Multimedia Tools and Applications
https://doi.org/10.1007/511042-024-18599-w

®

Check for
updates

Outdoor activity classification using smartphone based
inertial sensor measurements

Rushikesh Bodhe' - Saaveethya Sivakumar?(® - Gopal Sakarkar? -
Filbert H. Juwono® - Catur Apriono®

Received: 29 October 2023 / Revised: 28 January 2024 / Accepted: 10 February 2024
© The Author(s) 2024

Abstract

Human Activity Recognition (HAR) deals with the automatic recognition of physical activ-
ities and plays a crucial role in healthcare and sports where wearable sensors and intelligent
computational techniques are used. We propose a HAR algorithm that uses the smartphones
accelerometer data for human activity recognition. In particular, we present a recurrent convo-
lutional neural network-based HAR algorithm that combines a Convolutional Neural Network
(CNN) to extract temporal features from the sensor data, a Fuzzy C-Means (FCM) clustering
algorithm to cluster the features extracted by the CNN, and a Long Short-Term Memory
(LSTM) network to learn the temporal dependencies between the features. We evaluate the
proposed methodology on two distinct datasets: the MotionSense dataset and the WISDM
dataset. We evaluate the proposed CNN-FCM-LSTM model on the publicly available Motion-
Sense dataset to classify ten activity types: 1) walking upstairs, 2) walking downstairs, 3)
jogging, 4) sitting, 5) standing, 6) level ground walking, 7) jumping jacks, 8) brushing teeth,
9) writing, and 10) eating. Next, we evaluate the model’s performance on the WISDM dataset
to assess its ability to generalize to unseen data. On the MotionSense test dataset, CNN-FCM-
LSTM achieves a classification accuracy of 99.69%, a sensitivity of 99.62%, a specificity
of 99.63%, and a false positive rate per hour (FPR/h) of 0.37%. Meanwhile, it achieves a
classification accuracy of 97.27% on the WISDM dataset. The CNN-FCM-LSTM model’s
capability to classify a diverse range of activities within a single architecture is noteworthy.
The results suggest that the proposed CNN-FCM-LSTM model using smartphone inputs is
more accurate, reliable, and robust in detecting and classifying activities than the state-of-the-
art models. It should be noted that activity recognition technology has the potential to aid in
studying the underpinnings of physical activity, designing more effective training regimens,
and simulating the rigors of competition in sports.

Keywords Human activity recognition - Wearable sensors - Wrist acceleration -
Deep recurrent learning

B Saaveethya Sivakumar
saaveethya.s @curtin.edu.my

Extended author information available on the last page of the article

Published online: 20 February 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-18599-w&domain=pdf
http://orcid.org/0000-0003-3185-0350

Multimedia Tools and Applications

1 Introduction

Human Activity Recognition (HAR) has become a trending research area in recent years
due to its effectiveness in diverse fields such as healthcare, interactive gaming, sports, and
general-purpose monitoring systems [1]. Healthcare systems to monitor daily sport-specific
activities, mainly to understand sport-specific physical activity behavior, secure environments
for automated detection of unusual actions to inform the appropriate authorities, and enhanced
human contact with the computer are illustrations of HAR applications. HAR applications
cover diverse fields, especially motion estimation, action recognition, remote monitoring,
and behavioral analysis [2].

To date, researchers have conducted extensive research into various sensing technologies
and proposed a variety of methodologies for modeling and recognizing human behaviors.
Smart sensor technology [3], for example, is becoming more widely available and robust,
and ensuring data privacy, in turn, has made sensor-based HAR increasingly popular. Sensor-
based HAR [4, 5] uses smart data from the sensors, such as accelerometers and gyroscopes. In
particular, the smart sensor includes mobile sensors [6] that are tiny, adaptable, cost-effective,
energy-efficient, and environmentally friendly, thereby allowing them to be integrated into
apparel or mobile devices such as smartphones. As such, research in this field has gained
significant interest as a result of the widespread usage of mobile sensors in everyday life [4].

Multivariate time series classification is generally considered the most challenging aspect
of recognizing human activity using smart devices. To demonstrate the potential of activity
recognition using sensor data, a variety of traditional machine learning and deep learning
algorithms have been used to classify a variety of human activities such as sitting [7], standing
[71, lying [7], walking [7], opening and closing doors [8], and so on. Examples of machine
learning algorithms applied in the past include Random Forest [9], Support Vector Machine
(SVM) [10-13], and K-Nearest Neighbor (KNN) [9, 14]. These machine learning algorithms
cannot automatically learn relevant features directly from raw signals and need manual feature
extraction. Moreover, machine learning is dependent on the size of the input data. As the
data dimensionality and feature variables increase, the machine learning model becomes
increasingly complex, which reduces its efficiency and results in a lack of generalization and
performance. To reduce data dimensionality, we apply feature selection to exclude redundant
data and select salient data points. Principal Component Analysis (PCA) [15], Independent
Component Analysis (ICA) [15], Linear Discriminant Analysis (LDA) [16], and Locally
Linear Embedding (LLE) [16] are some of the widely used feature extraction algorithms
applied in HAR due to their high computational power and orthogonality. However, these
algorithms require the pre-processing of original features into an adaptable form that meets
the requirements of the feature selection algorithms.

Deep learning models can automatically extract features from data, without the need for
manual feature engineering. Automated feature extraction is possible after constructing a
deep learning model with multiple hidden layers. Convolutional Neural Networks (CNNs)
[11, 12, 17-22], Long Short-Term Memory (LSTM) [11, 19, 20, 23], Deep Neural Networks
(DNN) [19, 20, 22, 24], Deep Stacked Multilayered Perceptron (MLP) [25], Artificial Neural
Networks (ANNs) [19, 26], Bi-Directional LSTM [11, 19], DeepConvLSTM [8], CNN-
LSTM [6, 7], Recurrent neural network (RNN) [6, 13,27] and Visual Geometry Group (VGG-
19) [24] are some of the deep learning models used for HAR. Deep learning models are widely
used to classify human activities as they can handle large-scale datasets effectively and capture
subtle patterns and variations in the data. But limited data results in overfitting and reduced
generalization of the deep learning models. The deep learning algorithms, trained on specific

@ Springer

Multimedia Tools and Applications

activities, struggle to generalize to unseen activities and experience potential overfitting. This
generally requires large amounts of labeled data for training. Deep neural networks are not
yet widely accepted in clinical practice because they are difficult to understand. This is a
problem because it makes it difficult to trust their predictions and to identify potential biases
in the models. There is a need to develop more interpretable deep neural networks so that
they can be used more safely and ethically in clinical practice.

The current datasets [7, 8, 12, 19-21] are sourced from wearable sensors, particularly
Inertial Measurement Units (IMUs) containing accelerometers, gyrators, and magnetome-
ters. IMU sensors are not accepted as the gold standard for sensors for human motion analysis
because they are susceptible to drift, including temperature changes, sensor noise, and vibra-
tions [28]. In order to achieve an acceptable level of accuracy, the machine learning and deep
learning models should be trained and tested with data that is benchmarked against the gold
standard of human motion analysis systems such as Vicon and Qualisys [29]. Furthermore,
sensor placements are usually inconsistent across different methods [7, 8, 12, 19-21], and
the acquired data is not validated against the gold standard systems.

The Opportunity dataset [21] was collected while subjects held their smartphones. The
grip of the smartphone can affect the way the data is collected, so this introduced some
bias into the dataset. There is relatively poor discrimination between sitting and standing, as
there are few variations in the way the activities are performed [7, 8, 12, 19-21]. Notably,
most public dataset sizes are relatively small, with the UCI HAR dataset [30] containing
2947 data points per subject, the USC-HAD dataset [19] containing 10,000 data points per
subject, the PAMAP2 dataset [12] containing 10,800 data points per subject, the Opportunity
dataset containing 600 data points per subject, the MHealth dataset [31] comprising 13,292
data points per subject, and the UniMiB-SHAR dataset [32] containing 4,000 data points per
subject. Additionally, these datasets were collected using a diverse range of sensors, which
introduces the challenge of sensor bias into the analysis. Furthermore, unbalanced class
distributions are prevalent across the UCI HAR dataset and the MHealth dataset. Although
the UniMiB-SHAR dataset offers a relatively more balanced class distribution, some level of
class imbalance persists even in this case. These distinct attributes of the datasets underline the
complexity and diversity of the data landscape in the area of human action acknowledgment.
As such, the accuracy of the data is questionable, which consequently affects the accuracy
of the activity recognition. Therefore, it is important to validate the models against a dataset
that is verified against the gold standard for human motion analysis.

Many authors have used sensor data to create heterogeneity within the LSTM model and
achieved an average accuracy of 92.63% with CNN-LSTM [6, 7], 76% with DeepConvLSTM
[8], 92% with forward LSTM [11, 19, 20, 23], 88% with sample-based forward LSTM [13,
27], and 86% with bi-directional LSTM [11, 19] on a common dataset. While the previous
models could recognize human actions, they were not optimized and had a high false-positive
rate because their network architecture was complex. These models are computationally
expensive and slow because they have a lot of parameters. Unsupervised features may be
difficult to use in real-time applications. Additionally, the proposed model was evaluated on
three unvalidated datasets with different participants, which does not guarantee that it will
generalize well to new data. The DeepConvLLSTM [8] uses a different type of convolution,
called an independent convolution, to reduce the number of parameters in the model. The
model achieved significant improvement, but it required a long training time due to its slow
convergence. The temporal dependencies were lost for the previous data point when the CNN
model was deployed on the HAR dataset. Moreover, the SVM, CNN, and MLP network use

@ Springer

Multimedia Tools and Applications

handcrafted feature extraction methods during model training. The authors [11, 13, 19, 20,
23, 27] did not spend much time preparing the data and used many complex hyperparameter
settings when training the model. This could lead to the model not performing as well as it
could.

