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Abstract
Image steganography is the art of hiding information in a cover image in such away that a third
party does not notice the hidden information. This paper presents a novel technique for image
steganography in the spatial domain. The newmethod hides and recovers hidden information
of substantial length within digital imagery while maintaining the size and quality of the
original image. The image gradient is used to generate a saliency image, which represents
the energy of each pixel in the image. Pixels with higher energy are more salient and they
are valuable for hiding data since their visual impairment is low. From the saliency image,
a cumulative maximum energy matrix is created; this matrix is used to generate horizontal
seams that pass over the maximum energy path. By embedding the secret bits of information
along the seams, a stego-image is created which contains the hidden message. In the stego-
image, we ensure that the hidden data is invisible, with very small perceived image quality
degradation. The same algorithms are used to reconstruct the hidden message from the stego-
image. Experiments have been conducted using two types of images and two types of hidden
data to evaluate the proposed technique. The experimental results show that the proposed
algorithmhas a high capacity and good invisibility,with a PeakSignal-to-NoiseRatio (PSNR)
of about 70, and a Structural SIMilarity index (SSIM) of about 1.
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1 Introduction

The goal of steganography in our study is to hide information imperceptibly in a cover image
so that the presence of hidden data cannot be detected by visual appearance. Images are a
good carrier for transmitting secret messages over the internet, due to the redundant infor-
mation in images and visual resilience to small changes in the original pixel values. In many
applications, the most important requirement for steganography is the undetectability of the
hidden data. This means that the image that contains the hidden data, the stego-image, should
be visually and statistically similar to the cover image [1, 2]. Many digital steganography
techniques have been proposed in recent years. All of them share the fundamental concept
of injecting secret information into a cover image to generate a stego-image output as shown
in Fig. 1.

Image steganography can be categorized into two different embedding domains, spatial
domain [3] and frequency domain [1]. In spatial domain technology, secret information is
embedded directly into pixel intensity values. In the frequency domain techniques, a discrete
frequency transform (mainly DCT or DWT) is used and the secret information is embedded
into the frequency coefficients of the cover image [1, 2]. The inverse transformation generates
the image steganography. In both embedding domains, the process introduces distortion in
the cover image, which could lead to steganographic detectability. The objective is to preserve
the visual and statistical properties while embedding the message in the cover image, with a
high embedding rate. The invisibility of any steganography technique in the spatial domain
depends on the selection of pixels for embedding the secret message [4]. Due to the masking
phenomenon of the human visual system [5], small distortions in pixels in smooth areas are
much more noticeable than distorted pixels in high-frequency texture areas as described in
Fig. 2. Tomaintain the visual properties of the image, the secret message should be embedded
along the edges of the cover image, where the visual impairment is low [1, 6].

In this paper, we will introduce a novel image steganography technique, which embeds the
secret message in the spatial domain. The proposed steganography technique is found to have
excellent invisibility and high capacity. The paper is organized as follows: Section 2 discusses
some well-known spatial domain image steganographic techniques. Section 3 introduces our
novel steganography technique, which embeds the secret message in high-energy areas in
the image. Section 4 contains experimental results and Section 5 concludes our work and
elaborates on directions for future work.

Fig. 1 General steganographic system
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Fig. 2 Effect of embeding data in cover image (a) Cover image (b) Smooth area (c) High texture area

2 Related work

There are several steganographic techniques to embed data securely in an image and some
tools to detect the presence of a secret message in a steganogram. Image steganography can
be divided into two main types: spatial or frequency domain steganography.

