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Abstract
This paper extends and improves the performance of a digital reversible watermarking algo-
rithm based on histogram shifting presented in previous works. The considered algorithm
exploits the property of image histograms of some kinds of medical images which present
many contiguous 0-runs, i.e., a comb structure in the gray level frequencies. In particular,
radiographic images exhibit this structure after contrast enhancement during the acquisition
process. The previous work suggested performing gray-level histogram shifting according to
a local optimization technique. In this paper, we apply combinatorial optimization techniques
to entire blocks of contiguous 0-runs using a non-linear objective function transformed to
fit a linear optimization algorithm. The obtained results show a meaningful improvement in
the payload capacity of the original data-hiding method. A mild Peak Signal-to-Noise Ratio
(PSNR) reduction is still acceptable for a qualitative preview of the images, which can be
completely restored to their original cover form thanks to the reversibility of the method.
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- HS : Histogram Shifting
- NC : Normalized Correlation
- PSNR : Peak Signal-to-Noise Ratio
- RDH : Reversible Data Hiding
- RDH-CE : reversible data hiding with contrast enhancement

1 Introduction

Data hiding in digital objects comprises a set of frameworks, methods and algorithms aimed
at embedding information into digital audio, images, 3D models, text, etc. In case of covert
communication between entities, the process is called steganography while embedding data
for tamper detection, copyright protection, or extra data storing is called watermarking [1].

Data hiding algorithms modify a digital object, called cover object, to embed data and
may be reversible or non-reversible: the choice depends on the application context because
a reversible algorithm (see, for example, [2]) allows to restore the cover object after data
extraction while a non-reversible one cannot [3]. In fact, some classes of applications, like
those related to medical, legal or human safety fields, require that the end-user can have
access to the cover object after the hidden data has been extracted.

Digital steganography deals with a set of methods and techniques to hide a message into
a digital object in a manner that is not detectable in a subjective and objective way. This
requirement means neither humans nor specific algorithms can distinguish between cover
and stego objects. Good starting points on this topic are [1, 4].

On the other hand, digital watermarking aims at embedding a signal into a digital object,
like an image, a video, a 3D model, etc. The reasons for storing data in digital objects are
various, like copyright protection, tracking of origin, authentication, integrity protection, or
simple data transfer. Depending on the objective of themethods, requirements for watermark-
ing algorithms range from security and payload capability to imperceptibility, to fragility or
robustness [1].

A large class of image watermarking algorithms operates on the intensity level histogram
exploiting the image redundancy modifying pixel intensities to embed information called
payload [5, 6].

Histogram shifting represents a family of methods that operate in the spatial domain by
modifying pixel intensity levels in appropriate portions of the image histogram to insert
payload data. Ideally, the parts to be used are those characterized by a high peak level next
to a zero level. In general, the previous condition may be created by shifting by 1 several
levels adjacent to the peak, keeping track of that shifting to recover the original image. In
the work [7], a simple histogram shifting approach is applied, exploiting a characteristic of
some images having highly populated histogram levels adjacent to one zero frequency level.

A more sophisticated histogram shifting approach was proposed in [8] and applied to a
set of radiographic images where only a subset of gray levels is used, giving the histogram a
comb structure where single non-zero frequency levels are surrounded by clusters of unused
gray levels. This property is generally due to contrast enhancement operations during the
acquisition process. In that work, the payload was embedded operating the level shifting
considering a local optimization approach in order to maximize the payload size. Therefore,
the primary goal of our study is to investigate if a meaningful payload improvement can be
obtained taking into account the global characteristics of such histogram comb structure.
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To this aim, in this paper we propose a global optimization procedure that considers all the
contiguous zero-runs of levels, as explained in Section 3.

It should be noted that our approach does not modify the pixel levels to reserve space and
the payload information is embedded for every shifted pixel value. With this assumption, our
approach divides the image histogram into a sequence of sub-histograms (called blocks in
the following) and applies to each of them an optimal shifting strategy that maximizes the
total payload.

Thus, the contributions of this work can be summarized in the following points:

• develop a reversible data hiding scheme for medical images;
• exploit the intrinsic redundancy of a class of radiographic images, where contrast
enhancement operations performed during the medical exam produce a histogram where
many contiguous gray levels have a null frequency;

• optimize for the payload capacity using a combinatorial approach.

The obtained results show that the proposed approach has a better performance than the
known algorithms in the literature. Hence, the presented work becomes the new reference
for data embedding in images having the already mentioned characteristics.

The paper is organized as follows: the next section presents some related works and
Section 3 discusses the proposed improvement over the method [8]. Experimental results
are shown in Sections 4 and 5 draws some conclusions. The last section contains supporting
material.