Among the available models, CNN and LSTM [33-35] have proven their potential in HAR.
LSTM models can learn long-term dependencies in data, while CNN models can extract local
features from sensory data and handle variable-length input sequences. However, improving
the accuracy of CNN models can enhance the performance of HAR [36]. CNN models are
good at finding patterns in local regions of data, but they cannot remember what happened
in the past. This makes them less well-suited for tasks that require understanding long-term
relationships in data. The authors in [36] and [37] devised efficient methodologies for HAR
through the utilization of streamlined LSTM architectures that have been finely tuned for
optimal performance. These lightweight approaches exhibit reduced accuracy compared to
more intricate methods due to their limited capacity to grasp intricate data patterns. Addition-
ally, their slower learning capabilities hinder adaptation to new activities or environmental
changes. Moreover, these approaches could demand a longer training duration as they neces-
sitate meticulous learning of data patterns.

Liang et al.[38] discuss image segmentation and handle the heterogeneity across different
segmentation tasks using the CLUSTSEG architecture. The methodology relies heavily on
predefined segmentation tasks, which could limit its adaptability to new or undefined seg-
mentation tasks. Surek et al. [39] employ a semi-supervised learning methodology evaluated
in the HMDBS51 database, using a combination of 3D ResNet-50 and 2D Vision Transformer
(ViT) with LSTM for human action recognition. A potential drawback here is the reliance
on specific architectures (ResNet and ViT), which may not generalize well to different types
of data or tasks. Qin et al. [40] use a momentum coefficient, class balance strategies, and
Sinkhorn-Knopp iterations for prototype association and update in a classification model.
The approach’s effectiveness is dependent on the fine-tuning of the momentum coefficient
and the balance between convergence speed and stability, which can be challenging to opti-
mize. Wang et al. [41] compare the performance of k-means and Sinkhorn-Knopp clustering
algorithms, along with exploring different classifiers and conducting diagnostic experiments
on various parameters. The complexity and computational cost, particularly in terms of GPU
memory and the fine-tuning of parameters, could be seen as drawbacks. [42], [43], and [39]
rely heavily on specific architectures and are highly specialized, which can be computation-
ally intensive, require careful tuning of parameters, making them less flexible and increases
the complexity of their implementation and optimization, potentially limiting their usability
in broader applications.

Wang et al. [44] focuses on achieving reliable one-to-one correspondence between learn-
able queries and object instances by promoting the equivariance of both query embeddings
and feature representations with respect to spatial transformations. While this approach aids
in maintaining consistency under transformations like cropping or flipping, it diverges from
common data augmentation strategies and may not be as effective in scenarios where feature
map invariance is desirable. Cui et al. [45] explores the design of a temporal relation module
for video object detection. The method involves experimenting with the number of convolu-
tion layers in the mini-network to optimize detection accuracy. However, the methodology
encounters a drawback as adding more convolution layers can lead to overfitting, limiting the
model’s generalizability. This challenge is evident in the trade-off between model complex-
ity and detection accuracy. Liu et al. [46] demonstrates the impact of integrating different
functional modules into the baseline for improved accuracy. The methodology, based on the
YOLACT framework with a tracking head, integrates components like the base mask mod-

@ Springer

Multimedia Tools and Applications

ule, spatial attention module, and GIoU loss. Each addition improves performance but could
potentially increase the complexity and computational demands.

It is necessary to develop lightweight deep learning models with memory capabilities
for improved HAR because it allows for the efficient deployment of the model on devices
with limited computational resources. Additionally, incorporating memory capabilities into
the model allows it to take previous input and context into account, which can improve
the model’s ability to accurately recognize and classify human activities. This is important
in many use cases, such as healthcare and fitness tracking applications. CNN-LSTM (8,
17, 23, 24, 33, 36, 47, 48] architectures have been shown to achieve good performance on
activity recognition tasks in multiple studies and are considered a state-of-the-art approach.
The architecture can handle variable-length input sequences, which is important for sensor
data as the number of sensor readings can vary depending on the activity being performed.
However, CNN-LSTM architectures are often considered black box models, which can make
it hard to comprehend how the model is making its forecasts and distinguish any blunders or
predispositions. They are sensitive to noise in the data and prone to overfitting. These deep
learning models require a lot of information to really prepare and can be a challenge in some
cases, such as when the target activity is rare or the data is difficult to collect. The model also
exhibits a notable limitation in the form of a high false-positive rate during its classification
process. The CNN extracts a large number of features from the data, but these features may
not all be relevant to the task of activity recognition. The LSTM is able to model the temporal
dynamics of the data but cannot distinguish between different activities if the features are
not relevant.

To overcome the above mentioned issues, in this study, we propose a hybrid model,
CNN-FCM-LSTM, which combines CNNs for spatial feature extraction, FCM clustering
for data reduction, and LSTMs for temporal modeling. This unique combination leverages
the strengths of each component, enhancing the accuracy and robustness of HAR. We rig-
orously evaluate the CNN-FCM-LSTM model on two distinct datasets, MotionSense and
WISDM, showcasing its generalization ability. In particular, we use MotionSense dataset
for training and WISDM dataset for testing. This assessment provides insights into the
model’s adaptability to different sensor sources and data distributions, emphasizing its poten-
tial for real-world applications. We conduct an extensive comparative analysis, pitting the
CNN-FCM-LSTM model against various machine learning and deep learning algorithms,
including 2D-CNN, VGG-16, and LSTM, among others. This comparative study reveals
the CNN-FCM-LSTM model’s superior performance in terms of accuracy and efficiency.
We demonstrate the lightweight nature of the CNN-FCM-LSTM model through empirical
comparisons of model parameters, training time, and inference time. This characteristic posi-
tions the model as a practical choice for resource-constrained environments and real-time
applications. Our study explores the integration of time-frequency features into the model,
enhancing its capacity to capture transient and ghostly data from sensor information. This
addition results in improved recognition accuracy, particularly for activities with nuanced
patterns. We investigate the performance of various optimizers, including Adam, SGD, and
Adagrad, to identify the most effective training strategy for the CNN-FCM-LSTM model.
This analysis offers valuable insights into optimizer selection for similar deep learning tasks.
The rest of this paper is organized as follows: The proposed model and dataset resources for
the proposed approach are outlined in Section 2. The outcomes of the suggested study are
discussed in Section 3. Section 4 presents the conclusion.

@ Springer

Multimedia Tools and Applications

2 Methodology
2.1 Signal dataset

As mentioned above, the experimental analysis is conducted using two pre-collected datasets:
the MotionSense dataset developed by the Center for Intelligent Sensing at Queen Mary Uni-
versity of London [49] and the Wireless Sensor Data Mining (WISDM) dataset [50] developed
by the WISDM Lab at Fordham University, which are considered gold standards and provide
a large and diverse set of data for training and evaluating machine learning models for activ-
ity recognition using wearable sensors. These datasets contain multiple measurements over
time using accelerometers and gyroscopes (attitude, gravity, user acceleration, and rotation
rate). We train our recurrent CNN model on the MotionSense dataset and then test it on the
WISDM dataset to perceive its generalization ability on unseen data.

In the MotionSense dataset which is a camera-based dataset, the participant’s iPhone 6s,
attached to one of their thighs, was used to collected data using the SensingKit application,
which collects data from the Core Motion framework on iOS devices. There were 15 trials,
involving nine long trials with a duration of two to three minutes and six short trials with
a duration of 30 seconds to one minute, and data associated with motion capture ground
truth. A 50-Hz sampling rate was used for all data collection. A total of 24 participants in a
range of genders, with 15 male subjects and 9 female subjects, going in age from 19 to 48
years, performed 15 trials involving 10 distinct activities in the same location and under the
same conditions, including walking upstairs and walking upstairs, walking on level ground,
jogging, and sitting, with 288 activity instances, a sample size of 1152 records, and 100,000
data points per subject.

In the WISDM data collection procedure, the accelerometer and gyroscope sensors of the
smartphone were placed on the waist of the subject. The dataset contains data for ten differ-
ent activities of daily living, ranging from common movements like level ground walking,
jogging, walking upstairs, walking downstairs, sitting, standing, and brushing teeth, with 648
activity instances, a sample size of 648 records, and 60 data points per subject. There are six
trials for each activity in the dataset, for a total of 108 trials. Data collection for each trial
lasted for three minutes. A 20-Hz sampling rate was used for all data collection. A total of
51 participants in a range of genders, with 27 male and 24 female subjects, ranged from 19
to 48 years old, were recruited.

We use these datasets to identify patterns of personal attribute fingerprints or behavior-
specific patterns that allow us to infer an individual’s gender as well as personality. The
MotionSense dataset has 12 sensor channels, which include three-dimensional linear accel-
eration and three-dimensional angular velocity. The WISDM dataset also has 12 sensor
channels. The handheld device measured three-dimensional linear acceleration and three-
dimensional angular velocity using the smartphone’s in-built accelerometer and gyroscope.
In addition, the MotionSense dataset offers a curated selection of pre-processed features for
analysis, encompassing key statistical attributes derived from signal windows. These features
include the mean, representing the average signal value; the standard deviation, indicating
signal dispersion; energy, denoting the cumulative squared signal magnitude; kurtosis, reflect-
ing signal distribution peakness; and skewness, quantifying signal distribution asymmetry
within each window.

