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Abstract
In this study, we consider the nonlinear viscoelastic–viscoplastic behavior of adhesive films
in scarf joints. We develop a three-dimensional nonlinear model, which combines a non-
linear viscoelastic model with a viscoplastic model using the von Mises yield criterion
and nonlinear kinematic hardening. We implement an iterative scheme for the viscoplastic
solution and a numerical algorithm with stress correction for the combined viscoelastic–
viscoplastic model into finite element analysis. The viscoelastic component of the model
is calibrated using creep-recovery data from adhesive films in scarf joints. The viscoplas-
tic parameters are calibrated from the residual strains of recovered creep tests with vary-
ing load durations. A two-dimensional form of the model shows good agreement with the
three-dimensional model for the scarf joint considered in this work and is compared with ex-
periment. The numerical results show favorable agreement with the experimental creep and
recovery responses of two epoxy adhesive systems. We also discuss the contribution of non-
linear viscoelasticity and viscoplasticity to the stress/strain distribution along the adhesive
center lines. Viscoplasticity tends to lower the stress concentration.

Keywords Visco-plastic · Adhesive · Numeric model · Scarf joint

1 Introduction

In recent years, the use of adhesively bonded joints in engineering applications has in-
creased, especially in aerospace industries. Compared with traditional joining methods, ad-
hesively bonded joints lower stress concentrations, reduce weight, and improve resistance to
corrosion. Adhesive joining can also complicate disassembly, require careful surface prepa-
ration, and exhibit temporal and plastic responses that are not well understood (Ali and
Wahab 2015). Understanding the mechanical behavior of the adhesive within a bonded joint
is essential to predict joint response and strength. However, constraints from the adherends
and the unbonded interfacial region between the adhesive and the adherends limit the ability
of adhesives in bulk to describe thin film adhesive response (Hart-Smith 1981; Botha et al.
1983; Afendi et al. 2011).
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As most adhesives are polymeric materials, they exhibit time dependence and possibly
nonlinearity and plasticity under high stress and high temperature. There have been a variety
of models incorporated into the finite element method (FEM) to predict the stress/strain
states under monotonic and uniaxial loading. Some have used Schapery’s single integral
model to describe the creep behavior and stress distribution within adhesives (Botha et al.
1983; Henriksen 1984; Roy and Reddy 1986). Popelar and Liechti modified the free volume
approach of Knauss and Emri Knauss (1981), Knauss et al. (1987) by considering the effects
of distortion (Popelar et al. 1997) and hydrostatic pressure (Popelar and Liechti 2003) to
predict the nonlinear load-displacement response under monotonic shear tests for adhesives
in Arcan specimens. The models and experiments were in good agreement. Others have
extended rheological models formed with Maxwell and Kevin–Voight elements to nonlinear
viscoelasticity to model the creep of adhesives (Majda and Skrodzewicz 2009; Choi and
Reda Taha 2013; Houhou et al. 2014; Badulescu et al. 2015).

The foregoing nonlinear viscoelastic work concerns materials with deformation that is
fully recoverable. Some polymers exhibit viscous flow, resulting in permanent deforma-
tion, which can also be described using viscoelastic principles (Silva et al. 2017; Acha et al.
2007). For other polymers, the unrecoverable deformation occurs above a yield point (which
can be time- or rate-dependent Hu et al. 1996), for which several viscoplastic models have
been developed. Perzyna’s viscoplastic model is often used, given its ability to accommodate
a variety of yield criteria (Perzyna 1966). Pandey and Narasimhan (2001) developed a three-
dimensional elasto-viscoplastic model using Perzyna’s model with a pressure-sensitive mod-
ified von Mises yield function for the stress distribution in lap joints. Su and Mackie (1993)
studied the influence of creep on the thick adherend shear tests in which a two-dimensional
elasto-viscoplastic model consisting of rheological elements was developed and calibrated
with creep tests on bulk adhesives. Morin et al. (2015) and G’sell and Jonas (1979) devel-
oped an elasto-viscoplastic model based on the G’sell plastic model to simulate the stress
response to uniaxial compressive loading with a wide range of strain rates for a structural
adhesive. The results agreed with experiments.