2 Related works

In [9] the authors revisit the Histogram Shifting (HS) technique and present a general frame-
work to construct HS-based Reversible Data Hiding (RDH). By the proposed framework,
one can get an RDH algorithm by simply designing the so-called shifting and embedding
functions. One of the algorithms proposed in this paper reaches average PSNRs of 58.13 dB
and 54.95 dB for payloads of 0.038 bpp and 0.076 bpp respectively, computed over a set of
classical images (namely, Lena, Baboon, F-16, Peppers, Sailboat, Fishing boat; Baboon is
not considered at 0.076 bpp given that the method is not able to reach this payload).

The paper [10] extends the concept of mono-dimensional histogram to two dimensions
considering pairs of differences between pixels, then embeds data employing an injective
difference-pair-mapping (DPM) that is an evolution of the shifting and expansion techniques
applied in other RDH methods. By using a two-dimensional approach the pixel’s spatial
redundancy is used in a wiser manner and the performance of the resulting method is superior
to the mono-dimensional based ones reaching payloads of 0.038 bpp with a PSNR of 58.53
dB and 0.076 bpp with a PSNR of 55.67 dB.

The work [11] performs HS in the quantized Discrete Cosine Transform (DCT) domain of
image’s JPEG coefficients: one bit of information is (reversibly) stored in embeddable pairs
of quantized coefficients, thus performing two-dimensional HS in a transformed domain. The
data extraction method recovers the original watermark and input image. The shown results,
obtained with 6 typical test images (Lena, Sailboat, F-16, Baboon, Peppers, and Splash)
indicate a maximum payload rate of 0.076 bpp and a related PSNR of around 47 dB.

Also, the method proposed in [12] modifies the histogram of the quantized DCT coeffi-
cients of JPEG encoded images. In particular, 8 × 8 subimages are sorted according to the
number of zero-valued quantized AC coefficients and those having the higher number of
zeroes are used to store the payload in the quantized AC coefficients having absolute value
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1 or 2: in this case the method is non-reversible. The evaluation section, based on a set of 8
test images, reports a maximum payload rate of 0.11 bpp corresponding to a PSNR of 42.5
dB.

Kim et al. [13] present an embedding system which uses two estimates for every pixel
leading to a couple of histograms that allow to reduce the distortion of the shifted pixels.
The obtained skewed histograms are used to identify the pixels in the peak and in the short
tails to use them for payload embedding: this allows for a reduction of the noise consequent
to data storing. Experimental results were performed using three different image databases
(USC-SIPI, Kodak, and BOSS v1-1) obtaining a maximum embedding payload of 0.305 bpp
with a PSNR of 52.5 dB.

Themethod presented in [14] embeds additional data with HS reducing the invalid shifting
of pixels, that is lessening the number of modified pixels that do not carry any payload. To
this aim, the image is analyzed and only the regions with low-frequency content are selected
for embedding. On a test image set composed by Lena, Baboon, Airplane, Boat, Elaine and
Man, a maximum PSNR of just over 53 dB is obtained, corresponding to a payload rate of
0.14 bpp.

In the work [15] an optimal rule for pixel value modification is computed through a
payload-distortion criterion method; this is obtained through the iterative computation of a
transfer matrix fine-tuned on the image data. The resulting algorithm performs reversible
data embedding storing in the payload the data to be encoded and the auxiliary information
to be used for decoding and recovering the original image. Here, using the standard images
Lena, Baboon, Plane and Lake, the results show an embedding capacity of slightly less 1.4
bpp and a PSNR of about 30 dB.

[16] presents a framework for reversible data hiding with contrast enhancement (RDH-
CE). The method has two phases: in the first one the histogram bins counting fewer pixels are
merged and the produced bins with 0 value are used for data embedding through histogram
shifting; in the second phase the payload is increased using mean-square-error based embed-
ding. Both steps iteratively compute a transfer matrix to improve the payload. The evaluation
is based on a set of 8 test images, with a maximum payload of 1.11 bpp and a corresponding
PSNR of 19.39 dB.

In [17] two-stage reversible data hiding is performed using a dynamic predictor called
LASSO: bits are embedded expanding the prediction error and applyingHS. Presented results
on a standard set of 14 images report a maximum embedding rate of 0.84 bpp with a relative
distorsion of about 38 dB. Also [18] aims at reducing distortion by improving the accuracy
of the prediction and shrinking the histogram: moreover, areas of lower variance are pre-
ferred for embedding. Experimental results on a set of standard images including Baboon,
Lena, Peppers, Elaine, Boat, Barbara and 1000 collected natural images show a maximum
embedding capacity of about 0.78 bpp and a relative PSNR of about 42 dB.