@ Springer

Multimedia Tools and Applications

2.2 Dataset pre-processing

The pre-processing of the data is illustrated in Fig. 1. The recorded body acceleration is
divided into two components: the triaxial acceleration and the estimated body acceleration,
which is the speed increase of the body barring the speed increase because of gravity. An
estimated body acceleration is used for analyzing body vibrations and calculating energy
expenditure during an activity using the triaxial acceleration method with three orthogonal
directions. We used 6 sensor channels in the presented study: accelerometer X, accelerometer
Y, accelerometer Z, gyroscope X, gyroscope Y, and gyroscope Z.

To identify and remove excessive amplitudes that correspond to noise, the signal ampli-
tudes are next compared with the signal mean. If the signal amplitude at a sample is greater
than a certain threshold, then we set the signal amplitude at that sample to the mean signal
amplitude. This helps to remove noise from the data. Further, a Butterworth low-pass chan-
nel is applied to separate the sensor speed increase information into body acceleration and
gravity, including both gravitational and body motion aspects. As predicted, gravitational
components have a low recurrence, so a channel is picked with an end recurrence of 0.3 Hz.

A sample of the sensor data is then taken in 2.56 seconds from fixed-width sliding windows
that overlap 50% for a total of 128 readings per window. Based on variables in the time and
frequency domains, a vector of highlights is produced for every window. Data collected
by sensor-level instruments, particularly planar gradiometers, may indicate the approximate
number and position of active sources once the noise has been reduced. Furthermore, we
check for channels with NaN data or long stretches of no data or small data and replace those
with the mean value for the corresponding signal activity.

| Recorded Acceleration By Wearable Sensors |

A4
| Calculate True Signal Mean |

Excessive Amplitude | ___ -
Removal !

'
Lack of Connectionwith | 1 A2
any other Channels . -l Noise and Artifacts Removal |- - --| Low Pass Filtering

-
1
'
1
]

Lack of Prediction By
Other Channels T

True Signal Mean |
Estimation '

Detect and Interpolate | ;
Bad Channels

Y

| Windowing |

Fig. 1 Dataset Pre-processing for Data Signals

@ Springer

Multimedia Tools and Applications

2.3 Proposed model

In the CNN-FCM-LSTM model, convolutional layers act as feature extractors and are specif-
ically used to extract some useful information by understanding time-series data’s internal
representation, while short-term and long-term dependencies can be identified using LSTM
networks. The FCM interspersed between the feature extractor and LSTM to reduce the data
weight used for feature selection by reducing data weight and capturing unsupervised fea-
ture dependencies, which is a good way to remove redundant data and reduce the amount of
computation.

Our proposed model’s main idea is to effectively integrate the benefits of various deep
learning approaches. It is shown in Fig. 2 that the proposed model consists of three fundamen-
tal components. 1) Convolutional layers and pooling layers execute complex mathematical
operations to generate input data features, 2) The FCM clustering algorithm is used to cluster
the features extracted by the convolutional layers, and 3) LSTM layers and dense layers are
applied to exploit these features.

The CNN-FCM-LSTM architecture is configured as follows: Layer 2 includes a Convo-
lutional Layer with 64 filters and a 3x1 kernel size, while Layer 3 consists of a Convolutional
Layer with 128 filters and a 1x3 kernel size. Layers 4 and 5 are Dense Layers with a cus-
tomizable number of neurons and ReLLU activation functions. Layer 6 is a Max Pooling Layer
with adjustable pooling size and stride. Layer 8 is the LSTM layer, each with 200 units, using
tanh activation and sigmoid recurrent activation, and both return the full sequence of outputs.
Layer 9 is a Fully Connected Layer with a customizable number of neurons and ReLU activa-
tion. Layer 10, the Output Layer, has a variable number of neurons based on the classification
task, using softmax for multi-class classification.

The input to the Convolutional Layer-I layer is the motion sensor data from the Motion-
Sense dataset, with 12 sensor channels and 128 data points. Each convolution operation that
occurs on the patch is performed by the convolution kernel, which is like a window that glides
over the input matrix. Each of these processes results in a matrix that represents a feature
value that is determined by the coefficient values and filter dimensions.

The convolution is defined as:

(X K)(i,j)=) > X(m,n)-K@i—m,j—n) 4))

m n

The input matrix X represents the motion sensor data. A filter kernel K slides over this
input matrix to perform feature extraction. The indices (i, j) denote positions in this output
matrix, and the summation process involves adding the products of corresponding elements
from X and K at these positions. The variables m, n are used to traverse the filter and input
matrix during this operation.

LAYER 7

LAYER 2 LAYER 3 LAYER 4 LAYER 5 YRS

LAYER 1 LAYER 6
Fuzzy [
| C-MEANS
ALGORITHM
Gutput Layer
Max Poollng Layer
Convolutional Layer 2]
wlm 64 Filters [Dense Layer | [Dense Layer-i] Sequential LSTM Layer

Convolutional Layer]
wlih 128 Filters

Fig.2 Architectural Neural Model for CNN-FCM-LSTM

@ Springer

Multimedia Tools and Applications

Different convolution kernels can be applied to the input data to produce multiple convo-
lution features, which, in most cases, serve as a boost to speed and are more useful than the
initial qualities of the incoming data. We use a ReL.U activation function and a pooling layer
after the convolutional layers have been processed, where x represents the input to the ReLU
function:

ReLU(x) = max(0, x) 2)

In sub-sampling, pooling removes specific values from the features that are convolved
and produces an inverse matrix of reduced dimensions. The pooling layer is inserted with the
convolved features. For setting pool size to the size of the input feature map, a sliding window
is used to map each batch of convolved features to a new single value. This results in a pooling
layer that creates matrices that summarize the results of the convolutional layer. The Dense
Layer-I performs feature transformation and dimensionality reduction by taking the output
from the preceding layers, which typically consists of high-dimensional feature vectors, and
applying linear transformations to these features. Dense Layer-II allows the network to per-
form hierarchical feature learning. It can capture higher-level abstractions and dependencies
in the data by building upon the representations learned in previous layers. The max pool-
ing layer effectively sub-samples the feature maps, resulting in a coarser representation and
reducing the spatial dimensions and number of parameters.

MaxPooling(X)(i, j) = max X(@(+a,j+b) 3)

a,bewindow

The Max Pooling function is applied to an input matrix X. This function reduces the
dimensionality of X by taking the maximum value within a specified window for each position
(i, j) in the output. The input to the c-means algorithm is the set of feature maps that are output
by the CNN. These feature maps are a representation of the temporal and spectral properties
of the data. This new set of feature maps is then clustered using the FCM [51] technique. The
algorithm assigns each feature vector to a cluster with a certain membership coefficient. The
membership coefficient indicates the degree to which the feature vector belongs to the cluster.
The algorithm then iteratively updates the cluster centers and membership coefficients until
the clusters converge. The quantity is not set in stone by the quantity of activities that the
model is trying to recognize.In FCM, each data point has a degree of belonging to clusters,
represented by a membership matrix:

U= Ujj

where u;; is the degree of membership of the i-th data point in the j-th cluster.

The FCM algorithm then clusters the extracted features and selects the features that have
the highest membership coefficients in the cluster corresponding to the desired activity. The
FCM then analyze these features and select the most important ones in order to reduce
computational load and make the model lighter using exhaustive feature selection and a
brute-force examination of each feature subset. The FCM aims to minimize an objective
function:

N C
JW, V)= "l — vl “

i=1 j=1

where N is the number of data points, C is the number of clusters, v; is the center of the
J-th cluster, and m is a fuzziness parameter.

@ Springer

Multimedia Tools and Applications

The model evaluates every conceivable combination of variables and delivers the subset
with the best results. The membership u;; and the cluster centers v; are updated iteratively:

1
2
ZC [lxi —v;|['y m=T
k=1 T —ul

N m...
Zi:] UijXi

N
Dim “7}

FCM clustering is a soft clustering algorithm [51], which means that each feature vector
can belong to multiple clusters with different membership coefficients. This allows the model
to capture more complex relationships and dependencies among the features [52]. There are
other approaches to performing feature selection in the middle layer of a neural network,
such as attention mechanisms. However, FCM clustering has several advantages over these
other approaches. First, FCM clustering is a very simple and efficient algorithm, which
makes it easy to implement and train. Second, FCM clustering is very effective at removing
redundant features, which can help to improve the performance of the model and reduce
the risk of overfitting. Third, FCM clustering can be used to capture unsupervised feature
dependencies, which helps to improve the model’s ability to generalize to unseen data [53].

The FCM layer is a clustering layer, and it does not have any weights. Therefore, back-
propagation cannot be directly applied to the FCM layer. We use fuzzy backpropagation [51,
52], a modified version of backpropagation that can be used to train neural networks with
clustering layers. The basic idea of fuzzy backpropagation is to add a virtual output layer to
the network. This virtual output layer has the same number of nodes as the FCM layer. The
nodes in the virtual output layer are assigned membership coefficients, which are similar to
the membership coefficients used in the FCM algorithm. The error from the virtual output
layer is then propagated back to the FCM layer. The weights of the FCM layer are adjusted
according to the error, in a way that minimizes the error in the virtual output layer. This
process is repeated until the network converges.

