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Abstract
This study evaluates and analyzes creep testing results on salt concrete of type M2. The
concrete is a candidate material for long-lasting structures for sealing underground radioac-
tive waste repository sites. Predicting operational lifetime and security aspects for these
structures requires specific constitutive equations to describe the material behavior. Thus,
we analyze whether a fractional viscoelastic constitutive law is capable of representing the
long-term creep and relaxation processes for M2 concrete. We conduct a creep test to iden-
tify the parameters of the fractional model. Moreover, we use the Bayesian inversion method
to evaluate the identifiability of the model parameters and the suitability of the experimen-
tal setup to yield a reliable prediction of the concrete behavior. Particularly, this Bayesian
analysis allows to incorporate expert knowledge as prior information, to account for limited
experimental precision and finally to rigorously quantify the post-calibration uncertainty.

Keywords Creep test · Linear viscoelasticity · Fractional Zener model · Bayesian inversion

1 Introduction

The disposal of radioactive waste in deep geological repository sites is accompanied by
the problem of long-lasting and safe backfilling of deposits and drifts, such that con-
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tainment is guaranteed and a contamination of the environment becomes extremely un-
likely. The sealing of repositories in salt rock is performed by salt concrete and the con-
crete of type M2 (DBE 2004) is a candidate material for this objective in German dis-
posal sites. The safety aspect and the extremely long operational lifetime of correspond-
ing concrete structures require a profound knowledge of the material behavior including
the mechanical properties. Particular phenomena of concrete, which have to be consid-
ered especially on long time scales, are creep and relaxation processes, which are gen-
eralized as viscoelastic material behavior (Christensen 2013; Lakes 1999; Creus 1986).
The quantification of these phenomena is problematic and subject to large uncertain-
ties.

Our study aims to model and predict the viscoelastic behavior of concrete M2. There-
fore, accurate experiments, an appropriate model, experimental evaluation and model cali-
bration with uncertainty analysis are required. Accordingly, we analyze creep tests with M2
specimens that run for about two years. To model the measured creep behavior, a frac-
tional viscoelastic constitutive law (Bagley and Torvik 1985; Schmidt and Gaul 2002b;
Mainardi 2010) was assessed, i.e. the material is modelled using fractional differential
and integral operators (Samko et al. 1993; Oldham and Spanier 1974; Podlubny 1999;
Diethelm 2010) in order to account for long-term creep over decades. Fractional calculus
was used by several authors in the thirties and forties of the last century as an empiri-
cal method for describing viscoelastic material behavior, see the references in Mainardi
(2010, Chap. 3.5). Particularly, Scott Blair (1947) used a fractional derivative of strain
to model an intermediate material behavior interpolating between Hooke’s and Newton’s
laws. Later, Koeller (1984) introduced the springpot1 as a new rheological element that
can be used in mechanical network models besides spring and dashpot, leading to a valid
description of viscoelastic materials. A well-known model of this type is the fractional
Zener model, see Mainardi (2010, Chap. 3.2), which is used in this article. The associ-
ated model parameters for concrete M2 are determined from the experimental data by a
least-squares calibration and the identifiability of these parameters from the chosen ex-
periments is evaluated by an informed Bayesian inversion (Congdon 2003; Besag et al.
1995).

The main question in this paper is whether a parameter identification for the considered
model is possible from the given experimental data, particularly in view of the experimental
duration which is short compared to the characteristic time scales of creep. More specifically,
we examine the identifiability of the model parameters in terms of probability distributions.
Thereby, we formulate a sufficient amount of constraints and reasonable soft information on
the parameters in order to see how this influences or improves the parameter inference and
whether it leads to plausible combinations of parameters with acceptable uncertainty inter-
vals. Moreover, the differences between the results of least-squares calibration and Bayesian
inversion are studied.

Well-known results on fractional calculus and the considered viscoelastic model are
introduced in Sect. 2. The experimental setup, the data and their correspondence to the
model parameters are illustrated in Sect. 3. After an introduction to Bayesian analy-
sis and an explanation of the choice of prior parameter distributions in Sect. 4, the re-
sults of calibration and inference are discussed in Sect. 5 and the paper is concluded in
Sect. 6.

1Originally, the spelling spring-pot was used by Koeller (1984). The authors prefer an unhyphenated nota-
tion.
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2 Fractional calculus in viscoelastic constitutive equations

2.1 Introduction to linear viscoelasticity

The mechanical behavior of a deformable body, aside from the general principles of mechan-
ics (i.e. equilibrium and compatibility equations), is determined by a characteristic material
behavior specified by constitutive equations, which relate forces and deformations. Assum-
ing only small displacements of the body, forces and deformations can be described by the
Cauchy stress tensor σ and the infinitesimal strain tensor ε as defined in any textbook on
continuum mechanics (Gurtin 1981). The characteristic property of a viscoelastic constitu-
tive equation is that the stress at a certain time instant depends on the entire history of the
strain and vice versa. Besides this memory hypothesis, three other assumptions lead to a
quite general viscoelastic constitutive equation. These assumptions are

• causality (no future stress (resp. strain) state can affect the current strain (resp. stress)
state),

• linearity (the principle of superposition holds),
• non-ageing (the material behavior is independent of shifts on the time scale).