A recent work [19] presents a reversible data hiding algorithm that, while increasing the
contrast in the original image, artificially shifts the histogram to “create” free space that can
accommodate the watermark. While the maximum reported capacity is 2 bpp, this procedure
introduces a distortion in the original image. The maximum PSNR in the resulting embedded
image is, in fact, not bigger than 34 dB. This approach is substantially different from our
method: as already stated in Section 1, our approach does not modify the pixel levels to
reserve extra space; this leads to a substantially higher PSNR because the distortion is only
produced by the data hiding and not by other image pre-processing operations.

Thework in [20] proposes a reversible watermarking scheme that is based on interpolation
and histogram shift. An adaptive interpolation scheme doubles the horizontal and vertical
dimensions of the input image, producing 3 non-seed pixels for each seed (original) pixel.
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Payload bits are inserted using only non-seed pixels, thus ensuring the reversibility of the
method. The experimental results show an embedding capacity up to 1 bpp on the input
image, with a peak signal-to-noise ratio above 50 dB. It should be noted that the method
requires handling a watermarked image that is 4 times larger than the original input image.
Also, while the embedding is done in the enlarged 4× image, the evaluation of payload
is done considering the dimension of the original image. In fact, the maximal embedding
capacity should have been reported in relation to the dimension of the enlarged image, that
is, the true recipient of the embedding. Compared to our method, the maximum embedding
capacity reported above for [20] corresponds to a value of 0.25 bpp.

To the authors’ knowledge, the newly proposed “combinatorial optimization” improve-
ment with the development of a mathematical model was still not undertaken by the scientific
community, so no related work in this direction can be found. Nevertheless, for some insights
and references about the construction of our Mixed-Integer Linear Program, the book by
Nemhauser and Wolsey [21] can be useful.

3 Proposedmethod

This section will recall the method developed in [8] and will present the proposed improve-
ment.

Starting from a gray level image having a depth of n bit per pixel, it is derived the
histogram h(g) representing the frequency of each gray level g, with 0 ≤ g ≤ 2n − 1. Due
to the processing performed on many X-ray images (for example, intensity transformation
for contrast enhancement) the histogram of the resulting image may have many 0-valued
bins, i.e. h(l) = 0 for a finite number of gray levels l: this characteristic may be exploited to
reversibly store extra data in the image.

Following the definitions in [8] we call:

• 0-run R = [s, t] , with s and t integers in the range
[
0, 2n − 1

]
: a closed interval of

contiguous gray levels l having h (l) = 0. More formally, h (l) = 0, with
s ≤ l ≤ t and (h (s − 1) > 0 or s = 0) and (h (t + 1) > 0 or t = 2n − 1);

• lower bound L (R) = s − 1 and upper bound U (R) = t + 1: the left and right limits of
the 0-run R = [s, t];

• markable block B: a maximal sequence of k 0-runs {R0, R1, . . . , Rk−1},
where U (Ri−1) = L (Ri ) , 1 ≤ i < k; maximal refers to the fact that no other 0-runs
are contiguous to B, that is,
(h (L (R0) − 1) > 0 or L (R0) < 1)and (h (U (Rk−1) + 1) > 0 or U (Rk−1) > 2n

−2) .

It follows that the histogram of a gray-level image may contain zero or more blocks and
that any block may be composed of one or more 0-runs.

The histogram bins that make up the lower and upper bounds of the 0-runs are called
markable levels and may be used for embedding data in a reversible manner by shifting these
levels towards the 0-valued bins. For a block B of k 0-runs we will denote the markable levels
as ci = L (Ri ), 0 ≤ i < k, and ck = U (Rk−1).

For example, suppose that a single 0-run block has, as its bounds, c0 = L (R) = 11 and
c1 = U (R) = 16. Through the assignment of the levels 12, 13 and 14 to c0 it is possible to
store 2 bits in every pixel valued 11 shifting its value according to the payload data; also, it is
possible to assign the level 15 to 16 and store one bit of payload data in every pixel with value
c1. In this simple case, it is obvious that to maximize the payload capacity three levels must
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be assigned to the bound having the maximum histogram value, i.e. c0 if h (c0) > h (c1), c1
otherwise. In Appendix C the computation for this case is presented.

A more complicated situation happens when a block is composed of more than one 0-
run: in that case, an optimization procedure involving all the markable levels of the block is
required.