The output vector is then passed through an LSTM layer to solve the temporal and
sequential dependencies for training. During training, the LSTM layer fine-tunes its internal
parameters based on the sequential sensor data it processes, enabling it to recognize complex
temporal patterns associated with different activities. The Fully Connected (FC) layer acts as
a bridge between the feature extraction layers and the final prediction. It takes the high-level
features extracted from the LSTM layer and transforms them by applying weight multipli-
cation and bias addition to the feature vectors into a suitable format for specific activity
recognition. The FC layer enables the network to capture complex relationships and depen-
dencies among the extracted features, facilitating hierarchical learning. The output layer
typically consists of multiple neurons, one for each possible class. The softmax activation
function used in this layer computes the probability distribution over the classes, assigning a
probability score to each class. The most likely group to participate in the anticipated event
is selected.

The forget gate determines which information to discard from the cell state. It uses a
sigmoid function to output values between 0 and 1, where 0 means “completely forget” and
1 means “completely retain”.

(&)

ujj =

(©)

Uj =

ft=<7(Wf’[ht—1axt]+bf) @

@ Springer

Multimedia Tools and Applications

The f; is the forget gate’s output at time step ¢, W is the weight matrix for the forget
gate, [h,_1, x] is the concatenation of the previous hidden state /s, and the current input
x;, and by is the bias term for the forget gate.

The input gate decides which new information to store in the cell state. It involves two
parts: a sigmoid function that decides which values to update, and a tanh function that creates
a vector of new candidate values to be added to the state.

ir =0(W; - [h—1, %]+ b;) (3

Here, i; is Input gate’s output at time step ¢. It decides which new information will be
stored in the cell state, W; is weight matrix for the input gate, and b; is bias term for the input
gate. The cell state combines the output of the forget gate and the input gate to update the
cell state. The forget gate’s output multiplies the old state (deciding what to forget), and then
the input gate’s output is added (updating the state with new information).

Ci = fi*xCr—1 + iy xtanh(Wc - [hy—1, x,] + bc) ©)

Here, C; is cell state at time step t. It is updated based on the outputs of the forget and
input gates, C;_1 is cell state from the previous time step t — 1, W¢ is weight matrix for
creating the candidate values for updating the cell state, and b is bias term for the candidate
value creation. The output gate determines the next hidden state, which contains information
based on the updated cell state. It uses a sigmoid function to decide which parts of the cell
state to output, and then applies a tanh function to the cell state, multiplying it by the sigmoid
function’s output to decide which information the hidden state should carry.

h[= O * tanh(C,) (10)

Here, h, is hidden state at time step t. It is based on the updated cell state and the output
of the output gate, and o, is output gate’s output at time step t. It decides which parts of the
cell state C; will be output in 4;.

The LSTM’s ability to manage and update its cell state with these gates makes it adept at
capturing long-term dependencies in sequential data. Internal features are mapped to distinct
activity patterns as the machine learns to extract features from observational sequences. Using
CNN-FCM-LSTM as a classification method does not require domain expertise, as it can be
trained directly from raw time series data, removing the need for manual feature tagging. As
part of updating and calculating network parameters, the training algorithm lowers the loss
function that determines the neural training to approximate the optimal value. Therefore, it
is crucial to choose an appropriate training method while developing a deep learning model.
With a batch size of 1000 epochs, Stochastic Gradient Descent (SGD) [54] values are used
in training the CNN-FCM-LSTM algorithm.

Multiple subjects are included in the dataset. On the basis of the topics, we created a
training set and a testing set. There are three components to our model validation and testing:
With 10,465 data points, 70.02% are used for training; 13.38% are used for validation with
2,000 data points; and 16.59% are used for testing with 2,480 data points. The performance on
the test set may be generalized to any new subject, and we can prevent the unique properties
of a test subject from leaking into the training set by dividing the data in a subject-wise
manner.

@ Springer

Multimedia Tools and Applications

3 Results and discussion

During experimentation, the networks are evaluated on their classification performance,
which includes accuracy, precision, specificity, and sensitivity. Classification accuracy is
measured by comparing the number of right predictions to the total number of predictions
made and is defined as

TP+TN
Accuracy = (11)
TP+TN+FP+FN
where TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative
samples.
A measure of precision can be computed by comparing the proportion of correct predic-
tions made to the total number of positive results

. TP
Precision = ———— (12)
TP+ FP
Sensitivity, the fraction of positive samples that can be reliably assigned to a single cate-
gory, is used to determine the rate at which positive samples are detected. One may express
the sensitivity in mathematical terms as follows
s TP
Sensitivity = ——— (13)
TP+ FN
To further evaluate specificity, we calculate true negative values, which represent the
proportion of false-negative instances that are properly classified based on their class, as
shown by
TN
Specificity = ————— 14
pecificity TN+ FP (14)
The proposed architecture’s efficiency is estimated using 10-fold cross-validation, as
shown in Fig. 3. We trained each fold for 100 epochs and saved the model weights that

Recorded Triaxial Acceleration and Estimated Body Acceleration By Wearable Sensors ‘

Training Dataset ‘ [Validation Dataset H Testing Dataset ‘

Division-l @m mw‘w Fold-vill
Division-II @m dv m@ Fold-vill
Division-lll | Fold-l m@ Fold-vill

B e
Fold-vil
[Fota-vin
Fold-vil
Fold-vil
Fold-vill
Fold-vill

i

Division-lv | Fold-l

E

Finding

Division-V | Fold-l ‘Pjyr{erpargmeler Best

Division-VI | Fold-l

Division-VIl |Fold-|

Division-VIIl |Fold-}

Division-IX | Fold-|

Division-X | Fold-l

?

-«

Testing Dataset ::| Final Evaluation

HHH

o
o
-

Construct CNN-FCM-LSTM
Model

2
!
5
-3
o
3
=
®
5
o
)

Model Evaluation

Fig.3 10-fold Cross-Validation Architecture

@ Springer

Multimedia Tools and Applications

Table 1 Hyperparameter Settings for Model Training

Hyperparameter Value

Batch Size 35

Dropout Rate 0.5

L2 Regularization Strength 0.001

Initial Learning Rate 0.01 (gradually decreases by 5% every 5 epochs)
Weight Initialization Method He Normal

Momentum Value 0.9

Adam Optimizer 0.9 and 0.999

Learning Rate Schedule 10 different rates, decreasing over epochs
Total Training Epochs 1000 epochs

Weight Loss Threshold 0.00001 weight

performed best on the validation set. We split the training data into 10 folds to help the model
learn the relationship between inputs and outputs efficiently. The data was too large to send
over the network all at once, so we split it into smaller batches of 500. We trained the model
on each fold 6 times, adjusting the hyperparameters as needed.

The CNN-FCM-LSTM modelis trained with specific hyperparameters, detailed in Table 1,
to optimize its learning process. These parameters include a batch size of 35 for batch-wise
training, a dropout rate of 0.5 for regularization, L2 regularization with a strength of 0.001
to prevent overfitting, an initial learning rate of 0.01 that gradually decreases by 5% every 5
epochs, He normal weight initialization [55] for efficient weight configuration, a momentum
value of 0.9 for gradient optimization, and Adam optimizer parameters where f values are
0.9 and 0.999. These hyperparameters collectively ensure that the model learns effectively
from the data while avoiding overfitting, converging efficiently, and making appropriate
weight updates during training. Fine-tuning these parameters is crucial for achieving optimal
performance in the CNN-FCM-LSTM model. The model has about 4.5 million parameters
and was trained on a MotionSense dataset with 10,000 data points. It typically uses around
100MB of memory. The total number of parameters in the CNN-FCM-LSTM model is
260,000. The number of weights is 243,200, and the number of biases is 13,600.

The training comes to an end once 10 different learning rates-0.01 for the first hundreds,
0.001 for the next hundreds, 0.0001 for the next hundreds, and so forth-have been used.
This process is repeated until 1000 epochs have been reached. We consider a weight loss of
0.00001 weight. As mentioned before, we compared the performance of the SGD training
algorithm with that of the Adagrad, Adadelta, AdamW, and Adamax training algorithms in
this study.

Different criteria are used to evaluate the deep learning algorithm’s effectiveness. Accu-
racy, specificity, sensitivity, and precision scores for the CNN-FCM-LSTM architecture on
the MotionSense testing dataset are detailed in Table 2. Samples of data that seem to belong
to more than one class are represented by the ”overlap” class, which introduces unnecessary
variability into data sets. The "Overlapped Data” row shows that the model has lower per-
formance on data that contains overlapping classes. This is because the overlap of classes
can make it difficult to distinguish between the different classes. The “Time-Frequency Fea-
tures” row shows that the model has a higher performance on data that has been extracted with
time-frequency features. This is because time-frequency features can capture the temporal

@ Springer

Multimedia Tools and Applications

Table 2 Performance Matrix for the CNN-FCM-LSTM Model across the MotionSense Test Dataset

Folds Specificity Sensitivity Accuracy Precision
Fold-1 100.00 100.00 100.00 100.00
Fold-II 100.00 100.00 100.00 100.00
Fold-IIT 99.84 99.94 99.89 99.87
Fold-IV 99.72 99.83 99.78 99.73
Fold-V 99.66 99.64 99.71 99.62
Fold-VI 99.51 99.53 99.67 99.54
Fold-VII 99.42 99.45 99.63 99.41
Fold-VIII 99.40 99.37 99.54 99.39
Fold-IX 99.32 99.23 99.32 99.28
Fold-X 99.29 99.11 99.27 99.16
Overlapped Data NULL NULL NULL NULL
Time-Frequency Features 99.84 99.79 99.81 99.77
Average 99.63 99.62 99.69 99.61

and spectral properties of the data, which can be helpful for distinguishing between different
classes.