The resulting viscoelastic constitutive equation is given by

εij (t) =
∫ t

−∞
Jijkl(t − τ)σ ′

kl(τ )dτ, (1)

see Christensen (2013), Creus (1986), Lakes (1999). Here, the functions Jijkl are known as
creep functions and describe the strain increase of a material under a unit step stress (given
by the Heaviside function �(t)). Particularly, it follows from (1) by integrating the Dirac
delta function

σkl(t) = σ 0
kl�(t) ⇒ εij (t) = σ 0

klJijkl(t). (2)

An alternative representation of the constitutive law in terms of stress relaxation can be
obtained by reversing the roles of stress and strain in (1). This so-called relaxation represen-
tation, see e.g. Christensen (2013, Chap. 1.2), is not considered here, as we are interested in
modelling creep.

The general tensorial constitutive equations (1) can be simplified by using intrinsic sym-
metries of the stress and strain tensors as well as material symmetries. For the applications
in this article, we consider the most simple case of isotropic material behavior. This leads to
a description by only two remaining creep functions Jh, Jd, such that

εh(t) =
∫ t

−∞
Jh(t − τ)σ ′

h(τ )dτ, (3)

εd(t) =
∫ t

−∞
Jd(t − τ)σ ′

d(τ )dτ, (4)

where

εh = 1

3
εii , σh = 1

3
σii,

εd = ε − εhI, σ d = σ − σhI
(5)
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Fig. 1 Creep modeled by a single
exponential function (Zener
model)

Fig. 2 Zener model

are the hydrostatic (subscript h) and deviatoric (subscript d) components of the strain tensor
ε and the stress tensor σ , see Gurtin and Sternberg (1962) for a detailed derivation. Hence,
(3) and (4) are two one-dimensional independent functional equations that fully represent
the constitutive law. Subsequently, we will omit the subscripts h and d of the creep functions
as long as their general properties are discussed.

From energy considerations and using the principle of fading memory (Christensen 2013,
Chap. 3), one can obtain monotonicity conditions for creep functions and their first and
second derivatives, i.e.

J (t) ≥ 0, J̇ (t) ≥ 0, J̈ (t) ≤ 0, t ≥ 0. (6)

Moreover, as we are interested in describing viscoelastic solids, we assume an initial elastic
material response and finite asymptotic creep, such that

J (0) = J0 > 0, lim
t→∞J (t) = J∞ < ∞. (7)

The most simple creep function that satisfies (6) and (7) is given by Christensen (2013,
Chap. 1.5)

J (t) = J0 + (J∞ − J0)
(

1 − e− t
τε

)
, 0 < J0 < J∞ < ∞, τε > 0, (8)

where τε is a characteristic time quantity called retardation time. It determines the time scale
in which creep takes place, see Fig. 1.

As a mechanistic idea, the creep function (8) is associated with a mechanical network
model consisting of two springs (modulus E1, E2) and a dashpot (viscosity η), named Zener
model (Zener 1948), see Fig. 2. Connecting Hooke’s law for a spring σ = Eε and Newton’s
law for a dashpot σ = ηε̇, the Zener model is represented by an ordinary differential equation
(Mainardi 2010)

(E1 + E2)σ (t) + ησ̇ (t) = E1E2ε(t) + E1ηε̇(t), (9)
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which leads, under the assumption of a unit stress step at t = 0 and the initial condition
J (0) = 1

E1
, to the creep function representation

J (t) = 1

E1
+ 1

E2

(
1 − e− E2

η t

)
, (10)

which is equivalent to (8) when defining the respective parameters by comparing the coeffi-
cients.

The applicability of the Zener model to fit real material data is limited as the creep process
usually proceeds over a large time range. A possible improvement is given by the Prony
series approach, considering several retardation times τi, i = 1, . . . , n, leading to a creep
function

J (t) = J0 +
n∑

i=1

Ji

(
1 − e− t

τi

)
,

n∑
i=1

Ji = J∞ − J0. (11)

However, a creep function of the form (11) fits the experimental creep data only in the
measured time ranges and predicts a fast decay of creep outside the measured time span,
which results in a bad extrapolation (Bagley and Torvik 1985; Schmidt and Gaul 2002a).
A different approach, related to fractional calculus, leads to a solution of this problem, see
Sect. 2.3.

2.2 Introduction to fractional calculus

The following terms and properties are well-known results from fractional calculus, see e.g.
Diethelm (2010), Oldham and Spanier (1974), Podlubny (1999), Samko et al. (1993). Let
T > 0 and f ∈ L1(−∞, T ] be an integrable function. The Liouville-Weyl fractional integral
of f of order α ∈ (0,1) is introduced as (Mainardi 2010)

Iαf (t) =
∫ t

−∞

(t − τ)α−1

�(α)
f (τ)dτ, t ∈ [0, T ], (12)

where � represents the Euler Gamma function

�(α) =
∫ ∞

0
uα−1e−udu, α > 0. (13)

It can easily be checked that (12) simplifies to a plain primitive of f at the limit α → 1.
To examine the limit for α → 0, consider the following. If, additionally, the function f is
absolutely continuous (in the sense of Samko et al. (1993, Chap. 2, Def. 6.1)) and f and f ′

vanish in an appropriate manner in the negative time limit, we obtain by partial integration
of (12)

Iαf (t) =
∫ t

−∞

(t − τ)α

�(1 + α)
f ′(τ )dτ. (14)

The representation (14) shows, that (12) is a plain identity for α → 0. Together, this provides
the intuition that the fractional integral for α ∈ (0,1) is something between the identity and
the first-order primitive.