As introduced in [8], considering a generic block of k 0-runs, the assignment of the
zero-valued levels to the markable levels may be defined by means of threshold levels gi ,
0 ≤ i < k, one for every 0-run; in addition, to simplify the notation, it is convenient to use
two more thresholds, g−1 = L (R0) and gk = U (Rk−1) + 1, on the left and the right of the
block respectively. Amarkable level ci , 0 ≤ i ≤ k, will be shifted inside the range [gi−1, gi ),
i.e. gi−1 ≤ ci < gi . By shifting a pixel with gray level ci it will be possible to reversibly
store

⌊
log2 (gi − gi−1)

⌋
bits, where �x� represents the floor operation of largest integer not

greater than x .
The objective is to maximize the number of bits of payload data by choosing optimal

values for the threshold levels gm , with m = 0, . . . , k − 1:

P =
k∑

i=0

⌊
log2 (gi − gi−1)

⌋
h (ci ) . (1)

In [8] it was proposed a local approximation working on two 0-runs at a time, iterating
many times on all the runs in the block: the formulas used in this local optimization are
recalled in Appendix B. Being a local optimization based on continuous values for an integer
domain the results obtained are not the absolute optimum.

Algorithm 1 Block payload capacity local optimization [8].
Input: Block of k 0-runs Output: threshold levels gi
Initialize gi , with −1 ≤ i ≤ k
for Maximum number of iterations do

for i = 1, . . . , k − 1 do
Optimize threshold levels gi−1 and gi according to Appendix B

end for
end for

The local optimization version published in [8] considers a block of 0-runs (see, for
example, Fig. 1) at a time and performs Algorithm 1. In particular, this algorithm cycles
through pairs of contiguous 0-runs and optimizes the corresponding threshold levels gi−1

Fig. 1 Example of a block composed of four 0-runs

123



Multimedia Tools and Applications

and gi according to the formulas in Appendix B: the first pair considered is composed by the
first and the second 0-runs, then the next pair processed is made up of the second and the third
0-runs, and so on until the last pair of the block is processed. After that, if a maximum number
of iterations has been reached or the corresponding payload doesn’t change the process is
stopped and the obtained threshold levels are output; otherwise, another scan of 0-run pairs
is begun from the first and second 0-runs.

The rationale behind Algorithm 1 is that performing a set of local optimizations that
reciprocally influence their parameterswill lead to a quasi-optimal solution. As this paperwill
show, a remarkable improvement in payload capacity may be obtained with an optimization
that considers all the 0-runs of a block as a single optimization domain.

As mentioned above, Algorithm 1 is sub-optimal since it tries to find an estimate of the
maximum value of the watermark capacity iterating a series of local optimizations on sets of
two contiguous threshold levels. The process is repeated until a stable value or a maximum
number of iterations is reached. Moreover, the local optimization we performed is based on
the following continuous (convex) approximation of the capacity function,

P̂ =
k∑

i=0

log2 (gi − gi−1) h (ci ) , (2)

on which we can find (one of) the maximum value(s), using the formulas described in
Appendix B.

This paper presents an optimization procedure that works simultaneously on all the 0-runs
of a block to find the maximum of the payload defined in (1), and it shows the gain achieved
on a set of images with respect to the local approach.

3.1 Block payload global optimization

The previous approach, as we stated, potentially gives a sub-optimal payload value, since it
does a series of local optimizations. In the following, we apply combinatorial optimization
techniques [21] to define amathematicalmodel that, bymeans ofmaximizationof anobjective
function, is able to obtain the global and therefore optimal value for payload given a block
of 0-runs.

As previously stated, pixel values are not modified to create histogram gaps for payload
embedding; instead, the proposed algorithm exploits the characteristics of some medical
images having large 0-runs in their histogram. As a consequence, for each shifted pixel value
payload data is embedded.

The aim is to maximize the total payload value (1); instead of looking at small parts and
doing a local optimization, our goal will be to look at the global optimum for a block of k
consecutive 0-runs, only separated by non-zero singleton frequencies: the optimization will
assign all gi (−1 ≤ i ≤ k) from c0 (the location for g−1) to ck + 1 (the location for gk).

The only constraint on this optimization problem, for now, is that the thresholds gi must
fall in the right places, thus

g−1 = c0
c0 < g0 ≤ c1
c1 < g1 ≤ c2
. . . . . . . . .

ck−1 < gk−1 ≤ ck
ck + 1 = gk

⎧
⎨

⎩

g−1 = c0
ci < gi ≤ ci+1 ∀i ∈ {0, . . . , k − 1}

gk = ck + 1
(3)
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will enforce a correct positioning for all of them.
Since ci and h(ci ) are part of the data extracted from the image, the only variables in this

problem are the gi positions, and those must obviously be integer numbers satisfying the
constraints in (3). This said, the model should present itself as follows.

maximize
∑

i

⌊
log2(gi − gi−1)

⌋ · h(ci ) (4)

subject to

g−1 = c0
gi > ci
gi ≤ ci+1

gk = ck + 1

∀i ∈ {0, . . . , k − 1} (5)

gi ∈ Z
+
0 (6)

As it can be easily seen, this model is linear in the constraints, but non-linear in the
objective function (it is, in fact, logarithmic). Written this way, the optimum cannot be
easily found by solvers, but luckily, with the usage of some linearization techniques, we can
modify this problem by means of additional variables and constraints to obtain a fully linear
one.

