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Abstract
Image Secret Sharing (ISS) is a cryptographic technique used to distribute secret images
among multiple users. However, current Visual Secret Sharing (VSS) schemes produce a
halftone image with only 50% contrast when reconstructing the original image. To over-
come this limitation, the Randomized Image Secret Sharing (RISS) scheme was introduced.
RISS achieves a higher contrast of 70% when extracting the secret image but comes with
a high computational cost. This research paper presents a novel approach called Graphics
Processing Unit (GPU)-based Randomized Image Secret Sharing (GRISS), which utilizes
data parallelism within the RISS pipeline. The proposed technique also incorporates an
Autoencoder-based Single Image Super-Resolution (ASISR) to enhance the contrast of the
recovered image. The performance of GRISS is evaluated against RISS, and the contrast of
the ASISR images is compared to current benchmark models. The results demonstrate that
GRISS outperforms state-of-the-art models in both efficiency and effectiveness.
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1 Introduction

Image Secret Sharing (ISS) is a type of image cryptography used to secure secret visual infor-
mation using encrypted shares. There are several visual cryptography techniques available
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for securely transmitting visual media [1–4]. However, most ISS techniques suffer from
common problems, such as poor contrast when recovering secret images. The maximum
achievable contrast with ISS techniques is typically 50% [5]. Existing VSS schemes typi-
cally convert grayscale and color images into monotone images using halftone techniques,
resulting in recovered images that are always monotone. To address these limitations, the
Block-based Progressive Image Secret Sharing (BPISS) scheme was proposed by Hou et al.
[6]. This scheme achieves a contrast of 50% but recovers secret images as halftone images.
Kim et al. [7] proposed an efficient method for high-capacity separable reversible data hiding
in encrypted halftoned images using Hamming code, ensuring a large payload with low dis-
tortion. Experimental results confirm its effectiveness in information embedding and image
reconstruction.

In an effort to overcome these limitations, the Randomized Image Secret Sharing (RISS)
scheme was introduced by Mhala et al. [5]. RISS utilizes a data embedding technique to
recover secret images with higher contrast, ranging from 70-80% for noise-like shares to
70-90% for meaningful shares. Enhancing RISS in two dimensions makes it more suitable
for time-sensitive and health-critical applications. Utilizing parallelism in the RISS pipeline
decreases computational costs [8, 9]. Improving the contrast of RISS improves the image
quality [10].

Recent studies in the field of parallel computing have highlighted the benefits of using
Graphics Processing Unit (GPU) and Compute Unified Device Architecture (CUDA) for
faster computation [11]. To address these concerns, this research paper proposes an effi-
cient GPU-based Randomized Image Secret Sharing (GRISS) scheme. GRISS utilizes data
parallelism within the RISS pipeline and incorporates the Autoencoder-based Single Image
Super-Resolution (ASISR) technique to enhance the contrast of recovered images. Single
Image Super-Resolution (SISR) methods rest on two fundamental principles: precision and
robustness. Autoencoders have demonstrated their capability to provide reconstructions that
are both accurate and stable [12]. Nonlinear autoencoders demonstrate the capability to cap-
ture and represent the influence of each latent variable on super-resolution reconstruction
through their ability to model nonlinear modes in the weight distribution across the latent
space representation and the entire field [13]. An autoencoder is trained to encode and decode
data, serving the purposes of dimensionality reduction and feature learning. This is accom-
plished through various regularized and variational encoders [14].

The performance of GRISS is compared against the RISS scheme, demonstrating
improved speed and contrast. The proposedGRISS scheme outperforms state-of-the-artmod-
els in both efficiency and effectiveness. This system adopts a user-centric design, prioritizing
simplicity in deployment and user interaction. It operates by generating a number of digital
shares corresponding to the participants, and each share is distributed to the respective par-
ticipant. Notably, individual shares contain no discernible information about the secret. The
secret image is reconstructed onlywhen participants collectively combine their digital shares.
Subsequently, by feeding this reconstructed secret image into the autoencoder, a superior-
quality digital image is obtained. This process ensures the security of the shared secret while
delivering a high-fidelity reconstructed image through the integration of advanced autoen-
coder techniques. Resource optimization strategies are implemented to mitigate concerns
about higher operational costs and resource requirements associated with GPU utilization.
TheGRISS systemeffectively harnessesGPU resources throughparallel processing, ensuring
efficient operation even in environments with constrained computational resources. More-
over, the integration of ASISR into the GRISS pipeline stands as a testament to the system’s
commitment to delivering high-quality results. This strategic integration not only elevates
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the visual quality of the secret images but also maintains computational efficiency through
optimized GPU utilization.