Some materials exhibit both viscoelastic and viscoplastic behavior, which has received
less attention in the literature than the responses separately. Groth (1990) studied the stress
distribution in single lap joints using three different rheological viscoelastic-viscoplastic
models. Rocha et al. (2019) proposed a similar rheological viscoelastic–viscoplastic-damage
model that accurately described rate-dependent plasticity of an epoxy resin. Dufour et al.
(2016) presented a fully coupled viscoelastic–viscoplastic damage model in which the
generalized Maxwell viscoelastic model was integrated with a viscoplastic model using
Raghava’s yield criterion. The model was validated on a series of tensile monotonic ex-
periments on Arcan joints at different loading angles. Krairi and Doghri (2014) proposed a
thermodynamically based viscoelastic–viscoplastic model coupling a linear Boltzmann’s in-
tegral, nonlinear hardening, and ductile damage evolution to describe the uniaxial behavior
of polymers. Ilioni et al. (2018) proposed a model combining viscoelasticity with viscoplas-
ticity considering a hydrostatic pressure-dependent yield function for the nonlinear behavior
of an adhesive in an Arcan joint. The authors found that viscoplasticity had a strong influ-
ence on both shear and tensile monotonic behavior. However, there has been less work on
combined viscoelastic–viscoplastic behavior involving nonlinear viscoelasticity. Frank and
Brockman (2001) used molecular cooperativity with a Schapery model, incorporating the
free volume approach, combined with a modified Bodner–Partom viscoplastic model (Bod-
ner and Partom 1975, 1972) to capture the effects of pressure, strain rate and hardening
on multiaxial responses for a glassy polymer. The approach found good agreement with
experiment.
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The foregoing has described the limited nonlinear viscoelastic–viscoplastic models de-
scribing adhesive response. This work combines a modified nonlinear viscoelastic Schapery
model with Perzyna’s viscoplastic model (using the von Mises yield criterion with nonlinear
kinematic hardening). The constitutive model is solved numerically by an iterative algorithm
with stress corrections. The model is compared to experimental results of creep tests on scarf
joints with adhesives of differing degrees of toughness.

2 Model description for adhesives

Nonlinear viscoelastic and time-dependent plastic strain has been observed during a series
of stress-controlled experiments of adhesive bulk tensile coupons (Lemme and Smith 2016,
2018). At low stress levels, these adhesives exhibited only viscoelastic response with full
recovery, whereas at high stress levels, both viscoelastic and viscoplastic response was ob-
served. Accordingly, in the following, the total strain of an adhesive was decomposed into
fully recoverable viscoelastic and unrecoverable viscoplastic components with the assump-
tion that they are uncoupled:

εtot
ij = εe

ij + ε
p

ij , (1)

where the superscripts tot, e, and p denote the total, viscoelastic, and viscoplastic compo-
nents, respectively.

2.1 Viscoelastic component

Schapery’s single integral model for nonlinear viscoelasticity, which is based on the con-
cepts of irreversible thermodynamics, was employed to describe the recoverable time-
dependent responses as (Schapery 1969)

εe,t = gt
0D0σ

t + gt
1

∫ t

0
�Dψt −ψτ d

(
gτ

2 σ τ
)

dτ
dτ, (2)

where ψt is the effective time given by

ψt = t

a
, (3)

a, g0, g1, and g2 are nonlinear parameters dependent on the current stress σ t and temperature
(temperature effects were not considered here), and D0 is the instantaneous compliance. The
transient compliance �Dψt can be expressed in the form of a power-law (Tuttle and Brinson
1986; Shuangyin and Tsai 1994) or Prony series (De Prony 1795) and characterized by
creep-recovery experiments (Gamby and Blugeon 1989). In this study, �Dψt was expressed
as a five-term Prony-series

�Dψt =
5∑

n=1

Dn

(
1 − exp

(−λnψ
t
))

. (4)

Lai and Bakker (1996) generalized the uniaxial Schapery’s model to three dimensions for
isotropic materials with the assumption that the hydrostatic and deviatoric components were
fully uncoupled. The modified formulation is presented as

ε
e,t
ij = e

e,t
ij + 1

3
ε

e,t
kk δij
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, (5)

where δij is the Kronecker delta, e
e,t
ij , ε

e,t
kk , and St

ij are the deviatoric strain, volumetric strain,
and deviatoric stress at the current time t , respectively.

The instantaneous shear compliance J0 and bulk compliance B0 are evaluated from

J0 = 2 (1 + v)D0,

B0 = 3 (1 − 2v)D0, (6)

where v is the Poisson ratio assumed to be constant. Similarly, the transient shear and bulk
compliance are determined by

�Jψt = 2 (1 + v)�Dψt

,

�Bψt = 3 (1 − 2v)�Dψt

. (7)

Substituting Eqs. (6) and (7) into Eq. (5) and employing a hereditary integral proposed by
Haj-Ali and Muliana (2004), we obtain the deviatoric strain e

e,t
ij and the volumetric strain

ε
e,t
kk in the recursive form as
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where qt−�t
ij,n and qt−�t

kk,n are the shear and volumetric hereditary integrals at the previous time
increment (t −�t ) for each term in the Prony series. They are updated and stored at the end
of the current time increment as

qt
ij,n = e−λn�ψt

qt−�t
ij,n + (

gt
2S

t
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ij
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, (10)
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2.2 Viscoplastic component

The evolution of the viscoplastic strain rate was given by Perzyna’s model (Perzyna 1966)
with the associated flow rule

ε̇
p,t

ij = λ̇mij = η 〈φ (f )〉 ∂f

∂σ t
ij

, (12)

where η is a viscosity parameter, �(f ) is the overstress function expressed with the yield
function f , and 〈·〉 is the McCauley bracket such that