To linearize the model, we start with a consideration: the maximum consecutive mappable
space assigned to a peak level ci between thresholds is the maximum possible distance
between its neighbor peaks ci−1 and ci+1 (see Fig. 1), since the maximum possible distance
between two consecutive thresholds gi−1 and gi is obtained when gi−1 = ci−1 + 1 and
gi = ci+1. From this consideration, we can compute the maximum payload p for a block as
the maximum power of 2 not greater than this distance (the payload associated with a peak
is the logarithm of the distance between two consecutive thresholds):

p =
⌊
log2 max

i∈{1,k−1}(ci+1 − ci−1)

⌋
; (7)

this quantity is indeed a constant for every processed block of 0-runs, then it will be an
optimization parameter of the model.

For a given peak ci , we can say that it is associated with the space between gi−1 and gi ;
then, ci has gi − gi−1 gray levels mapped, ∀i ∈ {0, . . . , k} (see Fig. 1). It is worth noting
that we care only about space as powers of 2, as it participates in the objective function as a
logarithm, and that if we explicitly say that the i-th threshold has a space of 2t levels mapped
it cannot have a space of 2t−1, or 2t+1 levels.

With these considerations in mind, the definition of a new auxiliary variable is required:
we need a binary variable xi j ∈ {0, 1} that is equal to 1 if and only if the model assigns
2 j gray levels to threshold gi and 0 otherwise, ∀i ∈ {0, . . . , k} and ∀ j ∈ {0, . . . , p}. Here
comes at hand the value computed in (7): there will be only a limited number of variables
spanning the required powers of 2. The following constraint, then, enforces that only one
power of 2 will be assigned to every threshold:

∑

j

xi j = 1 ∀i ∈ {0, . . . , k}. (8)

Now a link between the two variables gi and xi j must be made for the model. Remember
that usable space 2 j must always fit between two consecutive thresholds gi−1 and gi if the
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model decides to assign j bits to the i-th threshold (that is, if xi j = 1). The following
constraint enforces this requirement:

∑

j

xi j · 2 j ≤ gi − gi−1 ∀i ∈ {0, . . . , k}. (9)

The last thing that needs adjustment is the previously non-linear objective function: since
we knowwhich xi j = 1, then there is no need to extract the logarithm from themapped space;
we have this information already encoded inside j . Thus, the only required computation is
the product between j and h(ci ) for all xi j = 1:

∑

i, j

xi j · j · h(ci ). (10)

Constraints in (3) that enforce a correct positioning for the thresholds can be inherited
from the previous model (4), (5), and (6) . We can now write the complete new model (11),
(12), (13), and (14), obtained after the linearization of a non-linear objective function and
used for the actual optimization with the solver.

maximize
∑

i, j

xi j · j · h(ci ) (11)

subject to
∑

j xi j = 1
∑

j xi j · 2 j ≤ gi − gi−1
∀i ∈ {0, . . . , k} (12)

g−1 = c0
gi > ci
gi ≤ ci+1

gk = ck + 1

∀i ∈ {0, . . . , k − 1} (13)

xi j ∈ {0, 1}, gi ∈ Z
+
0 (14)

The model has O(k) constraints and, after the linearization, O(kp) variables. Recall that
k is the number of consecutive 0-runs present in the optimized block and p is the maximum
power of 2 not greater than the distance between two consecutive thresholds.

Even if those quantities are pseudo-polynomial in the input size, we know the following.
First, k is bounded to be less than half the length of the optimized block. Second, the absolute
maximum value for p is 12 because of the image characteristics; in fact, all tested images
have 4096 gray levels, hence are encoded with n = 12 bit depth.

Also, despite solving such a model results in an NP-hard problem, the optimal solution
can be found very quickly in practice. This is true, especially thanks to the structure and the
reduced size of the model itself.

