Ã

(1)

23

∂2wb

∂y2
+
(
Ã

(f )

23 + Â
(0)

44

) ∂2ws

∂y2
−
(
−Ã

(f )

23 + Â
(0)

44

) ∂2ws

∂y2
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− Ã
(g)

23 φ + Â
(0)

44

∂2φ

∂y2
+ Â

(0)

55

∂2φ

∂x2
− B

(g)

e15

∂2ϕ

∂x2
− B

(g)

e24

∂2ϕ

∂y2
− B

(g)

q15

∂2ψ

∂x2

− B
(g)

q24

∂2ψ

∂y2
− B

(g)

e33ϕ − B
(g)

q33ψ + B
(1)

e33 + B
(1)

q33 = L
[
m6 (ẅb + ẅs) + m7φ̈

]

B
(0)

e31

∂u0

∂x
+ B

(0)

e32

∂v0

∂y
− B

(1)

e31

∂2wb

∂x2
− B

(1)

e32

∂2wb

∂y2
+
(
B

(g)

e15 − B
(f )

e31

) ∂2ws

∂y2

+ B
(g)

e32φ + B
(g)

e15

∂2φ

∂x2
+ B

(g)

e24

∂2φ

∂y2
− P

(s2)

ε33 ϕ − P
(c2)

g33 ψ + P
(c2)

ε11

∂2ϕ

∂x2

+ P
(c2)

ε22

∂2ϕ

∂y2
+ P

(c2)

g11

∂2ψ

∂x2
+ P

(c2)

g22

∂2ψ

∂y2
− P

(s)

g33 − P
(s)

ε33 = 0

(54f)

B
(0)

q31

∂u0

∂x
+ B

(0)

q32

∂v0

∂y
− B

(1)

q31

∂2wb

∂x2
− B

(1)

q32

∂2wb

∂y2
+
(
B

(g)

q15 − B
(f )

q31

) ∂2ws

∂x2

+
(
B

(g)

q24 − B
(f )

q32

) ∂2ws

∂y2
+ B

(g)

q33φ + B
(g)

q15

∂2φ

∂x2
+ B

(g)

q24

∂2φ

∂y2
− P

(s2)

g33 ϕ − P
(c2)

μ33 ψ

+ P
(c2)

g11

∂2ϕ

∂x2
+ P

(c2)

g22

∂2ϕ

∂y2
+ P

(c2)

μ11

∂2ψ

∂x2
+ P

(c2)

μ22

∂2ψ

∂y2
− P

(s)

g33 − P
(s)

μ33 = 0.

(54g)

2.9 Solution procedure

The Navier approach is applied to obtain the response of the MEE nanoplate under simple
supported boundary conditions. A double trigonometric series is used for expanding the
seven unknowns as follows (Żur et al. 2020):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0

v0

wb

ws

φ

ϕ

ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∞∑

m=1

∞∑
n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos (αx) sin (βy) eiωt

vsin (αx) cos (βy) eiωt

wbsin (αx) sin (βy) eiωt

wssin (αx) sin (βy) eiωt

φsin (αx) sin (βy) eiωt

ϕsin (αx) sin (βy) eiωt

ψsin (αx) sin (βy) eiωt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, α = mπ

a
,β = nπ

b
, (55)

where u, v, wb , ws , φ, ϕ, and ψ define the maximum displacement, the electric poten-
tial, and the magnetic potential, respectively. Additionally, w is the natural frequency. The
variables can be written as follows:

{
} = [
u v wb ws φ ϕ ψ

]T
. (56)

The governing equations for the sandwich structure are derived as given below:{
[K] − ω2

mn [M]
} {
} = {F } , (57)

where [K], [M], and {F } define the stiffness, the mass matrix, and the force vector, respec-
tively. Here, the force vector can be written as (Żur et al. 2020)

{F } =
[

0 0 0 0 −
(
B

(g)

e33 + B
(g)

q33

)
−
(
P

(g)

g33 + P
(g)

e33

)
−
(
P

(g)

g33 + P
(g)

e33

) ]T

. (58)
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For free vibration, Eq. (57) may be rearranged as shown below:

{
[K] − ω2

mn [M]
} {
} = {0} . (59)

A mathematical description of the MEE coefficients is given in Appendices (A1)–(A3).
The elements of the stiffness and mass matrices are presented in Appendices (A4)–(A5).