2 Related works

Image Secret Sharing (ISS) is a cryptographic technique that involves dividing an image
into multiple shares, which are distributed among a group of participants. The shares are
constructed in such a way that only a specific threshold of shares is required to reconstruct
the original image, while any fewer shares reveal no information about the image. Based on
the recovery of the secret image, the ISS is categorized into Random-Grid ISS, Traditional
ISS schemes, and Progressive ISS.

The basic Random-Grid ISS uses two random-grids [15]. In this approach, An encoded
random-grid is obtained using amaster random-grid and an input image. The secret image gets
revealed when these two random-grids overlaid. The basic RG ISS is continuously evolving
from its extension to the colour images for enhancing security, efficiency, and practicality [10,
16–18]. Traditional ISS recover the secret imagewith aminimal k shares out of n shares when
stacked together. The termVisual Cryptography (VC) was founded by Naor and Shamir [19].
Basis matrices are used to veil the original pixels of the secret images. Generating uniform
shares for each participant and the pixel expansion are the drawbacks of this model [20].

Progressive ISS works like a jig-saw puzzle [6]. Block-based progressive Image Secret
Sharing schemes are a variation of Image Secret Sharing techniques that operate at the
block level, dividing the image into smaller blocks and generating shares for each block
individually. This approach provides progressive reconstruction, meaning that the original
image canbepartially reconstructedusing a subset of the shares, and the reconstructionquality
improves as more shares are combined. Progressive ISS schemes offer advantages such as
efficient storage and transmission of shares, progressive visualization of the secret image,
and flexibility in handling different block sizes or resolutions. However, they also introduce
challenges related to block misalignment, visual artifacts at block boundaries, and increased
computational requirements for generating and combining shares. Also, progressive recovery
approaches attained utmost 50% recovered image contrast [5].

To overcome the issues of progressive ISS, a novel Randomized Image Secret Sharing
(RISS) scheme is invented by Mhala et al. [5]. This technique combines BPVSS for gen-
erating secret shares and reversible Discrete Cosine Transformation (DCT) data embedding
technique. The original inventors of RISS made advancements to enhance the contrast of
the recovered images, termed the contrast-enhanced progressive ISS (CEPISS) scheme [21].
Kang et al. introduced a novel image-based data hidingmethod utilizing the Shamir threshold
scheme, which disassembles secret messages into subsecrets embedded in smooth blocks of
different images, effectively avoiding security issues faced by dual-image and multi-image
data hidingmethods [22].Mhala et al. presented a secure ISS (CNN-SISS) scheme using con-
volutional neural networks (CNN) [23]. These developments aimed to improve the contrast
quality of the reconstructed images obtained through the RISS framework.

This study makes a notable contribution by introducing a novel approach, the GPU-based
Randomized Image Secret Sharing (GRISS) system, aimed at enhancing the efficiency of
Randomized Image Secret Sharing (RISS) through advanced data-parallel methods. This
contribution is underscored by the achieved significant speedup improvements in both
sender and receiver pipelines through the utilization of GPU-based parallel processing. The
method effectively harnesses GPU constant memory for storing basis matrices, optimizing
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broadcasting and computation. The substantial reduction in execution time, especially with
larger image sizes and a higher number of shares, demonstrates a notable twofold speedup
improvement compared to the traditional RISS method. Moreover, the study addresses the
crucial aspect of image quality in ImageSecret Sharing (ISS) systemsby employing a state-of-
the-art autoencoder designed for single image super resolution. Experimental results confirm
that the GRISS method successfully reconstructs the secured image while preserving the
quality of the original secret image, thereby significantly enhancing the overall value and
effectiveness of ISS systems in real-time security applications.

3 Proposed GRISSmethodology

This section aims to provide a comprehensive explanation of the parallel methods illustrated
in Fig. 1. These methods employ two distinct modules: the Sender and the Receiver. Each
module is explained separately in the following sections.