The network parameters are updated and adjusted by the optimizer, causing an impact
while training the model and classification of activities and decreasing the misfortune capa-

1.0 1 - frain
* validation
084 2
+
b
y
E 06 4 -
— |
v
& +
: 3
0.4 4 1}
1r
: 3
0.2 L
0 2000 4000 6000 8000

iteration

Fig.4 Performance Accuracy for CNN-FCM-LSTM Model on MotionSense Train and Test Dataset

@ Springer

Multimedia Tools and Applications

- frain

175 A * validation

M g

150 4

PRI P TP T U e S—

L o . a g

125 4

1.00

Loss

0.75 -

R . e i S S e SN S

PR
[PUPEI U R Y S .

0.50 -

0.25 -

0.00 -

0 2000 4000 6000 8000
iteration

Fig.5 Performance Loss for CNN-FCM-LSTM Model on MotionSense Train and Test Dataset

Performance Metrics Across Folds

Specificity Sensitivity
100.4 100.4
100.2 100.2
100.0 100.0
v 0
g g
£ 998 £ 998
g g
9 996 9 996
99.4 99.4
99.2 99.2
99.0 99.0
Fold-T_Fold-Il Fold-NIl Fold-IV Fold-V Fold-VI Fold-VII Fold-VIIl Fold-IX Fold-X Fold-T_Fold-Il Fold-Nll Fold-IV FoldV Fold-VI Fold-VII Fold-VIIl Fold-IX Fold-X
Folds Folds
Accuracy Precision
100.4 100.4
100.2 100.2
100.0 100.0
v 0
g g
2 908 ’—\\\‘ £ 908
] g
Y Y
9 996 9 996
99.4 99.4
99.2 99.2
990 E5iaT Fold- Fold-lil FoldIV Fold™V_Fold-VI Fold-VITFold-VIll Fold1X FoldX 990 E5idT Fold- Fold-lil Fold-IV Fold™V FoldVI Fold-VIIFold-VIll Fold1X FoldX
Folds Folds

Fig.6 Performance Metrics Across Folds

@ Springer

Multimedia Tools and Applications

Table 3 Performance of Different Optimizers on MotionSense Training Data to Minimize the Loss Function

Optimizers 30 Epochs 75 Epochs 150 Epochs 300 Epochs

SGD 15.21£0.19 12.90 £0.12 09.45 £0.21 08.59 £0.12
Adam 17.78 £0.17 15.22 £ 0.06 13.96 £0.14 12.91 £0.06
Adadelta 17.41 £0.16 16.99 £ 0.15 15.81 £0.16 12.16 £0.15
Adagrad 17.99 £+ 0.40 15.70 +0.20 13.11£0.18 13.90 £+ 0.20
Adamw 18.36 £0.12 16.76 £0.17 15.86 £0.10 14.96 +£0.17
Adamax 17.74 £ 0.05 16.95+0.19 14.68 £ 0.21 11.41£0.19

bility to estimated or accomplish the ideal worth. Hence, this makes it necessary to select the
correct optimizer to train a deep learning model. Several standard optimizers were experi-
mentally verified.

The average values for sensitivity, accuracy, specificity, and precision were all found to
be 99.63%, 99.62%, 99.69%, and 99.61% respectively. To test the model, no overlapping
data was used. Figures 4 and 5 demonstrate the accuracy and loss curves for the CNN-FCM-
LSTM model. After 812 epochs, the difference between the train and test loss values becomes
minimal, indicating that the learning curve is fitting the data effectively. FCM can be used
between the feature extractor and LSTM to reduce the amount of data and computation, by
removing redundant data. Four subplots are shown in Fig. 6, each representing a major per-
formance indicator (specificity, sensitivity, accuracy, and precision) over 10 distinct dataset

Testing Accuracy

0.8 1
0.6 1
sgd
0.4 1 adam
—— adadelta
—— adagrad
—— adamw
0.2 -
—— adamax
—— asgd
0 10 20 30 40 50

Fig.7 Testing Accuracy of Different Optimizers on MotionSense Training Dataset

@ Springer

Multimedia Tools and Applications

folds. Every statistic is displayed on a different graph, which indicates a negative trend as
the folds deepen. The associated metric’s average value is shown by the dashed red line.

The loss function is a measure of the error between the predicted and actual outputs of
the model. The lower the loss, the better the performance of the model. According to the
data in Table 3, Adamax was the best optimizer for training the model on the MotionSense
dataset to minimize the loss function on the training data, as it achieved the best fitting effect
and had the most stable gradient descent curve. The plus/minus sign in the table is used
to indicate the standard deviation of the loss values. The unit of the values in the table is
the mean squared error (MSE). In the table, each row represents the results of training the
CNN-FCM-LSTM model with a different optimizer for a different number of epochs. The
columns show the mean MSE and standard deviation of the loss values for each optimizer and
number of epochs. The loss function, with a standard deviation of the values, varies across
different experiments; it is affected by the specified optimizer and training duration. When
training the CNN-FCM-LSTM model, Adamax is deployed as the optimizer. The results
show that Adamax constantly outperforms all other optimizers for the task we selected. On
testing accuracy, SGD, Adam, and AdamW come in second, third, and fourth, respectively.
After 100 epochs on the testing dataset, the model performance for Adamax, SGD, Adam,
and AdamW is equivalent. Adamax and SGD exhibit the most improvement in the first few
epochs. Figures 7 and 8 show the testing accuracy and losses of different optimizers on the
MotionSense training dataset (Fig. 9).

Convolution kernels can help the model learn complex and deep features, but this can also
lead to overfitting if the model’s parameters are not carefully tuned. Therefore, the number
of filters used is a crucial factor to consider. As shown in Fig. 10, the network parameters

Testing Loss

5 —vsgd
adam
—— adadelta
—— adagrad
‘ —— adamw

—— adamax
—— asgd

0 10 20 30 40 50

Fig.8 Testing Losses of Different Optimizers on MotionSense Training Dataset

@ Springer

Multimedia Tools and Applications

Effect of Number of Filters on Model Parameters and Sensitivity Score

- 100
260
240 -98
220
-96 __
o 8
g 200 o
] o
5 S
s -94 &
5 180} oy
- >
3 =
| %
g 160 =199 S
(%]
140
-90
120}
- 88
100}
60 80 100 120 140

Number of Filters

Fig.9 Effect of Number of Filters on Model Parameters and Sensitivity Score

rise from 100 to 260 as the number of filters increases. In this figure, X is the number of
convolutional filters and Y is the network parameters. Due to this, the model’s precision
grows substantially. Adding an extra 88 layers results in a sensitivity score of 99.62%, or
12% more than when using just 64 layers. On the other hand, the model parameters increased
by more than 80%. Figure 9 demonstrates a positive link between the sensitivity score and
the model parameters as well as the number of filters in a model. The model’s parameters

260 A

240 -

220 A

200 +

180 A

160 A

140 A

120 A

Number of Convolutional Filters

100 A

Network Parameters

Fig. 10 A Comparison of the Model’s Parameter Count and Accuracy with Varying Numbers of Filters

@ Springer

Multimedia Tools and Applications

Table 4 True Positive and False

Positive Rate for Human Activity Activity True Positives False Positives

Classification on MotionSense Walking Upstairs 0.9883 0.0117

Test Dataset . .
Walking Downstairs 0.9829 0.0171
Jogging 0.9895 0.0105
Sitting 0.9973 0.0027
Standing 0.9989 0.0011
Level Ground Walking 0.9907 0.0093
Jumping Jacks 0.9878 0.0122
Brushing Teeth 0.9735 0.0265
Writing 0.9811 0.0189
Eating 0.9720 0.028

and sensitivity score both significantly rise with the number of filters used, indicating that
adding more filters might enhance the model’s detection capabilities.

Table 4 provides a comprehensive overview of the CNN-FCM-LSTM model’s per-
formance in classifying various human activities using the MotionSense Test Dataset. It
showcases the TP and FP rates for each activity, indicating the model’s ability to correctly
identify instances of the activity and its propensity to make errors in classification, respec-
tively. The model exhibits remarkable accuracy in recognizing fundamental activities such
as walking upstairs with a TP rate of 0.9883, walking downstairs with a TP rate of 0.9829,
jogging with a TP rate of 0.9895, sitting with a TP rate of 0.9973, and standing with a TP
rate of 0.9989, as evidenced by high TP rates and minimal FP rates. However, it encounters
challenges in distinguishing more nuanced activities like brushing teeth with a TP rate of
0.9735, writing with a TP rate of 0.9811, and eating with a TP rate of 0.9720, where FP rates
are relatively higher.