〈φ (f )〉 =
{

0, φ (f ) ≤ 0,(
f

σ 0
y

)N

, φ (f ) > 0,
(13)

where σ 0
y is the initial yield stress, and N is a rate sensitive constant. From Eq. (12) we can

see that the viscoplastic component is activated when the yield function is larger than zero.
The von Mises yield criterion with nonlinear kinematic hardening was employed for the

yield function f since it has been shown to agree with the plastic response of the adhesives
considered in this work (Mohapatra 2018, 2014). The function f is written as

f =
√

3

2

(
St

ij − α′ t
ij

) (
St

ij − α′ t
ij

) − σ 0
y , (14)

where α′ t
ij is the deviatoric backstress tensor at the current time. The evolution law of the

backstress is defined from the Armstrong–Frederick model (Frederick and Armstrong 2007)

α̇t
ij = c

σ 0
y

(
σ t

ij − αt
ij

)
ε̇p,t
e − καt

ij ε̇
p,t
e , (15)

where c is the initial kinematic hardening modulus, κ determines the rate at which the kine-
matic hardening modulus decreases with the increasing plastic deformation, and ε̇

p,t
e is the

rate of the effective viscoplastic strain,

ε̇p,t
e =

√
2

3
ε̇

p,t

ij ε̇
p,t

ij . (16)

3 Numerical algorithm

3.1 Discretization

Considering a time increment �t , the strain history εt at time t is obtained from the prior
strain εt−�t and the change in strain over the time increment �εt . Accordingly, the total
strain from Eq. (1) can be presented as

ε
tot,t
ij = ε

e,t−�t
ij + �ε

e,t
ij + ε

p,t−�t

ij + �ε
p,t

ij , (17)

σ t
ij = σ t−�t

ij + �σ t
ij . (18)
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After some algebraic manipulation, the viscoelastic deviatoric and volumetric strain incre-
ments from Eqs. (8) and (9) can be written as
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�ε
e,t
kk = Btσ t

kk − B
t−�t

σ t−�t
kk − 1

3

5∑
n=1

Bn

(
gt

1e
−λn�ψt − gt−�t

1

)
qt−�t

kk,n

− 1

3
gt−�t

2

5∑
n=1

Bn

(
gt−�t

1

1 − e−λn�ψt−�t

λn�ψt−�t
− gt

1

1 − e−λn�ψt

λn�ψt

)
σ t−�t

kk . (20)

Assuming that the time increment �t is small, we obtain the following relationship between
the nonlinear viscoelastic parameters:

gt−�t
i = gt

i , i = 0,1,2,

�ψt−�t = �ψt . (21)

The approximate stress increment at the beginning of each time increment may be obtained
by substituting Eq. (21) into Eqs. (19) and (20):
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]
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Using the backward Euler integration method, the viscoplastic strain from Eq. (12) can be
represented with the current increment as

ε
p,t

ij = ε
p,t−�t

ij + �ε
p,t

ij = ε
p,t−�t

ij + η

(
f

σ 0
y

)N

∂f

∂σ t
ij

�t. (24)

Similarly, the current backstress tensor is transferred into an incremental form

αt
ij = αt−�t

ij + �αt
ij = αt−�t

ij + c

σ 0
y

(
σ t

ij − αt
ij

)
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e − καt
ij�εp,t

e . (25)

3.2 Viscoplastic formulation

From Eq. (16) we can see that to calculate the effective viscoplastic strain �ε
p,t
e , the value

of ∂f

∂σ t
ij

is needed. The derivative is presented as

∂f

∂σ t
ij

=
√

3(St
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kl )√

2(St
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′ ,t
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′ ,t
mn)
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∂σ t
ij

. (26)
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The yield function f depends on not only the current stress σ t
ij but also on the backstress

αt
ij . Simultaneously, αt

ij is a function of σ t
ij and �ε

p,t
e , whereas �ε

p,t
e depends on f . The

interactions between each variable do not allow ∂f

∂σ t
ij

and �ε
p,t
e to be found directly. Newton’s

iteration was employed to calculate the viscoplastic strain according to the flowchart shown
in Fig. 1. At the beginning of the iteration, we initialize by

∂f

∂σ t
ij

∂f

∂σ t
ij

= γ, (27)

where γ is a constant. The increment of the effective viscoplastic strain �ε
p,t
e is expressed

with γ as
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√
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f
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y
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γ�tη(

f

σ 0
y
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Accordingly, the derivative of the effective strain increment with respect to the stress is given
by

∂�ε
p,t
e

∂σ t
ij

=
√

2

3
γ

�tηN

f
(
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σ 0
y

)N ∂f
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ij
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The derivative of the deviatoric backstress with respect to the stress is obtained from Eq. (25)
as

∂α′
ij
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=
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y
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y
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)
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e

, (30)

whereas the derivative of the deviatoric stress with respect to the stress is expressed as

∂St
ij

∂σ t
kl

= δikδjl − 1

3
δij δkl . (31)

Substituting Eqs. (29)–(31) into Eq. (26), we obtain ∂f

∂σ t
ij

as a function of the current stress

and backstress tensors as
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√
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(32)
where P = 1 + c

σ 0
y
�ε

p,t
e + κ�ε

p,t
e .