144 Mechanics of Time-Dependent Materials (2023) 27:139–162

Fig. 3 Fractional Caputo
derivative of the linear function
f (t) = t χ(0,∞)(t) for various
values of α ∈ [0,1]

Furthermore, the Liouville-Weyl fractional derivative of Caputo type of order α ∈ (0,1)

of an absolutely continuous function f is given as (Mainardi 2010)

CDαf (t) = I1−αḟ (t) =
∫ t

−∞

(t − τ)−α

�(1 − α)
f ′(τ )dτ, t ∈ [0, T ], (15)

which is (one possible definition for) a left inverse of the operator Iα , i.e.

CDαIαf = f, f ∈ L1(−∞, T ], (16)

see Samko et al. (1993, Chap. 2, § 6.2). Similar to the fractional integral, the fractional
derivative interpolates between the identity and the first-order derivative. To see this, con-
sider the fractional derivatives of the function x(t) = t χ(0,∞)(t) in Fig. 3, where χ(0,∞) is the
unit function vanishing on (−∞,0]. Further details regarding fractional integrals and deriva-
tives are given, e.g., in Oldham and Spanier (1974), Podlubny (1999), Diethelm (2010) and
especially for functions with unbounded domains in Samko et al. (1993).

Before we explain the role of fractional calculus in viscoelasticity, we want to emphasize
one more theoretical aspect, which is important for the further reasoning, i.e. we want to
investigate the problem

CDαf (t) = γf (t) + δ, t ≥ 0,

f (t) = 0, t ≤ 0,
(17)

which represents a linear functional equation with a given initial function. (17) is equivalent
to the fractional initial value problem

CDα
0 f (t) = γf (t) + δ, t ≥ 0,

f (0) = 0,
(18)

where

CDα
0 f (t) =

∫ t

0

(t − τ)−α

�(1 − α)
f ′(τ )dτ, t ∈ [0, T ] (19)

is the fractional Caputo derivative with zero initialization time. The difference from (15)
is merely the lower integration bound. The solution of (18) contains the so-called one-
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Fig. 4 Fractional viscoelastic
models

parameter Mittag-Leffler function

Eα(t) =
∞∑

k=0

tk

�(αk + 1)
, (20)

see Gorenflo et al. (2014) and is through Diethelm (2010, Thm. 7.2) given by

f (t) = 1

γ

∫ t

0
δ

d

dτ
Eα (γ τα)dτ = δ

γ
[Eα (γ τα)]t0 = − δ

γ
(1 − Eα (γ tα)) . (21)

2.3 Fractional Zener model

Comparing (1) and (14), one can see, as in Mainardi (2010, Chap. 3), that a slowly increasing
creep function of the form

J (t) = 1

p

tα

�(1 + α)
, p > 0, α ∈ (0,1) (22)

leads to a (one-dimensional) constitutive law

ε(t) = 1

p
Iασ (t), p > 0, α ∈ (0,1), (23)

which is in view of (16) equivalent to

σ(t) = pCDαε(t), p > 0, α ∈ (0,1). (24)

The constitutive law (24) defines another rheological element besides spring and dashpot,
called springpot (Koeller 1984), which is depicted as a rhombus, see Fig. 4a. However, a
springpot is not sufficient to describe a viscoelastic solid, because (22) satisfies (6) but not
(7).

In view of the classical Zener model, one can consider a spring (modulus E1) in series
with a springpot (parameters p, α) with another spring (modulus E2) in parallel, which is
known as fractional Zener model (Mainardi 2010), see Fig. 4b. For the first spring one can
obtain the creep function

J1(t) = 1

E1
, (25)

whereas the second spring parallel to the springpot leads to the problem

CDαJ2(t) = −E2

p
J2(t) + 1

p
, t ≥ 0,

J2(t) = 0, t ≤ 0

(26)
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Fig. 5 Creep function of a
fractional Zener model for
E1 = E2 = 1 GPa, p = 1 GPa dα

and various values of α ∈ (0,1)

of the form (17). Finally, using (21) leads to the overall creep function

J (t) = J1(t) + J2(t) = 1

E1
+ 1

E2

(
1 − Eα

(
−E2

p
tα

))
. (27)

The creep behavior according to (27) is shown in Fig. 5. The limit case α → 1 results in
the classical Zener model (10), which shows creep in a small time range, whereas smaller
values of α ∈ (0,1) lead to an extended time window of creep.

Comparing (8) with (27), one obtains a generalized retardation time

τε =
(

p

E2

) 1
α

, (28)

which again determines the characteristic time scale in which creep occurs. Finally, to obtain
a full model for the three-dimensional material behavior, one can consider a long-term creep
function of the form (27) for hydrostatic (3) and deviatoric (4) strain and stress components
(Schmidt and Gaul 2002a), i.e. one can choose

Jh(t) = 1

E1,h
+ 1

E2,h

(
1 − Eαh

(
−E2,h

ph
tαh

))
, (29)

Jd(t) = 1

E1,d
+ 1

E2,d

(
1 − Eαd

(
−E2,d

pd
tαd

))
(30)

in (3) and (4).
The model in (29) and (30) has eight parameters E1,h > 0, E2,h > 0, ph > 0, αh ∈ (0,1),

E1,d > 0, E2,d > 0, pd > 0 and αd ∈ (0,1). All these parameters have to be chosen or cal-
ibrated to obtain a predictive model, and classical literature values from simpler models
cannot easily be transferred. Therefore, experimental data and a calibration procedure (pos-
sibly taking into account uncertainties and soft information) must be used.