3.2 Range assignment and encoding/decoding

After having determined the threshold levels gi , to minimize the distortion due to payload
embedding the shifts of every gray level ci should be as near as possible to it: this requires
that the effective range of size 2�log2(gi−gi−1)� is centered on ci , obviously with the constraint
of being contained in the right open interval [gi−1, gi ). Algorithm 2 in pseudo-code shows
how to define the range [li , hi ] of possible shifts around ci minimizing the mean squared
error.
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Algorithm 2 Compute range of possible shifts around ci .
Input: ci , gi−1, gi Output: li , hi
numbits =

⌊
log2

(
gi − gi−1

)⌋

r = 2numbits

d = r / 2
hi = ci + d – 1
li = ci – d
if hi >= gi then

hi = gi – 1
li = hi – (r – 1)

else if li < gi−1 then
li = gi−1
hi = li + (r – 1)

end if

A bit string of
⌊
log2 (gi − gi−1)

⌋
bits with value v, 0 ≤ v < 2�log2(gi−gi−1)�, will be

encoded by substituting the pixel value ci with li + v.
On the decoding side a receiver aware of the sequence of markable levels and threshold

levels can compute the range [li , hi ] for every ci : if a pixel in the encoded image has value
q in the range [li , hi ] then it can be restored to its original value ci and

⌊
log2 (gi − gi−1)

⌋

bits representing v = q − li can be extracted as payload.

4 Experimental results

This section presents a comparison between the proposed method and [8] on which it builds
upon. In particular, the objective metrics Peak Signal-to-Noise Ratio (PSNR in dB) and
payload in bits-per-pixel (bpp) are evaluated on a set of 100 radiographic images. Moreover,
we also compared with two works in the literature, namely [10] and [13].

All the experiments are worked out on a dataset comprising 100 high resolution radio-
graphic images with n = 12 bit depth. The dataset includes images acquired by digital
radiography (DR) systems and cassette based computed radiography (CR) systems, respec-
tively. In particular, the dataset consists of 86 images acquired with Kodak DirectView DR
5100 and DR 3000 systems, and 14 images captured by Kodak CR 260, CR 975 and ELITE
systems.

The software implementing the tested algorithms is written in MATLAB® and is run on
a machine with processor Intel® CoreTM i9 CPU @ 2.80GHz and 32 GByte RAM. The
optimization procedure, handled by IBM® ILOG® CPLEX® solver, is directly called from
the MATLAB® script.

From the results presented in Table 1 it may be observed that the developed method
has a gain of 14% in payload with respect to [8]: this is reasonable because the proposed
optimization obtains the best payload using histogram shifting in the 0-runs.Also, the payload
is one order of magnitude greater than those of the other two methods used for comparison.
One limitation of our method is a slight reduction in PSNR: this is a direct and well paid
back consequence of the increased payload (even if, being the method reversible, the PSNR
metric is not so important, and it just grants that the watermarked image is useful as a visual
preview). As a side note, the values of PSNR above 70 dB indicate that the processed images
are visually indistinguishable by a human from the original ones, thus we do not show the
watermarked images. Moreover, the proposed algorithm has an increased complexity with
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Table 1 Comparison of quality (PSNR) and performance (pixel payload) parameters for various data hiding
methods applied to a set of 100 images, average (avg) and standard deviation (std) values

Method PSNR [dB] (avg ± std) Payload [bpp] (avg ± std)

Proposed 71.60 ± 3.13 1.14 ± 0.27

Cavagnino et al. [8] 72.72 ± 3.44 1.00 ± 0.24

Li et al. [10] 75.54 ± 0.55 0.04 ± 0.04

Kim et al. [13] 76.59 ± 0.66 0.08 ± 0.09

respect to [8] due to the optimization that finds the global optimumbit allocation; nonetheless,
note that the decoding and extraction time is the same as [8] and is negligible.

In Fig. 2 are reported two graphs: the first one plots the payload (in bpp) of the compared
algorithms for each of the 100 images; the second graph shows for each image the corre-
sponding PSNR (in dB). As it can be seen the proposed algorithm outperforms the others, in
particular the payload is always not less than the one of [8] and larger than those of [10] and
[13]. The disadvantage of the present proposal is shown in the PSNR graph where a lower
quality of the embedded images is a consequence of the higher payload: as already said, the
reversibility of the method makes this defect negligible.

The overall performance of the proposed algorithm can be qualitatively appreciated by
observing Fig. 3 where the scatter plot of payload versus PSNR for the four compared

Fig. 2 Plot of payload and PSNR for Cavagnino et al. [8], Li et al. [10], Kim et al. [13] and the proposed
method on a set of 100 images
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Fig. 3 Scatter plot of payload versus PSNR for Cavagnino et al. [8], Li et al. [10], Kim et al. [13] and the
proposed method on a set of 100 images

algorithms applied to the image set is presented: the high concentration of points for the
proposed algorithm in the upper-right part of the graph witnesses a high payload with an
average good objective quality.