Comparing the calculated ∂f

∂σ t
ij

∂f

∂σ t
ij

with the initial value of γ , the difference is defined as

R = ∂f

∂σ t
ij

∂f

∂σ t
ij

− γ. (33)
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Fig. 1 Flowchart of the
viscoplastic strain calculation

To minimize R, allowing the iteration converge, γ is corrected at the end of every iteration
according to

γ K+1 = γ K − R

4 ∂R

∂γ K

= γ K +
∂f

∂σ t
ij

∂f

∂σ t
ij

− γ K

4
. (34)

The superscripts K and K + 1 present the K th and (K + 1)th iterations, respectively. It
should be noted that the number 4 in Eq. (34) was used to slow down the rate of convergence,
preventing γ from being negative without changing the iteration result. Substituting γ K+1

into Eq. (28), the (K + 1)th loop begins. Once the iteration converges, namely R < 10−7,
the viscoplastic strain increment �ε

p,t

ij can be calculated from Eq. (24).

3.3 Viscoelastic–viscoplastic formulation

The viscoelastic–viscoplastic model was implemented into FE using a UMAT in ABAQUS
2016. The stress and the Jacobian matrix are required for each time increment in the UMAT.
Figure 2 shows the iterative algorithm for the combined viscoelastic–viscoplastic system.

At the beginning of the nth time increment �tn, we assume the adhesive behaves vis-
coelastically. A trial stress increment accounting only for viscoelasticity, �σ tr , was calcu-
lated from Eqs. (22) and (23) with the nonlinear parameters and variables from the previous
time history t − �tn. Based on the trial stress, those parameters and the increment of the
viscoelastic strain �ε

e, t
ij were updated. To implement viscoplasticity, the backstress αt

ij and
the yield function f were obtained by the trial stress. The iteration of viscoplastic strain
(Fig. 1) was activated when f was larger than zero.
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Fig. 2 Flowchart of the viscoelastic–viscoplastic system

To decide if the calculation has converged, a strain comparison was introduced by

ξij = �ε
tot,t
ij − �ε

ext,t
ij , (35)

where the total strain increment �ε
tot,t
ij is obtained as a combination of both components,

�ε
tot,t
ij = �ε

e,t
ij + �ε

p,t

ij , (36)

and �ε
ext,t
ij is calculated from the stiffness matrix and external force and then passed into the

UMAT. The stiffness matrix is updated for each increment from the Jacobian in the UMAT.
The root of the squared differences is defined by

ξ ∗ = √
ξij ξij . (37)



672 Mechanics of Time-Dependent Materials (2022) 26:663–681

When ξ ∗ < 10−7, the iteration is assumed to be converged. If the convergence is not reached,
then the stress is corrected by

σ
t,K+1
ij = σ

t,K
ij − [ ∂ξK

ij

∂σ
t,K
kl

]−1ξK
kl , (38)

where the superscripts K and K + 1 represent the K th and (K + 1)th iteration, respectively.
In Eq. (38),
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∂σ t
kl

= ∂�ε
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kl

+ ∂�ε
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The derivative of the viscoelastic strain increment to the stress,
∂�ε
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ij

∂σ t
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, is calculated according

to the condition of the effective stress exceeding the linear viscoelastic range. The effective
stress σ t is given as

σ t =
√
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2
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t
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For nonlinear viscoelasticity, the derivative can be obtained from Eqs. (19) and (20) as
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In this study the nonlinear parameters are defined as linear functions of the current effective
stress σ t :

gt
i = aiσ

t + bi, i = 0,1,2,

at = a3σ
t + b3, (42)

where ai and bi are constants.
For linear viscoelasticity,

gt
i = at = 1, i = 0,1,2. (43)
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Therefore Eq. (41) becomes

∂�ε
e,t
ij

∂σ t
kl

= J
t
δikδjl + 1

3

(
B

t − J
t
)

δij δkl . (44)

The derivative of the viscoplatic strain increment is obtained from Eq. (24) as

∂�ε
p,t

ij

∂σ t
kl

= �tη

(
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σ 0
y

)N

(
N

f

∂f

∂σ t
ij

∂f

∂σ t
kl

+ ∂2f

∂σij ∂σkl

). (45)

In Eq. (45) the high-order derivative is given by

∂2f

∂σij ∂σkl

= − (GmnGmn)
−1 Gpq

∂Gpq

∂σkl
(1 − D)Gij − ∂D
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2
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[
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∂σkl
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∂σkl
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]
(
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√
2
3GmnGmn

)2 , (46)

where

Gij = St
ij − α

′ ,t
ij , (47)

E =
(St

ij − α
′ ,t
ij )( c

σ 0
y
St
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σ 0
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P
, (48)
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∂H

∂σkl

=
√

2

3

∂f

∂σ t
mn

∂f

∂σ t
mn

�tηN (N − 1)

f 2
(

f

σ 0
y

)N ∂f

∂σ t
kl

. (54)