3 Experimental design and parameter fitting

For calibrating the parameters in (29) and (30), we use data from an experiment described
in Sect. 3.1, followed by a discussion on parameter identification in Sect. 3.2 and a repara-
metrization for Bayesian inversion in Sect. 3.3.
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Fig. 6 Experimental setup of
creep tests

3.1 Test record and data

We ran a series of tests at the Materials Testing Institute (MPA) of the University of Stuttgart
from January 2019 to January 2021. These experiments consist of creep and shrinkage tests
for three specimens made of concrete M2. The cylinder-shaped concrete bodies were pro-
duced at the Materials Testing Institute in Brunswick and the tests at the MPA Stuttgart
started when the specimens were 56 days old.

Just before starting the tests, we determined the compressive strength of M2 as 25 MPa
on average. The creep tests are driven at a constant compressive axial load of 8.3 MPa,
which is about 1

3 of the compressive strength and hence small enough that no cracks occur
during the tests.

The shortening of the specimens in the axial direction is measured with the help of three
dial gauges, while the lateral strain is determined using two strain gauges, see Fig. 6. The
deformation is measured in the central part of the specimens, where the boundary effects
have decayed and homogeneous stress and strain states can be assumed.

In parallel with the creep tests, we measure the autogenic shrinkage of the unloaded spec-
imens with dial gauges, as shrinkage is not covered by the constitutive model and has to be
subtracted from the measured data to obtain the elastic and creep strains. The deformation
data are recorded in logarithmic time steps, which is important for parameter identification.
All details regarding the test series are summarized in Table 1. The results of the measure-
ments are depicted in Fig. 7.

For each of the three specimens, the strains measured by the multiple dial and strain
gauges were averaged and shown together with error bars that represent an uncertainty of
one empirical standard deviation. The bottom right graph shows the averages of the axial
and lateral strain of the three specimens as well as the mean shrinkage.

3.2 Parametrization and parameter identification

In the given creep tests, we consider an approximately constant load that is applied (almost)
instantaneously at the beginning of the test. This results in the stress history

σ (t) = σ 0�(t), (31)
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Table 1 Details of test series
with concrete M2 test series creep test (3 specs.), shrinkage test (3 specs.)

geometry cylindrical, height ≈ 300 mm, diameter
≈ 150 mm

compressive strength 25 MPa at the age of 55 days

start January 29, 2019 at the age of 56 days

compressive load 8.3 MPa

measured data total axial and lateral strain, shrinkage

climate θ = (20 ± 2) ◦C, RH = (65 ± 5)%

Fig. 7 Measured absolute values
of axial and lateral strains for all
specimens, mean strains and
shrinkage with error bars
representing empirical standard
deviation

where σ 0 is the initial stress with hydrostatic part σ0,h and deviatoric part σ 0,d, and �(t) is
still the Heaviside function. For this case, in view of (2) and using the constitutive laws (29)
and (30), we obtain the strain components

εh(t) = σ0,h

(
1

E1,h
+ 1

E2,h

(
1 − Eαh

(
−E2,h

ph
tαh

)))
,

εd(t) = σ 0,d

(
1

E1,d
+ 1

E2,d

(
1 − Eαd

(
−E2,d

pd
tαd

))) (32)

for t ≥ 0. For the specific compression test performed at the MPA, we consider stress and
strain tensors that can be expressed in the principal coordinate system I of the test cylinders
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Fig. 8 Model of a concrete
specimen with stress and strain
state expressed in the inertial
coordinate system

(Fig. 8) as

Iσ =
⎛
⎝0 0 0

0 0 0
0 0 σzz

⎞
⎠ , Iε =

⎛
⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎠ , (33)

where σzz, εzz < 0 and εxx = εyy > 0. The assumptions in (33) are justified by the uniaxial
loading in eI

z -direction, the axisymmetry and the purely axial stretch in the principal direc-
tions of the specimens observed in the experiments, at least in the central area of the concrete
bodies, where the measurements are performed. All quantities σzz, εxx = εyy, εzz that occur
in (33) are measured within the experiments. A connection between (32) and (33) may be
derived using (5) as

I σh = 1

3
σzz, Iσ d = −1

3
σzz

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ ,

I εh = 1

3
(2εxx + εzz), Iεd = 1

3
(εxx − εzz)

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

(34)

Particularly, using (34), the constitutive law for the deviatoric components reduces to a scalar
equation with

I σd = −1

3
σzz, I εd = 1

3
(εxx − εzz). (35)

Finally, using (32) and (34) together with the measured data, we are able to identify the
parameters in (29) and (30).

To illustrate the influence of its parameters, we show the creep function (27) of the frac-
tional Zener model in a log-log plot (Fig. 5, Fig. 9) and study the resulting S-shaped graphs.
Clearly, the initial value of the creep function corresponding to the purely elastic component
of the material response is given by E1 as

J (0) = 1

E1
. (36)
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Fig. 9 Creep function of a
fractional Zener model for
E1 = 1 GPa, α = 0.5

The slope of the central part of the graph, i.e. the velocity of the creep, is determined by the
parameter α (Fig. 5). A change in the springpot coefficient p results in a shift of the graph
along the time axis (Fig. 9a), whereas the parameter E2 determines the asymptotic behavior
as

lim
t→∞ J (t) = 1

E1
+ 1

E2
, (37)

see Fig. 9b.
The parameter identification is performed in two qualitatively different steps. First, a

best-fit calibration is obtained from a nonlinear least-squares optimization. Second, the pa-
rameters are considered as random variables and their (joint) probability distributions are
determined depending on prior assumptions and the experimental results using Bayesian
inversion. The results of the first method can be found in Sect. 5.1. The second method
is introduced in Sect. 4 and evaluated and compared with the first method in the rest of
Sect. 5.