Table 5 presents the true positive and false positive rates for human activity classification
using the CNN-FCM-LSTM model on the WISDM dataset, assessing the model’s general-
ization capability. Comparing these results to the previous evaluation of the MotionSense
dataset, we observe a similar trend in the model’s performance. It excels in recognizing fun-
damental activities like walking upstairs with a TP rate of 0.9873, walking downstairs with
a TP rate of 0.9887, and walking on level ground with a TP rate of 0.9806, as indicated by
high TP rates and low FP rates. However, it encounters challenges in distinguishing between
sitting with a TP rate of 0.9719 and standing with a TP rate of 0.9734, where the FP rates are
relatively higher. This consistency in performance across datasets demonstrates the model’s
robustness and suggests that it maintains its classification accuracy when exposed to different

Table 5 True Positive and False

Positive Rate for Human Activity Activity True Positives False Positives
]C)laiziﬁtcaﬁon on WISDM Walking Upstairs 0.9873 0.0127
Walking Downstairs 0.9887 0.0113
Sitting 0.9719 0.0281
Standing 0.9734 0.0266
Level Ground Walking 0.9806 0.0194
Brushing Teeth 0.9714 0.0286

@ Springer

Multimedia Tools and Applications

Receiver Operating Characteristic

1.0r i
” e
; ’,,
,/
,/’
0.8f ’/’
e
/,’
[0} PR
5 o
o -’
v 0.6 ’,’
= 7
wn ”
o PR
o -
S04 Pras
= Jad
”
/’,
/,’
-
0.2 s o
/,’
’/
’/
,,’ ROC curve (area = 0.98)
0. i i i i i
%.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 11 Receiver Operating Characteristic Curve

data sources, highlighting its generalization ability. Figure 11 shows the receiver operating
characteristic (ROC) curve displaying the trade-off between sensitivity and specificity for the
classification model.As the discrimination threshold of a binary classifier system is changed,
the ROC curve graph shows the system’s diagnostic capability. The area under the curve
(AUC) represents the model’s overall ability to discriminate between the two classes. The
curve plots the true positive rate (sensitivity) against the false positive rate (1-specificity).
The very high discriminative performance is indicated by the AUC of 0.98.

Table 6 and Fig. 12 compare the classifications by deep learning algorithms evaluated
on the MotionSense dataset. The CNN-FCM-LSTM model has the highest training and
testing accuracy of all the models, at 100% and 99.69%, respectively. This is a signifi-
cant improvement over the other models, which have accuracies ranging from 88.5% to

Table 6 Average Training and Testing Accuracies For Different Deep Learning Models Evaluated on Motion-
Sense Dataset

Deep Learning Models Training Accuracy Testing Accuracy
2D-CNN 92.77 88.57
CNN-LSTM 94.28 91.24
VGG-16 95.14 92.79
MLP 91.81 87.50
LSTM 93.59 90.22
Gated Recurrent Unit 94.09 90.82
Convolutional Wavelet Neural Network 93.13 89.09
Bi-Directional LSTM 94.86 91.89
CNN-FCM-LSTM 100.00 99.69

@ Springer

Multimedia Tools and Applications

Comparative Analysis of Different Deep Learning Models

100 | —®— Training Accuracy
—e— Testing Accuracy
98

96 |

94

Accuracy (%)

92

N0

881

Models

Fig. 12 Testing Accuracy For Different Deep Learning Models Evaluated on MotionSense Dataset

97.69%. This is followed by the VGG-16 model (95.1% training accuracy, 92.7% testing
accuracy), the CNN-LSTM model (94.2% training accuracy, 91.2% testing accuracy), and
the Bi-Directional LSTM model (94.8% training accuracy, 91.8% testing accuracy). The
multi-layered perceptron (MLP) model is a simple neural network that does not have any
temporal modeling capabilities. The LSTM, GRU, and bi-directional LSTM models are all
recurrent neural networks that can model temporal dependencies, but they do not use CNN’s
to extract spatial features. CNN-FCM-LSTM outperforms other deep learning and machine
learning algorithms by a wide margin. By combining convolutional neural networks with
effective features, this method can improve the accuracy of activity classification. In addition
to recognizing the interdependence of data in time series data, LSTM can also automati-
cally choose the mode based on the optimal mode suited for relevant data, allowing for the
identification and elucidation of links between data (Fig. 13).

I Data Processing and Analysis

by W bl

Recorded Acceleration Data Signal Pre-Processing

p y Sensor Data
Analysis

I CNN-LSTM - .--)I 2D-Convolutional Neural Network (2D-CNN) I

' '

; : ;
I CNN-FCM-LSTM i Deep Neural :——)iConvolutlonal Wavelet Neural Network (CWNN)I

: Networks !

' r -)l Visual Geometry Group-16 (VGG-16) I
| Gated Recurrent Unit (GRU) 4 H

' ’ .

! |Outdoor Activity CIassIﬂcatlonl .‘"l Multi-Layered Perceptron (MLP) I
I Bi-Directional LSTM I(- - H

3 ->| Long Short-Term Memory (LSTM) I

Fig. 13 Deep Learning Models utilized in this study

@ Springer

Multimedia Tools and Applications

We evaluated the CNN-FCM-LSTM model’s efficiency, training time, and inference time,
and compared them to other deep learning models. We found that the CNN-FCM-LSTM
model has a significantly lower model size, shorter training time, and lower inference time
than other complex models, such as CNN-LSTM. This makes the CNN-FCM-LSTM model
a lightweight and efficient model that is well-suited for real-time applications, such as fall
detection and gesture recognition.

Deep learning techniques can be used to solve human activity recognition problems using
data-driven approaches. Deep learning techniques, such as those used in the CNN-FCM-
LSTM model, can be used to reduce the dimensionality of time-series data and learn useful
abstractions from raw data. This is important for human activity recognition because it allows
models to learn to distinguish between different activities even when there is a lot of variability
in the data. Our stimulation results show that the CNN-FCM-LSTM model outperforms
the other deep learning and machine learning algorithms by a wide margin, demonstrating
the effectiveness of this approach for human activity recognition. The CNN-FCM-LSTM
network can automatically extract features from raw data without any prior knowledge of the
data domain. These features are unbiased and may reveal unexpected patterns and features.

3.1 Discussion

The CNN-FCM-LSTM model can detect temporal and spatial patterns in sensor data, while
the FCM clustering can provide a more nuanced view of the data. The combination of
these two techniques can provide a more comprehensive and accurate view of the data and
potentially improve the performance of activity recognition. In the simulations, we perform
hyperparameter tuning with the number of LSTM and CNN layers, their units, and kernel
sizes. While there are other approaches that can also enhance feature selection and improve
model performance, FCM clustering offers a different perspective and has its advantages.
Unlike attention mechanisms, which may require additional training and complexity, FCM
clustering operates directly on the data in an unsupervised manner. It does not require explicit
supervision or labeled data during the clustering process.

The CNN-FCM-LSTM model, when compared to its individual components, showcase
superior performance. This superiority is evident in both training and testing accuracies. For
CNN, LSTM, and integrated CNN-LSTM, we assume similar hyperparameters for fairness in
comparison. With a testing accuracy of 99.69%, the CNN-FCM-LSTM model outperformed
architectural components such as 2D-CNN (88.57%), LSTM (90.22%), and integrated CNN-
LSTM (91.24%). The average values of specificity, sensitivity, and accuracy are consistently
high, ranging from 99.63% to 99.62% to 99.61%, across several folds. Additionally, the
model exhibits low false positive rates and high true positive rates for a variety of activities,
including sitting (0.9973), running (0.9895), and walking upwards (0.9883). In contrast,
individual components like CNN and LSTM, even when combined as CNN-LSTM, tend to
have lower accuracies and may not balance the spatial and temporal feature extraction as
effectively as CNN-FCM-LSTM. The integration of FCM in CNN-FCM-LSTM allows for
better data reduction and feature selection, contributing to higher accuracy and more robust
performance across different activities and datasets.

We define a “light-weight” model as a model that has a small number of parameters
and is computationally efficient. We have conducted experiments to measure the number of
parameters and computational complexity of our proposed CNN-FCM-LSTM model. The
number of parameters in our model is 260,000, which is significantly smaller than the number
of parameters in other deep learning models for activity recognition. The number of weights

@ Springer

Multimedia Tools and Applications

is 243,200, and the number of biases is 13,600. This is significantly smaller than the number
of weights and biases in other deep learning models for activity recognition [6-8, 11-13,
19-23]. The computational complexity of our model is also relatively low, making it suitable
for deployment on mobile devices. We believe that our proposed CNN-FCM-LSTM model
is a "light-weight" model because it has a small number of parameters and is computationally
efficient. However, we agree that we need to conduct more experiments to further justify this
terminology. In future work, we plan to compare the number of parameters and computational
complexity of our model to other deep learning models for activity recognition. We also plan
to conduct experiments on different datasets and with different configurations to further
evaluate the performance of our model.

One of the limitations of the CNN-FCM-LSTM model is that it primarily concentrates on
recognizing low-level activities, such as walking, jogging, sitting, and standing. However,
sensor location and subject reliance are major drawbacks of wearable sensor-based HAR,
resulting in a high rate of false alarms. In our test, the one-dimensional convolutional net-
work and LSTM model performed better in terms of location and recognition. While CNN
appears competent for the tasks of pattern recognition and feature extraction, the sequence
analysis components have recently improved using LSTM. To manage location and subject
dependency, a methodology was proposed for a hybrid activity recognition model combining
a convolutional network with a recurrent neural network model. As a result, this technique
develops CNN-FCM-LSTM by combining CNN and LSTM models to handle classification
issues.

Moreover, the study relies on publicly available accelerometer data from specific datasets
(MotionSense and WISDM). While these datasets serve as valuable resources, they do have
limitations. They may not fully capture the diversity of activities or real-world scenarios
that activity recognition systems encounter, limiting the model’s real-world applicability. As
activity recognition technology advances, it raises privacy and ethical concerns, especially
when applied in real-world scenarios. Ensuring that these technologies respect user privacy
and adhere to ethical guidelines is paramount. Ethical considerations surrounding data col-
lection, storage, and usage demand further attention. Lastly, it is essential to acknowledge that
the model’s performance may vary across different individuals due to variations in walking
patterns, postures, and other factors. Ensuring robust recognition across diverse populations
should be a consideration for future research efforts.