674 Mechanics of Time-Dependent Materials (2022) 26:663–681

Fig. 3 Geometry of the studied scarf joint. All dimensions are in mm

3.4 Plane strain environment

The 3D constitutive model was used to simulate the creep-recovery behavior of a scarf joint
as shown in Fig. 3. Given the high computational cost of the 3D model, the suitability of a
2D model was considered. For a shear dominated stress state, as occurs in the adhesive of
the scarf joint considered here, plane stress and strain formulations provide similar solutions.
Nevertheless, the relatively stiff aluminum adherends create a nearly plane strain condition
in the adhesive and were used here. The stress and strain components were reduced accord-
ing to

ε13 = ε23 = ε33 = σ13 = σ23 = 0, (55)

σ33 = υ(σ11 + σ22). (56)

4 Numerical simulation of the scarf joints

4.1 Mesh and boundary conditions

The scarf joint consisted of two adherends and an adhesive film with a thickness of 0.21 mm.
The finite element meshes for the 2D and 3D models were created using the preprocessor in
ABAQUS 2016 as shown in Fig. 4. In the 2D model (Fig. 4-a) the adherends and adhesive
were mostly meshed with 4-node plane strain bilinear reduced integration with hourglass
control elements (CPE4R). At the near surface-transition zone from the adherend to adhe-
sive 3-node linear plane strain triangle elements were used for the wedge shapes. To capture
the deformation within the adhesive layer, the adhesive was divided into four equal layers
through the thickness. Whereas a convergence study showed minimal improvement from
two layers in the adhesive, the refinement in the relatively small adhesive layer had a negli-
gible computational cost. Similarly, the 3D model (Fig. 4-b) was meshed with 8-node linear
brick, reduced integration with hourglass control elements (C3D8R), with 6-node triangular
prism elements (C3D6) for the transition zone. The surface on one end of the scarf joint
was constrained in all directions and rotations. The surface on the other end was allowed
to deform in the longitudinal direction of the joint (x-axis). Load was applied as a pressure
over the surface of the free end. Accordingly, the average shear stress in the adhesive was
obtained by

τ adh
12 = sin 10◦ cos 10◦σ joi

xx , (57)

where τ adh
12 is the shear stress in the adhesive, and σ

joi
xx is the applied pressure.
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Fig. 4 Finite element mesh for (a) 2D model and (b) 3D model

4.2 Parameter calibration for viscoelasticity

This work considered the response of a “standard” (Cytec FM300-2) and “toughened”
(Hysol EA9696) film adhesive in a scarf joint of which the adherends were made of 2024
aluminum. The adherends were modeled elastically with a modulus of 73 GPa and Poisson’s
ratio of 0.33. Both adhesives were thermoset and epoxy-based. A Poisson’s ratio of 0.38 and
0.43 (Mohapatra 2018) was used for the standard and toughened adhesive, respectively.

The model was calibrated from 10000 s creep tests of scarf joints at 20% and 50% of the
ultimate shear strength (USS). Considering the linear viscoelastic response with a constant
shear stress σadh

12 = 20% USS, Eq. (5) reduces to

εe
12 = 1

2

[
J0 +

7∑
n=1

Jn(1 − e−λnt )

]
σadh

12 , (58)

from which Do was found at t ≈ 0, whereas the Prony series parameters were determined at
t 
 0.

For nonlinear creep, Eq. (5) reduces to

εe
12 = 1

2

[
g0J0σ

adh
12 + g1g2σ

adh
12

N∑
n=1

Jn

(
1 − e−λnt

)]
, (59)



676 Mechanics of Time-Dependent Materials (2022) 26:663–681

Table 1 Parameters for the viscoelastic model for two adhesives

Tough Standard Tough Standard

Prony Series D1 [1/MPa] 1.74×10−5 1.45×10−5 λ1 [1/s] 1 × 10−2 1 × 10−1

D2 [1/MPa] 2.32×10−5 4.35×10−6 λ2 [1/s] 1 × 10−3 1 × 10−2

D3 [1/MPa] 1.02×10−5 2.9 × 10−5 λ3 [1/s] 5 × 10−4 5 × 10−3

D4 [1/MPa] 1.45×10−5 1.45×10−5 λ4 [1/s] 1 × 10−4 3 × 10−4

D5 [1/MPa] 2.9 × 10−5 1.45×10−5 λ5 [1/s] 1 × 10−5 3 × 10−5

D0 [1/MPa] 4.52×10−4 3.19×10−4

g0 a0 [1/MPa] 8.84×10−3 −3.53×10−3 b0 0.8733 1.0533

g1 a1 [1/MPa] 1.16×10−7 −2.03×10−6 b1 0.89 1.03

c1 2.46 1.9

g2 a2 [1/MPa] 1.40×10−2 1.33×10−2 b2 0.8 0.8

a a3 [1/MPa] −1.86×10−2 4.42×10−3 b3 1.2667 1.0533

whereas the associated recovery is

εe
12 = g2σ

adh
12

{
N∑

n=1

Jn

[
e−λn(t−t0) − e

−λn

(
t0
a +t−t0

)]}
. (60)

The nonlinear parameters g0, g1, g2, and a were fit to linear functions of the effective
stress by Eq. (42). To provide continuity between the linear and nonlinear viscoelastic re-
sponse, g1 for both adhesives was represented as

gt
1 = a1

(
σ t

)c1 + b1, (61)

where a1, b1, and c1 are constant.
Accordingly, the instantaneous strain at 50% USS was used to obtain g0 from Eq. (59).