3.3 Reparametrization for Bayesian inversion

For the Bayesian inversion, we consider a slightly different, reorganized parameter set than
in (29) and (30). The reorganization does not change the model equations, but makes the
problem more easily accessible to expert knowledge to obtain more informed prior proba-
bility distributions. Particularly, the elastic material response can be described by Young’s
modulus E and the Poisson’s ratio ν, which are related to the original elastic parameters
E1,h and E1,d as (Gurtin 1973, Sect. 22)

E1,h = E

1 − 2ν
, E1,d = E

1 + ν
. (38)

Moreover, instead of using the parameters ph, pd to identify the time range in which creep
occurs, we consider characteristic retardation times τh, τd as in (28), viz.

τh =
(

ph

E2,h

) 1
αh

, τd =
(

pd

E2,d

) 1
αd

, (39)
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such that (32) can be reformulated as

εh(t) = σ0,h

(
1 − 2ν

E
+ 1

E2,h

(
1 − Eαh

(
−

(
t

τh

)αh
)))

,

εd(t) = σ0,d

(
1 + ν

E
+ 1

E2,d

(
1 − Eαd

(
−

(
t

τd

)αd
))) (40)

with new parameters E > 0, ν ∈ (0,0.5), E2,h > 0, αh ∈ (0,1), τh > 0, E2,d > 0, αd ∈ (0,1)

and τd > 0.

4 Bayesian analysis

4.1 Introduction to Bayesian inversion

Suppose we have the following forward model:

d = M(θ) + e, (41)

where M is the deterministic model (40) together with (34), θ denotes the vector of uncertain
parameters E, ν, E2,h, αh, τh, E2,d, αd, τd for the model M , d represents the measurement
data (εxx(ti), εzz(ti ))i=1,...,n, and e represents unavoidable measurement errors. The purpose
of Bayesian inversion is to infer the posterior distribution of the uncertain model parameters
θ given prior knowledge about θ and the measurement data d .

The posterior distribution of the uncertain parameters θ can be obtained through Bayes’
rule as (Congdon 2003)

p(θ | d) = p(θ)p(d | θ)

p(d)
∝ p(θ)p(d | θ), (42)

where p(θ) is the prior distribution of the unknown parameters, which describes the prior
knowledge (expert knowledge) about θ independent of the data d ; p(d | θ) is the likelihood
function, which quantifies how probable are the measured data d for a given realization of
uncertain parameters θ ; and p(d) is the so-called marginal likelihood.

The marginal likelihood p(d) is a normalization factor for the posterior distribution.
Since p(d) is not a function of the parameters θ , it is often ignored when making inference
of parameters. This allows the posterior distribution to be written as proportional to the
product of prior and likelihood, as reflected in the last part of the equation (42) (Cary and
Chapman 1988).

When representing experimental errors and imprecisions via a multivariate Gaussian dis-
tribution for e in (41), the likelihood function can be expressed as

p(d | θ) = exp
(− 1

2 (d − M(θ))T�−1
e (d − M(θ))

)
√

(2π)nd det(�e)
, (43)

where �e is the covariance matrix of the error term e and nd is the number of measurements.
In this work, the number of measurements is nd = 2n, where n is the number of time steps
in which we obtain strain data from the experiments. The variance2 of the error term e is set

2We use the notation s2 for the theoretical variance of a random variable to avoid a notational conflict with
the stress σ .
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as s2
e,x = (

0.1 mm
m

)2
for (εxx(ti))i=1,...,n and s2

e,z = (
0.5 mm

m

)2
for (εzz(ti))i=1,...,n according to

the maximal empirical variances in the experiments (see Fig. 7). The covariance matrix �e

is a diagonal matrix with the diagonal elements s2
e,x (first element to nth element) and s2

e,z

((n+1)th element to the last element), which assumes the independence of the measurement
errors.

A powerful tool for solving Bayesian inversion problems is the Markov chain Monte
Carlo (MCMC) method (Besag et al. 1995; Worden and Hensman 2012). In this work, we
will use the popular Metropolis-Hastings algorithm (Hastings 1970) to solve our problem.

4.2 Choice of prior distributions of model parameters

Choosing proper prior distributions for the model parameters is important for Bayesian in-
version. In this work, we choose the prior distributions as follows. Associated samplings and
plots are given in Sect. 5 in Figs. 11 and 13.

Young’s modulus E: log-normal distribution
Young’s modulus E is purely positive and can vary by orders of magnitude (i.e., it makes

sense to look at lnE). We have expectations (mean value) of E from external data (see
below), and these data show roughly symmetric scattering (standard deviation). To accom-
modate these pieces of information, we need a purely positive 2-parameter distribution on
the log-scale that can be roughly symmetric. On the log-scale with a given mean and vari-
ance, the log-normal distribution is the max-entropic distribution (least information), and
it is relatively symmetric after the back-transformation if the standard deviation is small
compared to the mean.