Additionally, for buckling analysis, Eq. (57) can be modified as follows:

[K] {
} = {0} . (60)

3 Numerical results and discussion

In this section, first, a validation study is performed for the proposed method. Then, the
proven approach is applied to analyze the temperature-dependent effective material coef-
ficients and free vibration response of the MEE nanoplate under electric, magnetic, and
thermal loads. The structural dimensions of the auxetic core structure and MEE plate layers
used in the numerical analysis are given by a = b = 1, h = a/25, hs = 0.4h, hr = 0.1h,and
hp = 0.2h.

3.1 Model verification

To assess the reliability of the current method, a comparison is made with two examples of
published scientific research. The initial investigation compares the first five natural frequen-
cies of a composite plate, which are simulated using the CUF method under thermal loads,
with the results obtained in the present study (Azzara et al. 2023a). The dimensions of the
plate are a = 1 m, h = 0.01 m, and a/h = 100. The material properties of the plate structure
are: E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, v12 = 0.3, G12 = G13 = 4.14 GPa, G23 = 3.45
GPa, ρ = 1450 kg/m3, α11 = −2.6279 × 10−7oC−1, and α12 = 30.535 × 10−6oC−1. Table 4
shows the assessment of the dimensionless frequency values gained from the present study
with the findings obtained from (Azzara et al. 2023b). In accordance with the data presented
in this table, the results obtained from the CUF model and the current model are completely
compatible with one another.

In the second verification work, the nondimensional frequency values of the rectangular
and square plates for various a/b and a/h ratios and nonlocal parameter ea are examined
under simply supported boundary conditions and compared with the results obtained by
Aghababaei and Reddy (2009). In the analyses, the material properties and dimensions of
the plates were set to a = 10, v = 0.3, and E = 300 × 106 Pa. The following equation is

Table 4 Comparison of the first
five natural frequencies for CUF
and SHSDT

Mode Ref. (Azzara et al. 2023b) Present Study

(1,1) 108.67 107.94

(2,1) 144.30 142.96

(3,1) 222.98 220.03

(1,2) 283.06 279.45

(2,2) 304.53 301.26
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Table 5 Comparison of the dimensionless natural frequencies ω11, ω22, and ω33 of the plate structure

Frequencies ea Classical FSDT (Aghababaei
and Reddy 2009)

TSDT (Aghababaei
and Reddy 2009)

Present
(SHSDT)

ω11

0 0.0963 0.0930 0.0935 0.0932

1 0.0880 0.0850 0.0854 0.0851

2 0.0816 0.0788 0.0791 0.0785

3 0.0763 0.0737 0.0741 0.0739

4 0.0720 0.0696 0.0699 0.0699

ω22

0 0.3853 0.3414 0.3458 0.3410

1 0.2880 0.2552 0.2585 0.2555

2 0.2399 0.2126 0.2153 0.2129

3 0.2099 0.1860 0.1884 0.1862

4 0.1889 0.1674 0.1696 0.1677

ω33

0 0.8669 0.6889 0.7020 0.6890

1 0.5202 0.4134 0.4213 0.4132

2 0.4063 0.3228 0.3290 0.3230

3 0.3446 0.2738 0.2790 0.2735

4 0.3045 0.2420 0.2466 0.2422

used to compare the natural frequencies:

ω = ωh

√
ρ

G
. (61)

Table 5 depicts the variations in the first three nondimensional frequencies ω11, ω22, and
ω33 of the plate according to the three different plate theories and the proposed method.
According to this table, there is a high degree of agreement between the numerical results
derived from the present investigation and those from the reference study.

3.2 Effective material properties of the auxetic core

In this section, the effects of the geometrical parameters β3 and θ of the auxetic core cell
on the effective material properties, such as the modulus of elasticity E, shear modulus G,
Poisson’s ratio v, density ρ, and thermal expansion coefficient α, are investigated through
Figs. 2–5 for 
T = 0, the material size parameter lm = 0, the nonlocal parameter e0a = 0,
β1 = 1.5 and β3 = 0.1, 0.15, 0.20 and 0.25.