The recovery strain was used to find g2 and a at 50% of USS from Eq. (60). Finally, the
creep response was used to obtain g1 using Eq. (59). It should be noted that the permanent
strain was subtracted from the above experimental responses at 50% USS before fitting the
viscoelastic parameters, which are listed in Table 1.

4.3 Time-dependent plasticity

The viscoplastic parameters c and k were determined from monotonic scarf joint tests at
4448 N/min. Assuming that the adhesive was under pure shear, Eqs. (14) and (15) were
combined and rewritten as

σ − σ 0
y = √

3σadh
12 − σ 0

y = c

k

(
1 − e−kεP

e

)
. (62)

It should be noted that c and k describe the development of the yield surface, whereas
η and N in Eq. (12) influence the time-dependent plasticity (viscoplasticity). To calibrate
these two parameters, the effect of viscoplasticity in the adhesive films was considered.

A series of creep tests at 50% USS with different durations were conducted on the scarf
joints. The applied load was ramped to 50% USS over 50 s for the toughened and standard
adhesives and held constant until the load was removed at double the loading rate, after
which the scarf joints were allowed to recover. The average adhesive strain was measured
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Fig. 5 The fitting of viscoplastic components (εp
12) for the (a) toughened and (b) standard adhesive in scarf

joints. Circles represent the measured residual strain for varying load durations (LD)

Table 2 Parameters in
viscoplastic components for von
Mises yielding with kinematic
hardening

Tough Standard

c [MPa] 1.007 × 103 1.62 × 103

k 45 35

N 1.37 1.7

η 5.5 × 10−5 1.5 × 10−5

using a strain gage rosette (0◦/45◦/90◦) mounted on one side of the joint and centered over
the bond line. Details of the method and its validation are presented elsewhere (Krause and
Smith 2021).

The residual shear strain is shown in Fig. (5) as a function of the load duration (LD),
which includes the ramp-up time. Each load duration was repeated three times, from which
the average and standard deviation are reported. The residual strain increased with the load
duration, showing viscoplastic behavior. The parameters η and N were found by fitting the
residual strain as shown by the dashed lines in Fig. 5. The viscoplastic component ε

p

12 in the
model agreed the experiments for both adhesives. The viscoplastic parameters are listed in
Table 2.

4.4 Numerical analysis

The calibration described above considered only one load duration for viscoelasticity
(10,000 s) and only the permanent deformation for viscoplasticity. Using the calibrated pa-
rameters above, the predicted total shear response of the adhesive films to a load duration of
10000 s are compared with experiment for creep-recovery tests of scarf joints in Fig. 6. The
experiments at 20% and 50% USS were repeated three times for the toughened and standard
adhesive. As shown in Fig. 6, the nonlinear viscoelastic–viscoplastic (NEP) model showed
good agreement with experiments at 20% and 50% USS for both adhesives. To show the
contribution of nonlinear viscoelasticity, dotted lines in Fig. 6 describe linear-viscoelastic
(LEP) response. Neglecting nonlinear viscoelasticity led to underestimating total strain for
the toughened by 21% and overestimating strain for the standard adhesive by 4%. The stan-
dard adhesive experienced nonlinear stiffening, resulting in a decreasing instantaneous com-
pliance (g0 < 1 in Eq. (2)) in the nonlinear viscoelastic–viscoplastic model. Thus the linear
viscoelastic–viscoplastic model, with a constant instantaneous compliance, overestimated
the strain response.
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Fig. 6 Comparison of the creep-recovery response of (a) toughened and (b) standard adhesive in scarf joints
with linear (LEP) and nonlinear (NEP) viscoelastic–viscoplastic models with 2D or 3D element formulations

Fig. 7 A comparison of varying creep-recovery durations of (a) toughened and (b) standard adhesive scarf
joints to the nonlinear viscoelastic–viscoplastic model (NEP)

The 2D and 3D models, compared in Fig. 6, were within 1% of each other. Given the sim-
ilarity of the results, and the computational efficiency of the 2D model, it was used through-
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Fig. 8 A comparison of the centerline shear stress and strain of a toughened (a, b) and standard adhesive (c, d)
between the nonlinear viscoelastic–viscoplastic (NEP), linear viscoelastic–viscoplastic (LEP), and nonlinear
viscoelastic (NE) models

out the remainder of the study. Figure 7 compares the predicted creep-recovery responses
of varying load durations at 50% USS with experiment. The predicted strain response was
within the experimental repeatability for creep and recovery. The predicted recovery fol-
lowed the experimental response for each duration. The residual strain corresponding to
the viscoplastic deformation developed nonlinearly and reached 7.2% and 3% of the total
strain up to the load duration of 10000 s for the toughened and standard adhesives, respec-
tively.