3.1 Sender module

The Sender module comprises two primary stages: share generation and embedding of Low
Resolution (LR) secret image information into the shares. To provide further details on these
stages, we introduce Algorithms 3 and 4. In Algorithm 3, basis matrices generated using
GPU, as outlined in Algorithm 1, are utilized in conjunction with the secret image during the
share generation process. Additionally, Algorithm 2 employs GPU processing to generate
the halftone equivalent of a grayscale or color image, which is subsequently utilized in the
share generation process performed by Algorithm 3.

Fig. 1 Proposed methodology
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Algorithm 1 uses GPU to generate n + 1 basis matrices of two rows and n columns for
creating n shares, where the first row of B0 contains all zeros and the second row contains
all ones, and the remaining basis matrices follow the pattern of having only one column with
1 in the first row and the second row being the complement of the first row. Algorithm 4 is a
GPU-based parallel computation to perform an 8 × 8 Discrete Cosine Transform (DCT) of
the n shares, quantize those blocks, find ceaseless zeros, and embedding the original image
information in the mid-frequency area of the block.

Algorithm 1 Generating basis matrices using GPU.
1 Start by initializing an empty list to store the basis matrices.
2 Create a GPU kernel function generateBasisMatrices:

– Calculate the global index of the current thread.
– If the global index is 0:

– Generate B0:
• Set the corresponding elements of the first row to 0 and the second row to 1.

– If the global index is between 1 and n (inclusive):

– Generate B1 to Bn:
• Set the corresponding element in the first row to 1 (only one column contains 1).
• Set the corresponding element in the second row to the ones complement of the first row.

3 Launch the GPU kernel generateBasisMatrices, with the desired number of blocks and threads per block.
4 End

Algorithm 2 Generating halftone image using GPU.
1 Load the RGB image into device memory.
2 Allocate memory for the output colored halftone image.
3 Calculate the thread indices (x, y) using blockIdx and threadIdx.
4 Calculate the corresponding pixel position in the output image based on the thread indices.
5 Fetch the RGB values from the input image for the corresponding pixel position. 6 Convert the RGB values
to grayscale using a luminosity method.
7 Calculate the halftone dot pattern based on the grayscale value.
8 Set the RGB values of the output image pixels according to the halftone dot pattern and the original RGB
values.
9 Write the resulting colored halftone image to global memory.
10 stop

3.2 Receiver module

The Receiver module is designed as the inverse of the Sender module. Its main function is
to extract the embedded data, which consists of the low-resolution (LR) secret image used
for training a single image super-resolution autoencoder. Additionally, the Receiver module
generates a secret image by performing anXORoperation on the shareswithout the embedded
information.

The emphasis in this context lies on utilizing a state-of-the-art autoencoder for image
super-resolution, which takes advantage of GPU acceleration. This allows for efficient
and high-quality enhancement of the LR input, resulting in a secret image with enhanced
contrast.

123



43766 Multimedia Tools and Applications (2024) 83:43761–43776

Algorithm 3 Generating shares using GPU.
1 Load the basis matrices B0 to Bn from constant memory.
2 Calculate the number of blocks needed to cover the image and distribute them across the GPU thread blocks.
3 In the GPU kernel function:

– Calculate the global index of the current thread.
– Determine the block index and pixel index within the block
– Determine the corresponding basis matrix index based on the color of the pixel.
– If the pixel is black (0), randomly choose a row from B0 and assign the successive column values to the

corresponding shares in the block.
– If the pixel is white (1), randomly choose a row from B1 to Bn and update the corresponding blocks in

the shares with the successive column value

4 Synchronize the threads within each block.
5 Return the generated shares.

Algorithm 4 Data embedding using GPU.
1 For each share in GPU memory, do in parallel :

a Compute the DCT of the share block using the 8 × 8 GPU DCT library function and store the result in
GPU memory.

b Quantize the DCT coefficients to reduce the number of bits required for storage.
c Find the location of ceaseless zeros in the quantized DCT coefficients.
d Embed the original image information in the mid-frequency area of the block by replacing the ceaseless

zeros with the corresponding binary values of the original image pixels.
e Store the resulting block in GPU memory.