In Fig. 2, the variation in the effective modulus of elasticity and density in the xx and yy

directions according to β3 and the cell inclination angle θ is discussed. An examination of
Fig. 2a shows that the modulus of elasticity increases nonlinearly with increasing θ . A slight
increase in E11 is observed by increasing θ to approximately 70◦. However, this increase is
quite high at θ values greater than 70◦, especially for high values of β3. For β3 = 0.25, the
modulus of elasticity in the xx plane (E11) is obtained as 0.02963 × 1011 Pa for θ = 45◦,
while this value is obtained as 0.1017 × 1011 Pa for θ = 70◦ and 3.0240 × 1011 Pa for
θ = 89◦. When Fig. 2b is examined, it is determined that the modulus of elasticity in the
yy direction (E22 ) increases with increasing β3 and decreases with increasing θ . While E22

decreases rapidly between θ = 0◦ and θ = 30◦, it decreases more slowly between θ = 30◦
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Fig. 2 Evaluation of the effective modulus of elasticity and density of the auxetic core layer depending on
the inclined angle θ for β3 = 0.1,0.15,0.20, and 0.25

and θ = 90◦. For β3 = 0.25, E22 is obtained as 0.11×1011 Pa for θ = 15◦, while this value is
obtained as 0.009098 × 1011 Pa for θ = 75◦. In Fig. 2c, it is determined that the auxetic core
density ρ increases nonlinearly with both β3 and θ . This increase is quite high, especially
for high values of β3.

Figure 3 displays the variation in the shear modulus values of the auxetic core in the xy,
xz, and yz planes according to β3 and θ . An examination of Fig. 3a and Fig. 3b reveals
that for a constant β1 = 1.5, G12 and G13 increase nonlinearly with increasing θ and β3. In
both figures, high shear modulus values are obtained for high values of β3. In Fig. 3c, the
highest shear modulus values are similarly obtained for β3 = 0.25. When the shear modulus
increases between θ = 0◦ and θ = 43◦, a decrease is observed after approximately θ = 43◦.

Figure 4 provides an evaluation of the change in Poisson’s ratio in the xy and yx planes
according to β3 and θ . Here, a negative Poisson’s ratio can be observed for the auxetic
core layer. Figure 4a demonstrates that higher values of Poisson’s ratios are obtained as β3

decreases. Additionally, this figure shows that higher f Poisson’s ratios are obtained as θ

increases. Increasing θ up to approximately 500 causes Poisson’s ratio to increase slightly,
regardless of the β3 value. However, this increasing trend becomes more pronounced, espe-
cially after θ = 60◦. Similarly, in Fig. 4b, a rise in β3 leads to a drop in Poisson’s ratio. In
Fig. 4a, as θ approaches 90◦, Poisson’s ratio v12 exhibits an increasing trend. Conversely, in
Fig. 4b, as θ approaches 90◦, Poisson’s ratio v21 demonstrates a decreasing pattern.
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Fig. 3 Evaluation of the effective shear modulus of the auxetic core layer versus the inclined angle θ for
β3 = 0.1,0.15,0.20, and 0.25

Fig. 4 Evaluation of effective Poisson’s ratio of the auxetic core layer depending on the inclined angle θ for
β3 = 0.1,0.15,0.20, and 0.25

Figure 5 assesses the variation in the thermal expansion coefficient according to β3 and
θ in the xx and yy planes. The figures illustrate that as θ grows, α11 exhibits a linear drop,
while α22 demonstrates a nonlinear increase. As β3 increases, both α11 and α22 also increase.
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Fig. 5 Evaluation of the effective thermal expansion coefficient of the auxetic core layer versus the inclined
angle θ for β3 = 0.1,0.15,0.20, and 0.25

3.3 Free vibration analysis of the FGM sandwich nanoplate

In this subsection, the frequency response analysis of the sandwich nanoplate with an auxetic
core is examined with respect to the parameters of temperature rise, electrical load, magnetic
load, nonlocal parameter, and material size factor. The input magnetic field is defined by
Eq. (62), and the electric field is defined by Eq. (63).

Hm = H0

D
, D = EH 3

12
(
1 − ν2

) . (62)

Vm = V0

D
, D = EH 3

12
(
1 − ν2

) . (63)

Figure 6 exhibits the effects of the temperature difference 
T , cell inclination angle θ , and
β3 on the nondimensional frequency λ1 of the sandwich nanoplate. As shown in Fig. 6a-b,
the first dimensionless frequency of the sandwich nanoplate decreases as both β3 and 
T

increase. The reason for this decrease in the dimensionless frequency is the decrease in the
modulus of elasticity of all the materials in the sandwich plate with increasing temperature
and, accordingly, the drop in the stiffness of the structure. Another reason for the decrease in
the dimensionless frequency is that the stiffness of the auxetic core increases as β3 increases,
but the mass increases more than the stiffness. For β3 values of 0.10, 0.15, 0.20, and 0.25,
the buckling temperature of the sandwich plate is calculated as 267 K, 264 K, 258.50 K,
and 250.50 K for Fig. 6a, 262.40 K, 256 K, 246 K, and 236 K for Fig. 6b, and 249 K, 231
K, 226 K, and 254.50 K for Fig. 6c, respectively. As can be seen, the buckling temperature
decreases with increasing β3. An examination of Fig. 6d reveals that the natural frequency
and buckling temperature decrease with increasing θ .