A visual example of the result of data embedding in a medical image is depicted in Fig. 4:
Fig. 4a shows the cover image with a detail highlighted by a black box, which is magnified in
Fig. 4b. The corresponding marked images with method [8] and with the proposed algorithm
are not shown because differences are non-visually perceptible: in fact, the corresponding
PSNRs are over 71 dB, with payloads of 0.83 bpp and 1.13 bpp, respectively.

Visual results of embedding with [8] and with the proposed algorithm are shown respec-
tively in Fig. 4c and d: since the reduced error of embedding, to make it visually noticeable
we have magnified the error respect to the original image by a factor 500. Analogous results
are reported in Fig. 5 for another image belonging to the dataset we tested, where we obtained
a PSNR of more than 52 dB with payloads of 0.604 and 0.685 bpp respectively.

As another metric for the quality of the watermarked image, we also evaluated the Nor-
malized Correlation (NC) as defined in [22]. Between the cover image and the watermarked
image, the NC value is always very close to 1, about 1 − 1 · 10−7.

5 Conclusions

In this paper, we presented a global optimization procedure with the aim to increase the
payload size of a reversible data hiding algorithm for images having histograms containing
many contiguous runs of zeros, commonly found in a specific class of medical images that
are optimized for visual inspection purposes.

The proposed approach is a substantial improvement of the works [7, 8]. In particular,
the most recent one performs a set of local optimization steps on pairs of contiguous runs.
Implementing a global optimization involving all contiguous runs, as we present in this work,
led to an average increase of 14% of payload size.

On the other side, the increased payload leads to a reduction of PSNR of 1 dB with respect
to [8], which on the image set used in the experiments leads to 71 dB. This reduction is
acceptable since the images are used for diagnosis purposes only after recovering the cover
images thanks to the reversibility of our method.
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Fig. 4 Visual results of embedding (difference values of Fig. 4c and d are magnified by a factor 500)

A limitation of this approach is its applicability restricted to images that exhibit a histogram
having a comb structure, where single non-zero frequency levels are surrounded by clusters
of unused gray levels. This typically happens in radiographic images, and it is generally due
to contrast enhancement operations during the acquisition process.
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Fig. 5 Visual results of embedding (difference values of Fig. 5c and d are magnified by a factor 500)
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We plan to study if and how this method can be extended to cope with histograms with
different recognizable patterns of 0-runs, for example when a single non-zero frequency gray
level is replaced with a cluster of several non-zero levels.

In conclusion, the presented results prove that the suggested approach has better per-
formances than existing algorithms found in the literature. Therefore, the proposed work
provides a new benchmark for hiding data in images exhibiting the previously mentioned
histogram structure.

Appendix

A Payload overhead computation

This subsection is devoted to evaluating the bit overhead required to encode the subsidiary
information expressing the positions of the various blocks and runs.

Suppose to have an image with l gray levels. The maximum possible number of blocks
happens in the case of contiguous blocks, each one made up of a single 0-run of single 0
frequency level; considering the possibilities of having blocks beginning and ending with a

0 frequency level at gray levels 0 and 2l −1 the maximum number of blocks is

⌊
l − 4

3

⌋
+2.

The number of bits required to represent this number is log2

(⌊
l − 4

3

⌋
+ 2

)
(for coding

simplicity do not consider the fact that 0 blocks is not possible because in that case the image
would be useless for the proposed algorithm).

Thus, the number of bits nb required to represent the number of blocks is upper limited
by log2 l.

Themaximumnumber r of 0-runs in a block can be l/2 (consider an image having alternate
0 and non-zero gray level frequencies, i.e., a single block for an image): themaximumnumber
of bits required to represent this number is log2 (l/2) = log2 l − 1 which is upper limited by
ns = log2 l.

For every block must be encoded the initial spike position, c0, requiring log2 l bits and
the following pairs (gi , ci ), each requiring 2 log2 l bits (in case of fixed length encoding).

Summing up, the side information required to code a block composed of r 0-runs is
ns + log2 l + 2 r log2 l = (2 r + 2) log2 l bits.

B Expression derivation for local optimization

Recalling Appendix A from [8], the payload carried by a triple of levels
[
ci−1, ci , ci+1

]
is

P =
i+1∑

j=i−1

⌊
log2

(
g j − g j−1

)⌋
h

(
c j

)
(15)

where [gi−1, gi ) is the right open interval of ci , i.e., gi−1 ≤ ci < gi .
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This payload can be maximized for gi−1, gi with the following constraints:

gi−1 > ci−1 (16)

gi ≤ ci+1. (17)

Introducing a continuous function approximating (15)

P̃ =
i+1∑

j=i−1

log2
(
g j − g j−1

)
h

(
c j

)
(18)

the optimal values for the limits gi−1, gi may be found equating to 0 the first derivatives of
P̃ with respect to gi−1 and gi .