2 Return embedded shares

Image resolution pertains to the level of detail present in an image, and in various applica-
tions, there is a strong preference for high-resolution (HR) images compared to low-resolution
(LR) counterparts. This preference stems from the appeal HR images hold for both machine
analysis and human perception. To achieve higher resolution, super-resolution (SR) tech-
niques are employed, which aim to extract HR images from their LR observations while
preserving intricate and non-redundant details.

The process of super-resolution involves solving a set of linear equations, as represented
by (2) and (3). Equation (1) introduces the SR model used to obtain these equations. In this
model, the desired HR image is denoted by H , and L j represents the j th LR sample out of J
samples obtained from H . Additionally, the model incorporates various components such as
Fj for capturing motion terms, Bj to account for blurring effects, Dj as the down-sampling
operator, and Vj to represent noise. By carefully manipulating these elements, the SR model
endeavors to generate HR images that exhibit enhanced resolution and maintain the fidelity
of fine details. The estimation of sparse matrices Dj , Bj , Fj , and M is carried out based on
LR samples.

L j = Dj B j Fj H + Vj f or 1 ≤ j ≤ J (1)
⎡
⎢⎣
Y1
...

Y j

⎤
⎥⎦ =

⎡
⎢⎣
D1B1F1

...

Dj B j Fj

⎤
⎥⎦ H + V (2)

Y = MH + V (3)

Figure 2 illustrates a schematic representation of the proposed autoencoder, and a summary
is presented in Table 1. The representation of input and output layer corresponds to a vector of
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Fig. 2 Schematic of an autoencoder

values that pertain to a time series at a particular pixel location. Similarly, the hidden layers
also represent temporal vectors, but they encompass more general patterns of variability
instead of being specific to a pixel. Every connection in the network is assigned a random
weight initially and is adjusted during training to ensure that the output layer closely matches
the input layer. This adjustment is made while utilizing only the latent patterns in the hidden
layer as input. The encoder component of the network develops the hidden layer, while the
decoder component develops the output layer.

Autoencoder neural networks have the capability to learn LR samples without the need for
explicit labels. In this context, let s ∈ RN represent the original secret image, and s′ ∈ RN

denote the restored distorted image, where s′ = Ms. Here, M ∈ RN×N is assumed to be

Table 1 Autoencoder summary Autoencoder layers Output shape Number of
parameters

Input layer (None, 80, 80, 3) 0

Conv (2D) (None, 80, 80, 64) 1792

Conv_1 (2D) (None, 80, 80, 64) 36928

Max pooling (2D) (None, 40, 40, 64) 0

Conv_2 (2D) (None, 40, 40, 128) 73856

Conv_3 (2D) (None, 40, 40, 128) 147584

Max pooling_1 (2D) (None, 20, 20, 128) 0

Conv_4 (2D) (None, 20, 20, 256) 295168

Up sampling (2D) (None, 40, 40, 256) 0

Conv_5 (2D) (None, 40, 40, 128) 295040

Conv_6 (2D) (None, 40, 40, 128) 147584

Add (Conv_3, Conv_6) (None, 40, 40, 128) 0

Up sampling_1 (2D) (None, 80, 80, 128) 0

Conv_7 (2D) (None, 80, 80, 64) 73792

Conv_8 (2D) (None, 80, 80, 64) 36928

Add_1(Conv_1, Conv_8) (None, 80, 80, 64) 0

Conv_9 (2D) (None, 80, 80, 3) 1731

sparaTrainable parameters = Total number of parameters = 1,110,403
Non-trainable parameters = 0
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a high-dimensional matrix responsible for the distortion applied to the secret image. The
elements of M can be characterized by the activation function h(s′) ∈ RK in (4) and the
reconstruction function ŝ(s′) ∈ RN in (5).

h(s′) = σ(Ws′ + b) (4)

ŝ(s′) = σ ′(W ′h + b′) (5)

These functions are learned by the autoencoder model, where σ represents the encoding
function and σ ′ represents the decoding function. The sigmoid function, defined in (6), is
typically used for a single autoencoder layer consisting of K units. The weights for each
encoder layer are denoted as W ∈ RK×N , and the corresponding biases are represented by
b ∈ RK . Similarly, the weights for each decoder layer are denoted as W ′ ∈ RN×K , and the
biases are represented by b′ ∈ RK .