Figure 7 evaluates the influence of 
T , θ , and β1 on the nondimensional frequency of
the MEE sandwich nanoplate. As shown in Figure, the first dimensionless frequency and
buckling temperature of the sandwich nanoplate increase as β1 increases. For β1 values of
1, 1.5, 2, and 2.5, the buckling temperature of the sandwich plate is calculated as 253.5 K,
265 K, 267 K, and 269 K for Fig. 7a, 195.5 K, 256 K, 265.5 K, and 267.5 K for Fig. 7b, and
188 K, 231.5 K, 259.5 K, and 265 K for Fig. 7c, respectively. When Fig. 7d is examined, it is
concluded that the natural frequency and buckling temperature decrease with increasing θ .
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Fig. 6 Variation in the dimensionless frequency λ1 depending on the β3 and θ values of the auxetic core and
temperature rise 
T ; applied electric load Vm = 0; and applied magnetic load Hm = 0

The variation in the dimensionless frequency of the sandwich nanoplate with respect to
the thermal and electrical load is shown in Fig. 8 for three different BaTiO3 and CoFe2O4

mixing ratios. In the analysis, four different voltage values are applied (Vm = 0, 0.1, 0.2,
and 0.3). Figure 8a exhibits the effect of the four different voltage parameters upon the first
nondimensional natural frequency. As shown in Fig. 8a-c, the dimensionless first frequency
values decline as the temperature difference increases. It is also seen from the figure that in-
creasing voltage has a decreasing effect on the natural frequency and buckling temperature.
For example, in Fig. 8a, when no voltage is applied, the dimensionless natural frequency is
obtained as 1.25 for 
T =150, while this value is 1.24 for Vm = 0.1, 1.02 for Vm = 0.2,
and 0.88 for Vm = 0.3. In addition, the buckling temperatures for Vm = 0, 0.1, 0.2, and
0.3 are obtained as 222 K, 210 K, 199 K, and 187 K, respectively. In Fig. 8b, the material
composition ratio of the MEE plate is BaTiO3 = 0.3 and CoFeO4 = 0.7. As can be seen,
the natural frequency and buckling temperatures increased with increasing CoFeO4 ratio.
When the Vm = 0 curves in Fig. 8a-b are examined, it is understood that the increase in
the natural frequency is attributed to the higher stiffness property of CoFe2O4 compared to
BaTiO3. Again, when Fig. 8b is examined, the natural frequency decreases with increasing
electrical load. However, according to Fig. 8a, with decreasing BaTiO3 concentration, the
rate of drop in the natural frequency decreased. This is due to the piezoelectric behavior
of BaTiO3. When no voltage is applied for the BaTiO3 = 0.3 and CoFe2O4 = 0.7 ratios,
the dimensionless natural frequency is 1.28 for a 
T =150, while this value is 1.23 for
Vm = 0.1, 1.16 for Vm = 0.2, and 1.10 for Vm = 0.3. In addition, the buckling tempera-
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Fig. 7 Variation of the dimensionless frequencies λ1 depending on the β1 and θ values of the auxetic core
and temperature rise 
T ; applied electric load Vm = 0; applied magnetic load Hm = 0

tures for Vm = 0, Vm = 0.1, Vm = 0.2, and Vm = 0.3 are obtained as 229 K, 223 K, 216
K, and 210 K, respectively. The variation in the nondimensional fundamental frequency of
the sandwich nanoplate with respect to temperature and electrical charge for BaTiO3 = 0.7
and CoFe2O4 = 0.3 is shown in Fig. 8c. As shown in the figure, with increasing BaTiO3

ratio in the MEE plate, the dimensionless natural frequency decreased due to the stiffness
of BaTiO3 and CoFe2O4. In addition, the piezoelectric property of the MEE plate increased
with increasing BaTiO3 ratio, thus a significant decrease in the natural frequency and buck-
ling temperature occurred.