One promising direction for future research in HAR is to develop models that can rec-
ognize high-level activities. Activities, such as cooking, driving, or working at a computer,
are more complex and context-dependent than simple movements, and developing models
that can recognize them accurately would make activity recognition systems more versatile
and applicable to a wider range of contexts. In addition to recognizing activities, incorpo-
rating contextual information is another important avenue. Contextual data such as time
of day, location, and user context can significantly improve activity recognition systems’
accuracy and relevance. Future research should explore context-aware HAR models that
can take advantage of this information. Real-time applications of activity recognition are
increasingly important, particularly in areas like health monitoring and fall detection. We
can integrate temporal transformers, which could offer enhancements in capturing long-term
dependencies more effectively, especially for complex human activities. Developing efficient
and low-latency models that can recognize activities as they occur in real-time is a promising
area of research. We also plan to delve into the crucial aspects of network explainability
and transparency in decision-critical scenarios, ensuring a more comprehensive approach to
human activity recognition and classification. As privacy concerns continue to grow, there
is a need for research on privacy-preserving techniques in HAR. Methods that can perform

@ Springer

Multimedia Tools and Applications

activity recognition while preserving user privacy, possibly through federated learning or
secure multi-party computation, are worth exploring. Lastly, interdisciplinary collaboration
can play a significant role in shaping the future of HAR. Collaborating with experts from
domains such as healthcare, sports science, and human-computer interaction can help tailor
activity recognition systems to specific applications and domains, resulting in more impactful
solutions.

4 Conclusion

In this paper, we have proposed a new deep learning model, CNN-FCM-LSTM, HAR
using smartphone-based accelerometers. The model is a hybrid approach that combines the
strengths of convolutional neural networks (CNNs) and long short-term memory (LSTM) net-
works. CNNs are good at learning spatial patterns, while LSTMs are good at learning temporal
patterns. We evaluated the performance of the CNN-FCM-LSTM model on the Motion-
Sense dataset, which contains raw sensor data from 10 different activities. We compared
the CNN-FCM-LSTM model to several other deep learning algorithms, including 2D-
CNN, CNN-LSTM, VGG-16, Multi-Layer Perceptron, LSTM, GRU, CWNN, Bi-Directional
LSTM.

The CNN-FCM-LSTM model outperformed all other algorithms on the MotionSense
dataset by 10.11%, achieving an accuracy of 99.69%. This demonstrates that the CNN-
FCM-LSTM model is able to effectively learn both spatial and temporal patterns in sensor
data, which is essential for accurate HAR ultimately improving the overall performance of
the network in comparison with the benchmarking models. In addition to its high accuracy,
It is lightweight and efficient. This makes it suitable for deployment on mobile devices.
It does not require any manual feature engineering. This saves time and effort, and makes
the model more scalable. It is robust to sensor location and subject reliance. This means
that it can be used to develop HAR systems that are more accurate and reliable in real-
world applications. Overall, the CNN-FCM-LSTM model is a promising approach for HAR
using smartphone-based accelerometers. It is lightweight, efficient, robust, and achieves high
accuracy on real-world datasets.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Data Availability Data sharing is not applicable to this article as no datasets were generated during the current
study

Declarations

Conflicts of Interest The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision
to publish the results.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Multimedia Tools and Applications

References

20.

21.

Vandersmissen B, Knudde N, Jalalvand A, Couckuyt I, Dhaene T, De Neve W (2020) Indoor human
activity recognition using high-dimensional sensors and deep neural networks. Neural Comput Appl
32(16):12295-12309

Schuldhaus D (2019) Human activity recognition in daily life and sports using inertial sensors. PhD thesis
Demrozi F, Pravadelli G, Bihorac A, Rashidi P (2020) Human activity recognition using inertial, phys-
iological and environmental sensors: A comprehensive survey. IEEE Access 8:210816-210836. https://
doi.org/10.1109/ACCESS.2020.3037715

Chen Z, Jiang C, Xiang S, Ding J, Wu M, Li X (2020) Smartphone sensor-based human activity recognition
using feature fusion and maximum full a posteriori. IEEE Trans Instrum Meas 69(7):3992—4001. https://
doi.org/10.1109/TIM.2019.2945467

Sabir A, Ahmed M, Al-Talabani A, Maghdid H (2017) Human gait identification using kinect sensor.
Kurdistan J Appl Res 2. https://doi.org/10.24017/science.2017.3.37

Sabir AT, Maghdid HS, Asaad SM, Ahmed MH, Asaad AT (2019) Gait-based gender classification using
smartphone accelerometer sensor. In: 2019 5th International Conference on Frontiers of Signal Processing
(ICFESP), pp 12-20. https://doi.org/10.1109/ICFSP48124.2019.8938033

Xia K, Huang J, Wang H (2020) Lstm-cnn architecture for human activity recognition. IEEE Access
8:56855-56866. https://doi.org/10.1109/ACCESS.2020.2982225

Ordéiiez FJ, Roggen D (2016) Deep convolutional and Istm recurrent neural networks for multimodal
wearable activity recognition. Sensors 16(1). https://doi.org/10.3390/s16010115
KS,SPR,SV,VS,SS, Mohammed Hashim BA, Amutha R (2021) Machine learning-based human
activity recognition using neighbourhood component analysis. In: 2021 5th International Conference
on Computing Methodologies and Communication (ICCMC), pp 1080-1084. https://doi.org/10.1109/
ICCMC51019.2021.9418362

Hossain Shuvo MM, Ahmed N, Nouduri K, Palaniappan K (2020) A hybrid approach for human
activity recognition with support vector machine and 1d convolutional neural network. In: 2020 IEEE
Applied Imagery Pattern Recognition Workshop (AIPR), pp 1-5. https://doi.org/10.1109/AIPR50011.
2020.9425332

. Ali G, Al-Libawy H (2021) Time-series deep-learning classifier for human activity recognition based on

smartphone built-in sensors. J Phys Conf Ser 1973:012127. https://doi.org/10.1088/1742-6596/1973/1/
012127

Lara OD, Labrador MA (2013) A survey on human activity recognition using wearable sensors. IEEE
Commun Surv Tutorials 15(3):1192-1209. https://doi.org/10.1109/SURV.2012.110112.00192

. Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2012) Human activity recognition on smartphones

using a multiclass hardware-friendly support vector machine. In: Bravo J, Hervds R, Rodriguez M (eds)
Ambient Assisted Living and Home Care. Springer, Berlin, Heidelberg, pp 216223

Naz MR, Sakarkar G (2022) Arthritis detection using thermography and artificial intelligence. In: 2022
10th International Conference on Emerging Trends in Engineering and Technology - Signal and Infor-
mation Processing (ICETET-SIP-22), pp 01-06. https://doi.org/10.1109/ICETET-SIP-2254415.2022.
9791556

. Reza MS, Ma J (2016) Ica and pca integrated feature extraction for classification. 2016 IEEE 13th

International Conference on Signal Processing (ICSP), 1083—1088

Bhuiyan RA, Amiruzzaman M, Ahmed N, Islam MR (2020) Efficient frequency domain feature extraction
model using eps and Ida for human activity recognition. In: 2020 3rd IEEE International Conference on
Knowledge Innovation and Invention (ICKII), pp 344-347. https://doi.org/10.1109/ICKII50300.2020.
9318786

Perez-Gamboa S, Sun Q, Zhang Y (2021) Improved sensor based human activity recognition via hybrid
convolutional and recurrent neural networks. In: 2021 IEEE International Symposium on Inertial Sensors
and Systems (INERTIAL), pp 1-4. https://doi.org/10.1109/INERTIALS51137.2021.9430460

Dogan G, Ertas SS, Cay I (2021) Human activity recognition using convolutional neural networks. In:
2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB), pp 1-5. https://doi.org/10.1109/CIBCB49929.2021.9562906

Hammerla N, Halloran S, Ploetz T (2016) Deep, convolutional, and recurrent models for human activity
recognition using wearables

Ramasamy Ramamurthy S, Roy N (2018) Recent trends in machine learning for human activity
recognition-a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4).
https://doi.org/10.1002/widm.1254

Jobanputra C, Bavishi J, Doshi N (2019) Human activity recognition: A survey. Procedia Computer
Science 155:698-703. https://doi.org/10.1016/j.procs.2019.08.100

@ Springer

https://doi.org/10.1109/ACCESS.2020.3037715
https://doi.org/10.1109/ACCESS.2020.3037715
https://doi.org/10.1109/TIM.2019.2945467
https://doi.org/10.1109/TIM.2019.2945467
https://doi.org/10.24017/science.2017.3.37
https://doi.org/10.1109/ICFSP48124.2019.8938033
https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.3390/s16010115
https://doi.org/10.1109/ICCMC51019.2021.9418362
https://doi.org/10.1109/ICCMC51019.2021.9418362
https://doi.org/10.1109/AIPR50011.2020.9425332
https://doi.org/10.1109/AIPR50011.2020.9425332
https://doi.org/10.1088/1742-6596/1973/1/012127
https://doi.org/10.1088/1742-6596/1973/1/012127
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791556
https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791556
https://doi.org/10.1109/ICKII50300.2020.9318786
https://doi.org/10.1109/ICKII50300.2020.9318786
https://doi.org/10.1109/INERTIAL51137.2021.9430460
https://doi.org/10.1109/CIBCB49929.2021.9562906
https://doi.org/10.1002/widm.1254
https://doi.org/10.1016/j.procs.2019.08.100

Multimedia Tools and Applications

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Ronao CA, Cho S-B (2016) Human activity recognition with smartphone sensors using deep learning
neural networks. Expert Syst Appl 59:235-244. https://doi.org/10.1016/j.eswa.2016.04.032