σ(x) = 1

1 + e−x
(6)

4 Experimental results

The image dataset used for the experiments can be found at [24, 25]. This dataset comprises
a total of 44 images, consisting of 16 color images, 28 grayscale images, and two binary
images. Additionally, a publicly available high-dimensional medical image dataset related
to breast cancer was employed, which can be accessed at [24]. Figure 3 visually depicts
the sequential image transformations involved in the GRISS process, showcasing the step-
by-step progression from the sender to the receiver during the reconstruction of the secure
image.

The forthcoming sections will examine the performance of the proposed GRISS from
multiple perspectives. Firstly, the execution time efficiency will be assessed, followed by an
evaluation of the quality of reconstructed images using objective quality assessment param-
eters. Additionally, a sensitivity analysis of the autoencoder parameters will be conducted.

4.1 Execution time analysis

The execution time comparison between sequential RISS and parallel GRISS for grayscale
images with different sizes, using 4 shares, is depicted in Fig. 4. Similarly, Fig. 5 illustrates
the comparison for 8 shares. For color images, the execution time comparisons can be seen
in Figs. 5, 6 and 7. As the number of shares and image size increase from grayscale to color
images, GRISS demonstrates efficient scalability compared to RISS. This is evident from the
significant increase in the speedup, which represents the ratio of execution time on RISS to
GRISS.

4.2 Objective image quality analysis

Assuming S′ represents the distorted image and S represents the reference plain image, where
M is the width of S and N is the height of S, both images S and S′ are of the same size,
denoted by (7) and (8). In the equations, s(i, j) and s′(i, j) represent the pixel intensities at
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Fig. 3 Illustration of secret image transformation from sender to receiver

Fig. 4 Execution time comparison: RISS [5] vs. GRISS on a 4-share grayscale image
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Fig. 5 Execution time comparison: RISS [5] vs. GRISS on a 8-share grayscale image

the position (i, j) in images S and S′, respectively.

S = {s(i, j)|(0 ≤ i ≤ M − 1), (0 ≤ j ≤ N − 1)} (7)

S′ = {
s′(i, j)|(0 ≤ i ≤ M − 1), (0 ≤ j ≤ N − 1)

}
(8)

4.2.1 Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a metric that calculates the average of the squared differ-
ences between corresponding intensities. As the difference between intensities approaches

Fig. 6 Execution time comparison: RISS [5] vs. GRISS on a 4-share colour image
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Fig. 7 Execution time comparison: RISS [5] vs. GRISS on a 8-share colour image

zero, the MSE decreases. Equation (9) provides the definition of the MSE .

MSE(S, S′) = 1

MN

M−1∑
i=0

N−1∑
j=0

[s(i, j) − s′(i, j)]2 (9)

Based on the data presented in Table 2, it is evident that the proposed model achieves the
lowest MSE value of 0.0017 when compared to other benchmark models.

4.2.2 Normalized Cross Correlation (NCC)

NCC is another metric to demonstrate similarity between the source and target images.
The high value of NCC implies the more similarity amongst the source and target images.
Equation (10) defines the NCC .

NCC(S, S′) =
M−1∑
i=0

N−1∑
j=0

[s(i, j) × s′(i, j)
s2 (i, j)

] (10)

Table 2 gives the comparison of NCC values of the proposed model over the other models.
In Table 2, the proposed model has a maximum of 99.03% correlation when compared to the
other benchmark models.

Table 2 MSE , NCC , N AE , and SSI M values of the proposed model

Model⇒ Parameters ⇓ RISS [5] CEPISS [21] CNN-SISS [23] Proposed GRISS

MSE 0.107 0.035 0.014 0.0017

NCC 0.6692 0.9876 0.9888 0.9903

NAE 0.2776 0.0413 0.0380 0.0238

SSIM 0.2750 0.8740 0.8967 0.9826
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4.2.3 Normalized Absolute Error (NAE)

The dissimilarity between the source and target images can also be quantified using N AE
parameter, as defined in (11).

N AE(S, S′) =
M−1∑
i=0

N−1∑
j=0

[s(i, j) − s′(i, j)
s(i, j)

] (11)

A lower N AE value indicates better visual quality of the recovered target image. From the
data presented in Table 2, it is apparent that the proposed model surpasses the comparative
models, achieving an impressive N AE value of 0.0238.