The fluctuations in the dimensionless frequency of the sandwich nanoplate with respect
to thermal and magnetic loads are shown in Fig. 9 for three different BaTiO3 and CoFe2O4

mixing ratios. In the analysis, four different magnetic field loads are applied (Hm = 0, 0.001,
0.002, 0.003). Figure 9a shows the effect of four different magnetic load parameters on the
first dimensionless natural frequency for BaTiO3 = 0.5 and CoFe2O4 = 0.5. As depicted
in the figure, increasing temperature has a decreasing effect on the dimensionless natural
frequency, while increasing magnetic field load has an increasing effect on the natural fre-
quency. In addition, increasing magnetic field load also increases the buckling temperature
of the plate. For example, in Fig. 9a, for Hm = 0, the dimensionless natural frequency is 1.62
for 
T =150, while this value is 1.50 for Hm = 0.001, 1.38 for Hm = 0.002, and 1.25 for
Hm = 0.003. In addition, the buckling temperatures for Hm = 0, 0.001, 0.002, and 0.003 are
222 K, 236 K, 249 K, and 263 K, respectively. The effect of the magnetic field load on the di-
mensionless natural frequency of the sandwich plate for BaTiO3 = 0.3 and CoFe2O4 = 0.7
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Fig. 8 Variation in the dimensionless frequency λ1 depending on the temperature rise and electrical load;
for the face plate material mixture BaTiO3 70%, 50%, and 30% and CoFe2O3 %30, 50%, and 70%; applied
magnetic load Hm = 0

is investigated with Fig. 9b. As illustrated in the figure, the natural frequency and buckling
temperature increase with the increasing CoFe2O4 ratio in the MEE face plate. Increasing
CoFe2O4 ratio has two effects on the natural frequency and buckling. First, the natural fre-
quency and buckling temperature of the plate directly increase due to the high stiffness of
CoFe2O4. Second, the magnetic behavior of the MEE face plates increases with increasing
CoFe2O4 concentration, which increases the natural frequency of the plate and the buckling
temperature. The effects of BaTiO3 = 0.7 and CoFe2O4 = 0.3 on the natural frequency and
buckling temperature are depicted in Fig. 9c. With the dominance of the BaTiO3 ratio in the
MEE face plate, the natural frequency of the plate decreased due to the low Young’s modu-
lus of BaTiO3 compared to that of CoFe2O4. However, the natural frequency increased with
the effect of the applied magnetic field. It can be concluded from Fig. 9 that the magnetic
field has a stiffness increasing effect on the plate.

Figure 10a presents the variation in the nondimensional natural frequency and buck-
ling temperature of the nanoplate depending on the nonlocal parameters e0a and 
T . An
evaluation of the figure demonstrates that the natural frequency decreases with increasing
e0a and 
T . When the buckling temperature is 265 K for e0a = 0, it drops to 58 K for
e0a = 0.5 nm2. In Fig. 10b, the variation in the natural frequency of the sandwich nanoplate
with respect to the temperature difference is shown for material size factors lm = 0, 1, 1.41,
and 2 nm2. As shown in the figure, the dimensionless natural frequency of the plate increases
as the material size factor increases. When the buckling temperature is 265 K for lm = 0, it
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Fig. 9 Variation in the dimensionless frequency λ1 depending on the temperature rise and magnetic load;
for the face plate material mixture BaTiO3 70%, 50%, and 30% and CoFe2O3 %30, 50%, and 70%; applied
electric load Vm = 0

Fig. 10 Variation in the dimensionless frequency λ1 depending on the nonlocal parameter e0a and material
size parameter lm; applied electric load Vm = 0; applied magnetic load Hm = 0

increases to 372 K for lm = 2 nm2. A general evaluation of Fig. 10 shows that while the
nonlocal parameter and temperature difference have similar effects on decreasing the natu-
ral frequency, the material size factor has an effect on increasing the natural frequency.



Mechanics of Time-Dependent Materials

4 Conclusions

In this study, the thermomechanical free vibration and buckling behavior of smart sandwich
nanostructures with auxetic cores and MEE face layers were investigated using SHSDT and
NSGT. While the material properties of the face plates are determined by the rule of mixture,
the material properties of the auxetic core layer vary according to the β1, β3, and θ parame-
ters. First, the influence of various β3 and θ parameters with respect to nonlinear temperature
fluctuations was examined to determine the effective material properties (modulus of elastic-
ity, shear modulus, Poisson’s ratio, thermal expansion, and density). As a consequence, the
findings that have been gained from performing these computational models are expressed
as follows:

The elastic modulus of the auxetic core layer in the xx direction (E11) exhibits a non-
linear increase with increasing θ and β3. On the other hand, the modulus of elasticity in
the yy direction (E22) exhibits an increase with increasing β3 and a reduction with rising
θ . Therefore, the elastic modulus of the auxetic core layer in the x and y directions can be
adjusted using the θ , thickness and aspect ratio parameters of the auxetic core. This feature
offers the possibility to adjust the elastic modulus in the sandwich nanoplate depending on
the directions.