From the literature (DBE 2004, Sect. 6.2), we get the mean and variance of E as μE =
13.5 GPa and s2

E = (1.5 GPa)2.3 Then, we can calculate the corresponding parameters for
the log-normal distribution as (Krishnamoorthy 2015)

μ = ln

⎛
⎜⎝ μ2

E√
μ2

E + s2
E

⎞
⎟⎠ ≈ 2.6 , s2 = ln

(
1 + s2

E

μ2
E

)
≈ 0.012 . (44)

Poisson’s ratio ν: beta distribution
Poisson’s ratio ν is bounded between 0 and 0.5, and we expect it to be mostly below 0.4,

and typically around 0.3 (DBE 2004, Sect. 6.3). Therefore, we need a two-side-bounded
distribution with two parameters (to tune the mean and the standard deviation). We see no
specific reason for a symmetric distribution of ν. As the beta distribution (Krishnamoorthy
2015) is a bounded 2-parameter distribution with flexible shape, it is a good choice. Since
the original beta distribution is defined on the interval [0,1], we will use a scaled beta dis-
tribution for ν as 2ν ∼ Beta(α,β) with α = 8 and β = 4, which leads to a desired maximum
probability density at about 0.3.

E2,h and E2,d: improper distribution
All we know about E2,h and E2,d is that they are positive. We have made the observation

that over geological time scales and geological pressures rocks can act like fluids. And as

3The estimated mean of Young’s modulus μE for the concrete M2 appears small in comparison to typical
values for other types of concrete. However, this discrepancy corresponds to the young age (56 days) of the
concrete specimens at the beginning of the creep tests and the special properties of salt concrete (DBE 2004).
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design engineers, we fear that concrete may do the same. Hence, we choose the prior PDF
p(θ) ∼ 1/θ for both E2,h and E2,d, because it puts a lot of the probability mass close to
zero (which is the limiting case of asymptotically viscous behavior). This distribution is
often suggested for variables where no other information than positivity exists (Robert et al.
2009), and it is the limiting case of the log-normal distribution for sE2 → ∞. Although
this is a so-called improper distribution (without normalization), it is enough for MCMC
simulation.

αh and αd: uniform distribution
In the given model, the admissible intervals for αh and αd are [0,1]. We know nothing

more than the interval over αh and αd. Because the uniform distribution is the max-entropic
(least information) distribution under these conditions (Robert et al. 2009), we choose the
prior distribution U(0,1) for both αh and αd.

τh and τd: tailored improper distribution
For the retardation time τ , we know that it is positive, and we believe that all orders of

magnitude are equally probable. Hence, we start from a uniform prior on the real axis for
log τ (which is similar to the assumptions for E2,h and E2,d), but then softly exclude the
cases that would be implausibly fast. This leads to a soft lower bound expressed by the CDF
of the standard normal distribution. Thus, our PDF of the chosen prior distribution for both
log τh and log τd can be expressed as

p(log(τ )) = �

(
log(τ ) − log(τ0)

slog(τ )

)
, (45)

where � is the CDF of the standard normal distribution, τ0 = 1000 d, and slog(τ ) = 1.

Besides the univariate choice of parameters described above, there are some further con-
straints relating several of the model parameters. These joint constraints result from the
assumption that the lateral strain of the specimens is positive and monotonically increas-
ing. An opposite behavior is only known from materials with a special micro-structure and
cannot be supposed to occur for concrete without phase transition (which is implausible
in our experiments). Necessary conditions for increasing lateral strain can be derived by
considering the relations

εxx =I εh +I εd = σ0,hJh + σ0,dJd, ε̇xx = σ0,hJ̇h + σ0,dJ̇d,

σ0,h = 1

3
σzz < 0, σ0,d = −1

3
σzz > 0

(46)

according to (34) using (29) and (30). For εxx to be positive, the limits t → 0 and t → ∞ in
(29) and (30), using (46), result in the conditions

1

E1,h
<

1

E1,d
(47)

and

1

E1,h
+ 1

E2,h
<

1

E1,d
+ 1

E2,d
, (48)
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Table 2 Summary of the chosen prior distributions

parameter unit name univariate distribution constraints

E GPa Young’s modulus ∼ Lognorm(μ, s2), (44) −
ν − Poisson’s ratio 2ν ∼ Beta(8,4) −
E2,h, E2,d GPa internal stiffness ∝ 1

E2,∗ (38), (48)

αh, αd − fractional order ∼ U(0,1) (53)

log
( τh

d

)
, log

( τd
d

) − log. retard. time ∝ �
(
log

( τ∗
1000 d

)) −

respectively. The first condition (47) is, in view of (38), equivalent to ν > 0 and hence au-
tomatically fulfilled by the chosen univariate prior distribution for ν. The second condition
(48) provides an additional constraint. To obtain conditions for ε̇xx to be positive, we con-
sider the approximation of the Mittag-Leffler function for t → 0 and t → ∞, viz.

Eα

(
−

(
t

τ

)α)
∼ 1 − 1

�(1 + α)

(
t

τ

)α

+O(t2α), t → 0+ (49)

and

Eα

(
−

(
t

τ

)α)
∼ 1

�(1 − α)

(
t

τ

)−α

+O(t−2α), t → ∞, (50)

see Erdélyi (1953, p. 210, (21)). Using these properties in (29) and (30) (omitting subscripts)
leads to the expansions

J (t) ∼
⎧⎨
⎩

1
E1

+ 1
E2�(1+α)

(
t
τ

)α +O(t2α) t → 0+,

1
E1

+ 1
E2

(
1 − 1

�(1−α)

(
t
τ

)−α
)

+O(t−2α) t → ∞ (51)

and

τ J̇ (t) ∼
{

α
E2�(1+α)

(
t
τ

)α−1 +O(t2α−1) t → 0+,

α
E2�(1−α)

(
t
τ

)−α−1 +O(t−2α−1) t → ∞,
(52)

where (52) together with (46) finally reveals the necessary condition

αh > αd (53)

for ε̇xx > 0. The conditions (48) and (53) are used as additional constraints on Bayesian
inversion, leading to joint prior distributions. A summary of the chosen prior distributions is
given in Table 2.