Waheed M, Jalal A, Alarfaj M, Ghadi Y'Y, Shloul TA, Kamal S, Kim D-S (2021) An Istm-based approach
for understanding human interactions using hybrid feature descriptors over depth sensors. IEEE Access
9:167434-167446. https://doi.org/10.1109/ACCESS.2021.3130613

Ullah HA, Letchmunan S, Zia MS, Butt UM, Hassan FH (2021) Analysis of deep neural networks for
human activity recognition in videos-a systematic literature review. IEEE Access 9:126366—126387.
https://doi.org/10.1109/ACCESS.2021.3110610

Rustam F, Reshi AA, Ashraf I, Mehmood A, Ullah S, Khan DM, Choi GS (2020) Sensor-based human
activity recognition using deep stacked multilayered perceptron model. IEEE Access 8:218898-218910.
https://doi.org/10.1109/ACCESS.2020.3041822

Sivakumar S, Gopalai A, Lim KH, Gouwanda D (2019) Artificial neural network based ankle joint angle
estimation using instrumented foot insoles. Biomed Signal Process Control 54:101614. https://doi.org/
10.1016/j.bspc.2019.101614

Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers 12(2):74—
82. https://doi.org/10.1145/1964897.1964918

Cuesta-Vargas Al, Galan-Mercant A, Williams JM (2010) The use of inertial sensors system for human
motion analysis. Phys Ther Rev 15(6):462-473

Raza H, Bennamoun M (2019) A comparative study of human activity recognition using vicon and
qualisys motion capture systems. J Ambient Intell Humanized Comput 10(8):7109-7123

Anguita D, Ghio A, Oneto L, Parra F, Reyes-Ortiz J (2013) A public domain dataset for human activity
recognition using smartphones

Park H, Park MS (2019) A publicly available dataset for human activity recognition using smartphones.
mHealth 5(0). https://doi.org/10.21203/mhealth.2019.5.0

Micucci S, Sgorbissa A, Trucco S, Oneto L, Parra X (2017) The unimib-shar dataset: A multimodal human
activity recognition dataset for smartphones. Sensors 17(10):2426. https://doi.org/10.3390/s17102426
Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional Two-Stream Network Fusion for Video
Action Recognition. arXiv:1604.06573

Tang Y, Teng Q, Zhang L, Min F, He J (2020) Efficient convolutional neural networks with smaller filters
for human activity recognition using wearable sensors. IEEE Sensors J PP. https://doi.org/10.1109/JSEN.
2020.3015521

Mahmud T, Sazzad Sayyed AQM, Fattah SA, Kung S-Y (2021) A novel multi-stage training approach
for human activity recognition from multimodal wearable sensor data using deep neural network. IEEE
Sensors J 21(2):1715-1726. https://doi.org/10.1109/JSEN.2020.3015781

Mutegeki R, Han DS (2020) A cnn-Istm approach to human activity recognition. In: 2020 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp 362-366. https://
doi.org/10.1109/ICAIIC48513.2020.9065078

Gajjala KS, Chakraborty B (2021) Human activity recognition based on Istm neural network optimized
by pso algorithm. In: 2021 IEEE 4th International Conference on Knowledge Innovation and Invention
(ICKII), pp 128-133. https://doi.org/10.1109/ICKII51822.2021.9574788

Liang J, Zhou T, Liu D, Wang W (2023) CLUSTSEG: Clustering for Universal Segmentation

Surek G, Seman L, Frizzo Stefenon S, Mariani V, Coelho L (2023) Video-based human activity recognition
using deep learning approaches. Sensors 23:6384. https://doi.org/10.3390/s23146384

Qin Z, Han C, Wang Q, Nie X, Yin Y, Lu X (2023) Unified 3d segmenter as prototypical classifiers. In:
Thirty-seventh Conference on Neural Information Processing Systems. https://openreview.net/forum?
1d=Q6zd 1hr7sD

Wang W, Han C, Zhou T, Liu D (2023) Visual Recognition with Deep Nearest Centroids

Han C, Wang Q, Cui Y, Cao Z, Wang W, Qi S, Liu D (2023) E2VPT: An Effective and Efficient Approach
for Visual Prompt Tuning

Yan L, Han C, Xu Z, Liu D, Wang Q (2023) Prompt learns prompt: Exploring knowledge-aware generative
prompt collaboration for video captioning, pp 1622—1630. https://doi.org/10.24963/ijcai.2023/180
Wang W, Liang J, Liu D (2022) Learning Equivariant Segmentation with Instance-Unique Querying
Cui Y, Yan L, Cao Z, Liu D (2021) TF-Blender: Temporal Feature Blender for Video Object Detection
Liu D, Cui Y, Tan W, Chen Y (2021) SG-Net: Spatial Granularity Network for One-Stage Video Instance
Segmentation

Hammerla NY, Halloran S, Ploetz T (2016) Deep, Convolutional, and Recurrent Models for Human
Activity Recognition using Wearables

Li F, Shirahama K (2018) Comparison of feature learning methods for human activity recognition using
wearable sensors. Sensors 18(2):679. https://doi.org/10.3390/s18020679

@ Springer

https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1109/ACCESS.2021.3130613
https://doi.org/10.1109/ACCESS.2021.3110610
https://doi.org/10.1109/ACCESS.2020.3041822
https://doi.org/10.1016/j.bspc.2019.101614
https://doi.org/10.1016/j.bspc.2019.101614
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.21203/mhealth.2019.5.0
https://doi.org/10.3390/s17102426
http://arxiv.org/abs/1604.06573
https://doi.org/10.1109/JSEN.2020.3015521
https://doi.org/10.1109/JSEN.2020.3015521
https://doi.org/10.1109/JSEN.2020.3015781
https://doi.org/10.1109/ICAIIC48513.2020.9065078
https://doi.org/10.1109/ICAIIC48513.2020.9065078
https://doi.org/10.1109/ICKII51822.2021.9574788
https://doi.org/10.3390/s23146384
https://openreview.net/forum?id=Q6zd1hr7sD
https://openreview.net/forum?id=Q6zd1hr7sD
https://doi.org/10.24963/ijcai.2023/180
https://doi.org/10.3390/s18020679

Multimedia Tools and Applications

49.

50.

51

52.

53.

54.

55.

Malekzadeh M, Clegg RG, Cavallaro A, Haddadi H (2019) Mobile sensor data anonymization. In: Pro-
ceedings of the International Conference on Internet of Things Design and Implementation. ACM, ??7.
https://doi.org/10.1145/3302505.3310068

Kwapisz JR, Weiss GM, Moore SA (2010) Activity recognition using cell phone accelerometers. In:
Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-
10), Washington DC

Nanthini K, Devi RM (2014) Adaptive fuzzy c-means for human activity recognition. In: International
Conference on Information Communication and Embedded Systems (ICICES2014), pp 1-5. https://doi.
org/10.1109/ICICES.2014.7033836

Askari S (2020) Fuzzy c-means clustering algorithm for data with unequal cluster sizes and contaminated
with noise and outliers: Review and development. Expert Syst Appl 165:113856. https://doi.org/10.1016/
j.eswa.2020.113856

Rodrigues AKG, Ospina R, Ferreira MRP (2021) Adaptive kernel fuzzy clustering for missing data. PLoS
One 16(11):0259266

Dogo EM, Afolabi OJ, Nwulu NI, Twala B, Aigbavboa CO (2018) A comparative analysis of gradient
descent-based optimization algorithms on convolutional neural networks. In: 2018 International Confer-
ence on Computational Techniques, Electronics and Mechanical Systems (CTEMS), pp 92-99. https://
doi.org/10.1109/CTEMS.2018.8769211

Boulila W, Driss M, Al-Sarem M, Saeed F, Krichen M (2021) Weight Initialization Techniques for Deep
Learning Algorithms in Remote Sensing: Recent Trends and Future Perspectives

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Rushikesh Bodhe' . Saaveethya Sivakumar

2 - Gopal Sakarkar? -

Filbert H. Juwono* - Catur Apriono®

Rushikesh Bodhe
bodhers.pgddsai @coeptech.ac.in

Gopal Sakarkar
gopal.sakarkar@mitwpu.edu.in

Filbert H. Juwono
filbert.juwono @xjtlu.edu.cn

Catur Apriono

catur@eng.ui.ac.id

Department of Computer Engineering and IT, COEP Technological University, Pune 411005,
Maharashtra, India

Department of Electrical and Computer Engineering, Curtin University, Miri 98009, Sarawak,
Malaysia

Department of Computer Science and Applications, Dr Vishwanath Karad MIT World Peace
University, Pune 411038, Maharashtra, India

Department of Electrical and Electronic Engineering, Xi’an Jiaotong - Liverpool University,
215123 Suzhou, China

Department of Electrical Engineering, Universitas Indonesia, Depok City 16424, West Java,
Indonesia

@ Springer

https://doi.org/10.1145/3302505.3310068
https://doi.org/10.1109/ICICES.2014.7033836
https://doi.org/10.1109/ICICES.2014.7033836
https://doi.org/10.1016/j.eswa.2020.113856
https://doi.org/10.1016/j.eswa.2020.113856
https://doi.org/10.1109/CTEMS.2018.8769211
https://doi.org/10.1109/CTEMS.2018.8769211
http://orcid.org/0000-0003-3185-0350

	Outdoor activity classification using smartphone based inertial sensor measurements
	Abstract
	1 Introduction
	2 Methodology
	2.1 Signal dataset
	2.2 Dataset pre-processing
	2.3 Proposed model

	3 Results and discussion
	3.1 Discussion

	4 Conclusion
	References