Figure 8 compares the distributions of shear stress and strain along the center line of the
adhesives at 50% USS for three cases: NEP, LEP, and nonlinear viscoelastic (NE). The NEP
model shows that time reduces the shear stress concentration but magnifies the strain con-
centration, as observed elsewhere (Su and Mackie 1993). For both adhesives (Fig. 8(a, c)),
the stress distribution predicted by the NE model changed little from 1000 to 10000 s, show-
ing that viscoplasticity accounted for the reduced stress concentration at longer durations.
In Fig. 8(b, d) the NE model produced a smaller strain concentration than the models incor-
porating viscoplasticity; this shows that viscoplastic response magnifies the strain concen-
trations in these adhesives. Note that the higher strain of the standard adhesive from NE (in
comparison to the other models) is a result of nonlinear hardening for this adhesive (Fig. 8d).

5 Conclusion

In this study, we proposed a three-dimensional nonlinear viscoelastic–viscoplastic model
combining the modified Schaper integral model and Perzyna viscoplastic model with the
von Mises yield criterion and nonlinear kinematic hardening, an iterative scheme assuming
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only viscoelasticity initially with a correction of stress in both viscoelasticity and viscoplas-
ticity to solve the combined system numerically. The nonlinear viscoelastic and viscoplastic
parameters were calibrated from creep-recovery and monotonic tests on scarf joints with a
toughened and a standard adhesive film. The existence and development of viscoplasticity
was discussed by comparing the viscoplastic component of the model with residual strain
from creep tests on the scarf joints. The viscoplastic strain increased nonlinearly with in-
creasing load duration. A two-dimensional model considering plane strain was developed
and compared with the 3D model in simulating the creep-recovery of the adhesives in scarf
joints. A good agreement between the prediction and the experimental results was obtained.
The finite element analysis showed that viscoplasticity reduced the stress concentration and
magnified the strain concentration.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Acha, B.A., Reboredo, M.M., Marcovich, N.E.: Creep and dynamic mechanical behavior of PP-jute compos-
ites: effect of the interfacial adhesion. Composites, Part A, Appl. Sci. Manuf. 38, 1507–1516 (2007)

Afendi, M., Teramoto, T., Bakri, H.B.: Strength prediction of epoxy adhesively bonded scarf joints of dissim-
ilar adherends. Int. J. Adhes. Adhes. 31, 402–411 (2011)

Ali, H., Wahab, M.A.: History of adhesive composite joints. In: Joining Composites with Adhesives: Theory
and Applications, pp. 1–14. DEStech Publications, Inc., Lancaster (2015)

Badulescu, C., Germain, C., Cognard, J.Y., Carrere, N.: Characterization and modelling of the viscous be-
haviour of adhesives using the modified Arcan device. J. Adhes. Sci. Technol. 29, 443–461 (2015)

Bodner, S.R., Partom, Y.: A large deformation elastic-viscoplastic analysis of a thick-walled spherical shell.
J. Appl. Mech. 39, 751–757 (1972)

Bodner, S., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl.
Mech. 42, 385–389 (1975)

Botha, L.R., Jones, R.M., Brinson, H.F.: Viscoelastic analysis of adhesive stresses in bonded joints. Report
VPI-E-83-17, Center for Adhesion Science (1983)

Botha, L.R., Jones, R.M., Brinson, H.F.: Viscoelastic Analysis of Adhesive Stresses in Bonded Joints (1983)
Choi, K.K., Reda Taha, M.M.: Rheological modeling and finite element simulation of epoxy adhesive creep

in FRP-strengthened RC beams. J. Adhes. Sci. Technol. 27, 523–535 (2013)
De Prony, B.G.R.: Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur

celles de la force expansive de la vapeur de l’alkool, a différentes températures. J. Éc. Polytech. 1, 24–76
(1795)

Dufour, L., Bourel, B., Lauro, F., Haugou, G., Leconte, N.: A viscoelastic – viscoplastic model with non
associative plasticity for the modelling of bonded joints at high strain rates. Int. J. Adhes. Adhes. 70,
304–314 (2016)

Frank, G.J., Brockman, R.A.: A viscoelastic–viscoplastic constitutive model for glassy polymers. Int. J. Solids
Struct. 38, 5149–5164 (2001)

Frederick, C., Armstrong, P.: A mathematical representation of the multiaxial Bauschinger effect. Mater. High
Temp. 24, 1–26 (2007)

Gamby, D., Blugeon, L.: On the Characterization by Schapery’s Model of Non-linear Viscoelastic Materials,
vol. 18, pp. 145–165. Kluwer Academic, Dordrecht (1989)

Groth, H.L.: Viscoelastic and viscoplastic stress analysis of adhesive joints. Int. J. Adhes. Adhes. 10, 207–213
(1990)

G’sell, C., Jonas, J.J.: Determination of the plastic behaviour of solid polymers at constant true strain rate.
J. Mater. Sci. 14, 583–591 (1979)



Mechanics of Time-Dependent Materials (2022) 26:663–681 681

Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the Schapery non-linear viscoelastic
material model. Int. J. Numer. Methods Eng. 59, 25–45 (2004)

Hart-Smith, L.J.: Differences between adhesive behavior in test coupons and structural joints. In: ASTM
Adhesives Committee D-14 Meeting (1981)