5 Results and discussion

5.1 Quality of fit

A parameter fitting was obtained for the mean experimental data using a weighted non-
linear least squares method (squared residuals weighted by 1

s2
e

, where s2
e,x = (

0.1 mm
m

)2
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Fig. 10 Results of parameter
identification using the method of
weighted nonlinear least squares
with selected error bars showing
a ∼ 95% confidence level

for (εxx(ti))i=1,...,n and s2
e,z = (

0.5 mm
m

)2
for (εzz(ti ))i=1,...,n). As implementation we choose

MATLAB’s lsqnonlin.m. The corresponding optimal parameters are

E = 9.38 GPa, ν = 0.17, E2,h = 3.32 GPa, E2,d = 2.04 GPa,

αh = 0.62, αd = 0.42, τh = 14.79 d, τd = 5.11 d
(54)

and the resulting predicted curves for hydrostatic and deviatoric components together with
experimental data are shown in Fig. 10. The fitted curves provide a good representation of
the experimental results and it is shown that the slow creep process of concrete M2 is (at
least over the experimental duration) well described by the fractional Zener model. Small
deviations, plausibly due to measurement errors just after loading the specimens, are visible.
The fit of the deviatoric strain component is slightly better than for the hydrostatic part. For
the visibly deviant data points we included ±2se error bars (∼ 95% confidence level) into
the figure to demonstrate the likely explanation by measurement inaccuracies. We omitted
the other intervals to avoid cluttering the figures.

5.2 Identified parameter distributions

A Bayesian inversion was performed in view of the experimental data and assumed prior
information of Sect. 4.2 using an MCMC with N = 5 · 107 samples. The resulting marginal
histograms of the posterior distributions for the eight model parameters are shown in Fig. 11
together with the sampled prior distributions. Furthermore, the parameters (54) from the
least-squares calibration (best fit) as well as the samples with the maximal likelihood value
(ML) and with the maximal posterior probability (MAP) are visualized in the histograms.
The histograms show comparably smooth unimodal distributions. The best fit and the ML
sample are close, which indicates a good mixing in the MCMC. To understand this argu-
ment, note that the (weighted) least squares calibration and the maximum likelihood fit are,
under the condition of a Gaussian likelihood, analytically identical.

Marginal posterior distributions are in some cases widespread (Fig. 11g, Fig. 11h) and
partly similar to the prior distributions (Fig. 11a, Fig. 11b). This indicates weakly infor-
mative data, i.e. the prior information influences the posterior distributions more than the
knowledge from the experimental results. This assertion is supported by the location of the
ML and MAP samples. The distance between ML and MAP is quite large and the MAP is
typically located in regions of high prior probability. Possible reasons for the weak inference
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Fig. 11 Posterior and prior
marginal histograms together
with best fit, ML and MAP

of the parameters are given by the relatively large empirical variation of the experimental
results4 (Fig. 7) and a remaining compensation among the parameters. The latter statement
becomes visible in the scatter plots in Fig. 12, showing two-dimensional projections of pa-
rameter correlations. Particularly, the triples (E2,h, αh, log(τh)) and (E2,d, αd, log(τd)) show
strong correlations. This indicates that a plain least squares optimization is inappropriate
because it fails to quantify the remaining uncertainties that are substantial and nonlinear in
this case.

4The large inter-specimen-variability is a typical phenomenon in concrete creep tests (Bazant and Baweja
1995). Accordingly, a smaller variation in experimental data is not supposed to occur when the number of
tests is increased.
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Fig. 12 Scatter plots of identified
parameters

Fig. 13 Comparison of joint and
unconstrained prior distributions

5.3 Comparing constrained and unconstrained priors

The univariate prior distributions given in Sect. 4.2 are additionally constrained by the con-
ditions (48) and (53), leading to joint priors for E2,h, E2,d, αh and αd. The constrained and
unconstrained prior distributions as well as the associated posterior distributions are shown
in Fig. 13. As (48) suggests, the univariate prior distribution of E2,h is shifted to larger val-
ues, whereas lower values of E2,d show a higher probability. Similarly, (53) renders larger
values of αh and smaller values of αd more likely. Particularly, the uniform marginal priors
of αh and αd become linear distributions due to the constraint (53). The posterior distribu-
tions of E2,h and E2,d substantially change under the influence of the additional constraints,
whereas αh and αd are only slightly affected.
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5.4 Comparison to calibration optimization

The graphs in Fig. 11 show a relatively wide gap between the parameter set (54) obtained
from the least squares calibration and the MAP

E = 13.48 GPa, ν = 0.31, E2,h = 0.20 GPa, E2,d = 0.16 GPa,

αh = 0.16, αd = 0.12, τh = 1.346 · 1010 d, τd = 4.461 · 1011 d
(55)

resulting from the MCMC. As already mentioned in Sect. 5.2, this indicates weakly infor-
mative experimental data. This reconfirms the importance of a Bayesian analysis, already
stated in Sect. 5.2. However, the argument this time is that the expert knowledge, litera-
ture values and plausibility constraints that can be used in Bayesian analysis significantly
influence the result, which can once again be decision relevant.