4.2.4 Structural Similarity Index (SSIM)

The Structural Similarity Index (SSI M), as described in (12), is a metric that ranges between
−1 and 1 in the spatial domain. This metric compares the contrast, luminance, and format of
the source and target images [26].

SSI M(S, S′) = [l(S, S′)]α.[c(S, S′)]β .[s(S, S′)]γ (12)

Where,
l(S, S′) = 2μSμS′+K1

μ2
S+μ2

S′+K2

c(S, S′) = 2σSσS′+K2
σ 2
S+σ 2

S′+K2

s(S, S′) = σS′+K3
σSσS′+K3

When two images are similar, their SSI M value will be close to 1. On the other hand,
for distinctly different images, the SSI M value decreases, reaching a minimum of −1.
Equation (12) can be simplified to (13) under the assumption that α, β, and γ are all equal
to 1, and K3 is equal to K2/2.

SSI M(S, S′) = (2μSμS′ + K1)(2σSS′ + K2)

(μ2
S + μ2

S′ + K1)(σ 2
S + σ 2

S′ + K2)
(13)

In these simplified equations, σS and σS′ represent the standard deviations, μS and μS′
represent the means, and σSS′ represents the cross-covariance between S and S′.

In Table 2, the SSI M values of the proposed model for the compared images S and
S′ are provided, along with the values for other reference models. Notably, the presented
model achieved a significantly higher SSI M value of 98.26%, surpassing the state-of-the-art
models.

4.3 Autoencoder sensitivity analysis

In this section,we conducted additional tests to evaluate the sensitivity of themethod’s param-
eters, specifically focusing on the number of hidden layers and neurons in the autoencoder,
using a scale factor of 3. The implemented autoencoder model consists of a single hidden
layer with 192 neurons. For simplicity, we refer to this architecture as 256-192-64, where
256 and 64 represent the input and output dimensions, respectively.
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To assess the performance of different configurations, we employed tenfold cross-
validation for each experiment. Figure 8 displays the average validation error obtained. By
comparing the validation results of experiment Fig. 8(a) with different neuron numbers: 256-
96-64, 256-128-64, 256-192-64, and 256-224-64, it is evident that the final evaluation error
decreases as the number of neurons in the hidden layer increases. Specifically, configurations
256-192-64 and 256-224-64 demonstrate comparable performance but come at the expense
of increased computational complexity.

In experiment Fig. 8(b), we explored the impact of increasing the number of hidden
layers in the autoencoder while varying the number of neurons. Interestingly, adding hidden
layers did not lead to a significant reduction in evaluation error, while it potentially increased
computational complexity. It is worth noting that a neural network with at least one hidden
layer has the ability to approximate any continuous function, ensuring that our autoencoder
can accurately approximate the mapping relationship with arbitrary precision.

Fig. 8 Relationship between the training epoch and the evaluation error with various hidden layer and neuron
counts
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5 Conclusion and future work

In conclusion, the true value of an Image Secret Sharing (ISS) system lies in its ability to
provide real-time security. In this study, we introduced a novel approach to randomized image
secret sharing utilizing GPU-based parallel processing. By leveraging data-parallel tasks in
both the sender and receiver pipelines,we achieved significant speedup improvements. Partic-
ularly, when dealing with larger image sizes and a higher number of shares, our GPU-based
Randomized Image Secret Sharing (GRISS) method demonstrated much lower execution
time increase compared to the traditional Randomized Image Secret Sharing (RISS) method,
resulting in a speedup improvement of over twofold.

Additionally, the quality of the reconstructed image is crucial for any ISS. To address
this, we employed a cutting-edge autoencoder specifically designed for single image super
resolution. Through our experiments, we successfully demonstrated that the proposedGRISS
method reconstructs the secured image while maintaining the original secret image’s quality,
further enhancing the value of the ISS.

In addition to the achievements and improvements presented in this research, there are
several promising avenues for future exploration and development in the field of randomized
image secret sharing. One potential direction for future research is to investigate the inte-
gration of machine learning algorithms into the image secret sharing process. Furthermore,
exploring the potential of distributed computing and decentralized systems could lead to
significant advancements in the scalability and robustness of image secret sharing protocols.
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