Henriksen, M.: Nonlinear viscoelastic stress analysis—a finite element approach. Comput. Struct. 18,
133–139 (1984)

Houhou, N., et al.: Analysis of the nonlinear creep behavior of concrete/FRP-bonded assemblies. J. Adhes.
Sci. Technol. 28, 1345–1366 (2014)

Hu, G.K., Schmit, F., Baptiste, D., Francois, D.: Viscoplastic analysis of adhesive joints. J. Appl. Mech. 63,
21–26 (1996)

Ilioni, A., Badulescu, C., Carrere, N., Davies, P., Thévenet, D.: A viscoelastic–viscoplastic model to describe
creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies. Int. J. Adhes.
Adhes. 82, 184–195 (2018)

Knauss, W.G.: Non-linear viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128
(1981)

Knauss, W.G., Emri, I.: Volume change and the nonlinearly thermo-viscoelastic constitution of polymers.
Polym. Eng. Sci. 27, 86–100 (1987)

Krairi, A., Doghri, I.: A thermodynamically-based constitutive model for thermoplastic polymers coupling
viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast. 60, 163–181 (2014)

Krause, M., Smith, L.V.: Ratcheting in structural adhesives. Polym. Test. 97, 107154 (2021)
Lai, J., Bakker, A.: 3-D schapery representation for non-linear viscoelasticity and finite element implementa-

tion. Comput. Mech. 18, 182–191 (1996)
Lemme, D.A., Smith, L.V.: Washington State University, degree granting institution. A Time Dependent

Nonlinear Model of Bulk Adhesive Under Static and Cyclic Stress. Washington State University (2016)
Lemme, D., Smith, L.: Ratcheting in a nonlinear viscoelastic adhesive. Mech. Time-Depend. Mater. 22,

519–532 (2018)
Majda, P., Skrodzewicz, J.: A modified creep model of epoxy adhesive at ambient temperature. Int. J. Adhes.

Adhes. 29, 396–404 (2009)
Mohapatra, P.C.: Finite Element Analysis of Adhesive Bonded Wide Area Lap Shear Joints (2014)
Mohapatra, P.C.: Characterization of Adhesive and Modeling of Nonlinear Stress/Strain Response of Bonded

Joints, vol. 10. Washington State University (2018)
Morin, D., Haugou, G., Lauro, F., Bennani, B., Bourel, B.: Elasto-viscoplasticity behaviour of a structural

adhesive under compression loadings at low, moderate and high strain rates. J. Dyn. Behav. Mater. 1,
124–135 (2015)

Pandey, P.C., Narasimhan, S.: Three-dimensional nonlinear analysis of adhesively bonded lap joints consid-
ering viscoplasticity in adhesives. Comput. Struct. 79, 769–783 (2001)

Perzyna, P.: Fundamental problems in viscoplasticity. In: Advances in Applied Mechanics, vol. 9,
pp. 243–377. Elsevier, Amsterdam (1966)

Popelar, C.F., Liechti, K.M.: A distortion-modified free volume theory for nonlinear viscoelastic behavior.
Mech. Time-Depend. Mater. 7, 89–141 (2003)

Popelar, C.F., Liechti, K.M.: Multiaxial nonlinear viscoelastic characterization and modeling of a structural
adhesive. J. Eng. Mater. Technol. 119, 205–210 (1997)

Rocha, I.B.C.M., et al.: Numerical/experimental study of the monotonic and cyclic viscoelastic/viscoplas-
tic/fracture behavior of an epoxy resin. Int. J. Solids Struct. 168, 153–165 (2019)

Roy, S., Reddy, J.: Nonlinear Viscoelastic Analysis of Adhesively Bonded Joints. Tire Sci. Technol. 64 (1986)
Schapery, R.A.: Further Development of a Thermodynamic Constitutive Theory: Stress Formulation. Purdue

Research Foundation, Lafayette (1969), 69-2
Shuangyin, Z., Tsai, L.W.: Computer simulation of creep damage at crack tip in short fibre composites. Acta

Mech. Sin. 10, 282–288 (1994)
Silva, P., Valente, T., Azenha, M., Sena-Cruz, J., Barros, J.: Viscoelastic response of an epoxy adhesive for

construction since its early ages: experiments and modelling. Composites, Part B, Eng. 116, 266–277
(2017)

Su, N., Mackie, R.I.: Two-dimensional creep analysis of structural adhesive joints. Int. J. Adhes. Adhes. 13,
33–40 (1993)

Tuttle, M.E., Brinson, H.F.: Prediction of the long-term creep compliance of general composite laminates.
Exp. Mech. 26, 89–102 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.


	A nonlinear viscoelastic--viscoplastic constitutive model for adhesives under creep
	Abstract
	Introduction
	Model description for adhesives
	Viscoelastic component
	Viscoplastic component

	Numerical algorithm
	Discretization
	Viscoplastic formulation
	Viscoelastic--viscoplastic formulation
	Plane strain environment

	Numerical simulation of the scarf joints
	Mesh and boundary conditions
	Parameter calibration for viscoelasticity
	Time-dependent plasticity
	Numerical analysis

	Conclusion
	References