5.5 Overall assessment

Another remarkable result of the MCMC is the gap between the global maximum of the
multivariate posterior distribution (i.e. of MAP) and the maxima in the marginal histograms
of E2,h (Fig. 11c), log(τh) (Fig. 11g) and log(τd) (Fig. 11h). This indicates a highly nonlin-
ear interrelation of the parameters in the joint posterior distribution. In order to check the
plausibility of the location of the MAP, we consider bar plots in Fig. 14 that show the maxi-
mal posterior density within the classes of the posterior histogram. The bar plots maximize,
where the MAP lies (as expected). Particularly, the plots for log(τh) (Fig. 14g) and log(τd)

(Fig. 14h) are relatively flat, which shows that the associated parameter values with maximal
probability are weakly identifiable.

For a plausibility check of the location of the ML, additional similar bar plots showing the
maximal likelihood found within the histogram classes are shown in Fig. 14. Analogously,
these bar plots should maximize near the ML, which is fulfilled in all graphs of Fig. 14. The
bar plots for E (Fig. 14a) and ν (Fig. 14b) show a relatively large variation.

The plots in Fig. 14 emphasize that the nonlinear parameter interactions (and the dis-
cussed offsets of global to univariate maxima) are not merely an artefact of our chosen
implementation, but facts of poor identifiability.

Finally, we demonstrate the consequences of parameter interactions and measurement
uncertainties for the prediction of the future material behavior in Fig. 15. The graphs show
simulations of the lateral and axial strains of our concrete specimens for 109 days under
the same constant loading conditions as in the experiment, but for different parameter sets.
Particularly, we plotted the simulated strains for 250 realizations of the prior and posterior
distributions (satisfying εxx(t) > 0 and ε̇xx(t) > 0 for all t > 0). The results for all posterior
realizations, least squares and MAP parameter sets remain quite close to the experimental
data and to each other during the experimental time range. However, they become more
widespread afterwards due to parameter compensation effects and uncertainties. Specifi-
cally, it can be seen that the least squares and MAP parameter sets do not satisfy the mono-
tonicity condition for εxx . This confirms that (53) is necessary but not sufficient.

Note that the forward uncertainty quantification shown here does not account for all pos-
sible sources of uncertainty. While we capture parametric uncertainties and measurement
uncertainties within the fractional Zener model, our study does not include uncertainties
pertaining to the choice of model equations (such as alternatives to the Zener model), pos-
sible long-term ageing effects of concrete, or uncertainties in boundary conditions. This
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Fig. 14 MAP and ML per bin

Fig. 15 Long-term prediction of
strains within the creep tests for
different parameter sets. The
prediction for the ML parameter
set is omitted as the graphs of
ML and the best fit realization are
really close
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means that the posterior realizations of the parameters visualize a lower bound on the evolu-
tion of the uncertainties. Still, the identified spreading of the predicted strains on large time
scales shows that the uncertainty quantification is really necessary. However, a comparison
with the prior realizations (which fill the graphs almost completely) illustrates that the con-
sidered experiments yield a lot of information and that a longer experimental time could
improve the prediction.

6 Conclusion

This article provides and analyzes experimental data from long-term creep tests on a salt
concrete of type M2 and extensively discusses whether the material behavior can be mod-
elled by a fractional viscoelastic constitutive law. It is shown that a fractional Zener model
for hydrostatic and deviatoric stress and strain components yields a beautiful description of
the experimental results over the full trial period of two years (Fig. 10). Furthermore, the
applied Bayesian inversion yields a probability distribution with plausible combinations of
model parameters (Fig. 11). However, the uncertainty quantification reveals that the parame-
ters of the fractional model are only weakly identifiable from the current experimental setup,
i.e. the (posterior) probability distributions of the parameters are comparably widespread and
their shapes are mainly influenced by prior information (instead of experimental data). As a
consequence, the parameter set obtained from the least squares calibration is quite different
to the set with maximal posterior probability. Particularly, this effect occurs more severely
for the parameters related to the hydrostatic stress and volumetric strain components and for
both generalized retardation times. Possible reasons for the weak identifiability are given by
large variances of the experimental results (which are not unusual in concrete creep tests,
though), the strongly nonlinear interrelation of the model parameters within the model be-
havior and the experimental setup, which does not allow separate measurement of volumet-
ric and deviatoric effects, which should be considered in prospective measurements.

The computational cost and scientific effort for a Bayesian analysis are admittedly much
higher than for a least-squares calibration. However, we are convinced that the benefits of
such a Bayesian analysis outweigh these costs, as it measures the parameter identifiabil-
ity and provides a quantification of the post-calibration uncertainty, which represents the
foundation for the computation of predictive uncertainties and the optimal design of experi-
ments. Moreover, the Bayesian analysis reveals nonlinear parameter interactions and allows
information from expert elicitation.

The results of this paper can be used in a next step to obtain a forward uncertainty quan-
tification, i.e. an estimation of the transfer of parameter uncertainty to the uncertainty of
deformation of concrete structures for long time spans. For an even more complete un-
certainty quantification, uncertainties from the choice between competing models, ageing
effects and uncertain boundary conditions can be included. Additionally, future experiments
can be designed, that are optimal with respect to a certain criterion, e.g. a failure limit of a
concrete structure. These tasks will be considered in our future work.
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