∂ P̃

∂gi−1
= 1

ln 2

(
h (ci−1)

gi−1 − gi−2
− h (ci )

gi − gi−1

)
(19)

∂ P̃

∂gi
= 1

ln 2

(
h (ci )

gi − gi−1
− h (ci+1)

gi+1 − gi

)
(20)

∂ P̃

∂gi−1
= ∂ P̃

∂gi
= 0

These equations lead to
h (ci−1)

gi−1 − gi−2
= h (ci )

gi − gi−1
(21)

and
h (ci )

gi − gi−1
= h (ci+1)

gi+1 − gi
. (22)

Starting from (21) it is possible to write

h (ci−1) (gi − gi−1) = h (ci ) (gi−1 − gi−2)

h (ci−1) gi = h (ci−1) gi−1 + h (ci ) (gi−1 − gi−2)

obtaining

gi =
(
1 + h (ci )

h (ci−1)

)
gi−1 − h (ci )

h (ci−1)
gi−2. (23)

Observing that the right hand side of (21) is equal to the left hand side of (22) it is possible
to write

h (ci−1) (gi+1 − gi ) = h (ci+1) (gi−1 − gi−2) (24)

gi = gi+1 − h (ci+1)

h (ci−1)
(gi−1 − gi−2). (25)
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Substituting gi from (23) in (25)
(
1 + h (ci )

h (ci−1)

)
gi−1 − h (ci )

h (ci−1)
gi−2 = gi+1 − h (ci+1)

h (ci−1)
(gi−1 − gi−2)

(
1 + h (ci )

h (ci−1)
+ h (ci+1)

h (ci−1)

)
gi−1 = gi+1 +

(
h (ci )

h (ci−1)
+ h (ci+1)

h (ci−1)

)
gi−2

h (ci−1) + h (ci ) + h (ci+1)

h (ci−1)
gi−1 = h (ci−1) gi+1 + (h (ci ) + h (ci+1)) gi−2

h (ci−1)

gi−1 = h (ci−1) gi+1 + (h (ci ) + h (ci+1)) gi−2

h (ci−1) + h (ci ) + h (ci+1)
. (26)

Equations (23) and (26) report the values that maximize P̃ .
When operating on the two boundaries of the histogram there may be gray level distribu-

tions where the algorithm has to assign the value 0 to h (ci−1). To deal with this case other
expressions of gi−1 and gi should be used.

Using (22) it is possible to write

h (ci ) (gi+1 − gi ) = h (ci+1) (gi − gi−1)

h (ci+1) gi−1 = h (ci+1) gi − h (ci ) (gi+1 − gi )

determining

gi−1 =
(
1 + h (ci )

h (ci+1)

)
gi − h (ci )

h (ci+1)
gi+1. (27)

From (24) it is also possible to compute gi−1

gi−1 = h (ci−1)

h (ci+1)
(gi+1 − gi ) + gi−2. (28)

Equating (27) to (28) leads to
(
1 + h (ci )

h (ci+1)

)
gi − h (ci )

h (ci+1)
gi+1 = h (ci−1)

h (ci+1)
(gi+1 − gi ) + gi−2

(
1 + h (ci )

h (ci+1)
+ h (ci−1)

h (ci+1)

)
gi =

(
h (ci−1)

h (ci+1)
+ h (ci )

h (ci+1)

)
gi+1 + gi−2

gi = (h (ci−1) + h (ci )) gi+1 + h (ci+1) gi−2

h (ci−1) + h (ci ) + h (ci+1)
. (29)

Equations (27) and (29) allow the computation of gi−1 and gi in case h (ci−1) is equal to
0.

C Single zero-run bit assignment

If a block is made of a single 0-run there is no optimization step to be performed because it
is sufficient to assign all the possible bits to the level with the highest frequency and, if any,
the remaining bits to the other level.

Let’s call c0 and c1 (c0 < c1) the two levels delimiting the 0-run, hc0 and hc1 the respective
histogram frequencies and let g−1 = c0, g1 = c1 + 1.

The threshold g0 dividing the levels assigned to c0 from those for c1 should be computed
from the maximum number of bits

⌊
log2 (c1 − c0)

⌋
for the gray level, among c0 and c1, with

the higher frequency: this requires 2�log2(c1−c0)� gray levels leading to
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• g0 = g−1 + 2�log2(c1−c0)� if hc0 > hc1 ,
• g0 = g1 − 2�log2(c1−c0)� otherwise (i.e., hc0 ≤ hc1 ).

The gray level c0 will have assigned
⌊
log2 (g0 − c0)

⌋
bits and c1 will use

⌊
log2 (c1 − g0)

⌋

bits.
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