Higher values of v12 are obtained as β3 decreases. Additionally, higher values of v12

are obtained as θ increases. A rise in β3 leads to a decrease in v21. Depending on θ , v12

increases negatively close to linear between θ = 1° and θ = 50°. In the range of θ = 50°
and θ = 89°, it shows a nonlinear parabolic trend. For β1 = 1.5 and θ = 80°, v12 increases
negatively to −2.1178 at β3 = 0.25 and −9.2511 at β3 = 0.1. For β1 = 1.5 and θ = 6°,
v21 increases negatively to −0.9548 at β3 = 0.25 and −3.5233 at β3 = 0.1. Therefore, the
negative Poisson’s ratios can be tuned in the xy and yx directions and thus the metamaterial
properties can be adjusted.

When weight control and lightweight design are required, the mass density ρ of the
auxetic core can be adjusted with the auxetic core parameters. The auxetic core layer density
increases nonlinearly with both β3 and θ . This increase is quite high, especially for high
values of β3.

The variation of the shear modulus also varies significantly in auxetic core in a nonlinear
manner depending on the parameters. The shear modulus values G12 and G13 increase non-
linearly with increasing θ and β3. High shear modulus values are obtained for high values
of β3.

The coefficient of thermal expansion of the auxetic core can also be tuned. When θ

increases, α11 exhibits a linear drop, while α22 demonstrates a nonlinear increase. As β3

increases, both α11 and α22 also increase.
Second, the frequency response and buckling analysis of the sandwich nanoplate were

examined with respect to the parameters of temperature rise, electrical load, magnetic load,
nonlocal parameter, and material size factor. As a consequence, the findings that have been
gained from performing these computational models are expressed as follows:

Besides the thermal effect, the properties of the auxetic core also affect the thermome-
chanical vibration behaviour of the smart nanoplate. When inclination angle θ and length
ratio β1 of the auxetic core are kept constant, the dimensionless frequency of the MEE
nanoplate decreases as both 
T and β3 increase.

The increase in the natural frequency and buckling temperature is physically a result of
the stiffness and therefore the modulus of elasticity in the smart sandwich nanoplate. In ad-
dition, a low coefficient of thermal expansion results in a high buckling temperature and
natural frequency. When β1 and θ are constant, a decrease in the buckling temperature of
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the MEE nanoplate is observed as the values of β3 and θ increase. When β3 is constant, with
the increase in β1, the MEE nanoplate experiences an increase in both the dimensionless fre-
quency and buckling temperature. Increasing θ causes a decrease in both the dimensionless
frequency and the buckling temperature.

Due to the electro-elastic property of the face layers, increasing the electrical load has a
decreasing effect on the nondimensional natural frequency and buckling temperature of the
sandwich plate. In other words, the electric charge reduces the stiffness of the structure. This
property becomes more effective with the increase of BaTiO3 ratio in the surface layers.

Because of the magnetostrictive property of CoFe2O4 in the face layers, increasing mag-
netic field load has an increasing impact on the nondimensional natural frequency. Addition-
ally, increasing the magnetic field load increases the buckling temperature of the sandwich
plate.

The effect of the size factor creates a strength enhancement effect in the smart nanoplate
with the strain gradient elasticity effect. Thus, the dimensionless first natural frequency of
the sandwich plate increases as the material size factor increases.

On the contrary, due to the effect of nonlocal integral elasticity, softening effect occurs
in the smart nanoplate depending on the nonlocal parameter and, therefore, the nonlocal
parameter has a decreasing effect on the natural frequency. In other words, while the material
size factor stiffens the plate, the nonlocal parameter softens the plate.

With this study, important inferences were obtained about the thermal buckling and free
vibration behavior of sandwich MEE plates with auxetic cores. It is considered that a refer-
ence will be provided to the gap in the literature with the analyzes made by considering the
temperature-dependent material properties of BaTiO3 and CoFe2O4.
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Ã
(ñ)
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(
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