Spatial domain steganography changes some bits in the image pixels during data hiding.
When hiding data in a pixel, the physical location of a pixel is considered and then the binary
format of that pixel value is used to hide the data. The most common methods are based on
least-significant-bit (LSB) substitution [7]. There are several sophisticated LSB approaches
to embed secret data by replacing k LSBs of a pixel with k secret bits [4]. In some of the LSB
approaches, the choice of embedding positions within a cover image depends on a pseudo-
random number generator without considering the relationship between the image content
itself and the visual impairment of the secret message [8]. Several variances of wet paper
codes, which did not consider visual impairment, were proposed as a tool for constructing
steganographic schemes with an arbitrary selection channel that is not shared between the
sender and the recipient [9, 10]. Other methods use the fact that human vision can tolerate
severe changes in the edge region to increase the quality of the stego-images [3, 6, 11]. These
methods can embed most secret data along sharper edges and can achieve more visually
imperceptible stego-images.

Random location algorithms do not take into account the human visual system (HVS), so
degradations might be more noticeable. In our scheme, however, we choose the locations of
the embedded bits in the best location in terms of minimum reduction of the perceived image
quality. One more advantage of our scheme in comparison with other schemes is that we
don’t need to send the locations of the affected pixels, whereas in some of the other schemes
the location of those pixels must be signaled to the other side.

When using a cover image in the spatial domain, themain issue is to select the best location
in the image to hide the secret information. Pixels within high-frequency texture areas are
a better choice for embedding the secret information since the visual impairment is low.
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Image texture is highly dependent on image content. To make the perceived degradation of
the original image low, our proposed scheme embeds the secret bits into high-texture areas
while keeping smooth regions as they are. Several visual texture measures are considered
for defining the energy of an image. For simplification, a simple image operator called Max
Energy Seam (MES) is introduced in this paper. The operator is based on the idea of seam
carving that supports content-aware image resizing [12]. There have been several recent
studies that locate and preserve the key visual elements in the image [13, 14]. Those studies
locate the best-connected seam or area of low-energy pixels crossing the image from top to
bottom or from left to right. In our study, we locate the connected seams or area of high-
energy pixels crossing the image from left to right. By inserting the secret message in an
image along the MES, we could hide a large amount of data that could fit a given image size.
Embedding the information in a location of high energy texture will be less noticeable by the
HVS compared to smooth areas where the sensitivity of the HVS is more dominant.

3 Methodolgy

3.1 The encoder- steganography

A color image IRGB , which uses three color planes, R, G, and B, is represented by the
intensity image I as in (1). To ensure synchronization between the decoder and the encoder
during the energy calculation. The encoder and the decoder use the same method. The n least
significant bits of the three image plans, R, G, and B, were reset to generate the saliency map
without any influence on the original image. The RGB image (after the reset of the LSBs) is
converted to grayscale values by forming a weighted sum of the R, G, and B components as
in (1), where k represents the number of hidden bits that could be inserted to each channel.

I (i) = 0.2989 ∗ 2k� R(i)

2k
� + 0.5870 ∗ 2k�G(i)

2k
� + 0.1140 ∗ 2k� B(i)

2k
� (1)

where k=1,2,3,4,5.
There are several possible image importancemeasures found in the literature as the energy

function, which we could support to guide our best connected MES [12, 14]. A good and
simple example of the energy function e(·) is to use the gradient magnitude of the image
I, which usually indicates an edge. The edges are the part of the image that is potentially
suitable for message embedding. This example of e(·) for an image could be represented as
in (2):

e(I ) =| ∂ I

∂x
| + | ∂ I

∂ y
| (2)

Each pixel p in an image I has a certain amount of energy represented by the gradient
function e (·). Pixels with higher energy in e(·) are more salient, and they are good candidates
for embedding the secret message. Those pixels are less noticeable by the HVS compared to
smooth areas. Given a gradient function e(·) of an image, on the encoder side, the pixels with
the highest energy in the gradient image were selected to carry the secret message. At the
same time, they should maintain the possibility of decoding the message on the decoder side.
This leads to our strategy of selecting a seam in the image that has the maximum energy in
the gradient image. A seam is defined as an eight-connected path of pixels in the image from
left to right. It’s not essential to have an eight-connected seam from a left-to-right pixel, but
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only one pixel per column will be selected. From [12] the formal mathematical definition for
the horizontal seam Sy (from left to right) in an n×m image I is:

Sy = {Syj }mj=1 = {( j, y( j))}mj=1, s.t . ∀ j, | y( j) − y( j − 1) |≤ 1 (3)

Where y is a mapping y : [1...m] −→ [1...n] The pixels of the path of horizontal seams Sy

will therefore be:
I sy = {I (Syj )}mj=1 = {I ( j, y( j))}mj=1 (4)

Given an energy function e, we can define the cost of horizontal seams as:

E(S) = E(I yS ) =
m∑

j=1

e(I (Syj )) (5)

The optimal horizontal seam S* is the seam which maximizes the energy function:

S∗
y = max

s
E(s) = max

s

m∑

j=1

e(I (Syj )) (6)

In the same way, we could use a vertical seam or both types of seams. In this study, for
simplicity, we introduced only horizontal seams. Using both types of seams could enable the
assimilation of a greater amount of hidden information to fit into the image.

The optimal horizontal seam can be found using dynamic programming. The first step is
to traverse the gradient image from the second column to the last column and compute the
cumulative maximum energy M for all possible connected seams for each entry (i, j) as in
(7):

M(i, j) = e(i, j) + max(M(i − 1, j − 1), M(i − 1, j), M(i − 1, j + 1)) (7)

For example, the energy function e(·) that represents the gradient magnitude of the image
I as in Fig. 3:

From the gradient function e(.) we compute the cumulative maximum energy M for all
possible connected seams for each entry (i, j), as shown in Fig. 4, where the red arrow
represents the selected value.

At the end of this process, the maximum value of the last column in M will indicate the
end of the maximal connected horizontal seam. Hence, in the second step, we backtrack from
this maximum entry on M to find the path of the horizontal Maximal Energy Seam (MES)
as in Fig. 5. The definition of M for vertical seams is similar.

Fig. 3 An example of the gradient function e(·), which represents the energy
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Fig. 4 The process of generating the cumulative maximum energy M

The process of generating the first MES is illustrated in Fig. 6. Figure 6(a) illustrates the
first selected seam on top of the gradient image of the Golden Gate Bridge. The highlighted
MES is the one that contains the most energy between all possible routes. In Fig. 6, the first
MES is drawn on top of the bridge image to emphasize the location of the MES in the image.

This first MES is the most salient edge in the gradient image e(·) and it is a good candidate
for secret message embedding. Within the MES, the secret data will embed only to pixels
that satisfy a threshold value T which is calculated in the energy plan.

The threshold value T was calculated by finding the intensity level such that the desired
k percentage of the image pixels is below this value. This is extracted from the normalized
cumulative histogram of the gradient image e(·) where h(·) is the normalized histogram as in
(8). The threshold is recalculated for each iteration of the algorithms which select one MES.

T∑

j=1

h( j)

mn
≥ k (8)

Fig. 5 Backtrack from the maximum entry on M to find the path of the best MES
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Fig. 6 The green line indicates the location of the first optimal MES with the max energy

where T is the threshold.
The secret message bits are inserted into the LSBs of each of the RGB channels that belong

to the MES. Figure 7 and (9) represents the case where each channel carries one secret bit. It
is possible to increase the amount of secret data carried by the cover image by using two or
more LSBs for each of the RGB channels, as described in (1) [4, 7, 15] using two or more bits
will result in larger quantity integration and could therefore result in reduced image quality.

The embedding operation of 1-LSB steganography may be described by the following
equation:

R(i) = 2� R(i)

2
� + S( j);G(i) = 2�G(i)

2
� + S( j + 1); B(i) = 2� B(i)

2
� + S( j + 2) (9)

where R(i), G(i) and B(i) belong to the i − th selected pixel along the MES and S( j) is the
j − th bit of the secret message .

To carve the n-th MES from the energy image, the energy of the n-1 MES was reset and
the cumulative maximum energyM of the image is recalculated. Using dynamic programing,
it is verified that there is no collision between pixels in different MES’s which carry data.
In case of collision, the partial MES is reset and the process restarts. The secret message
is inserted into the LSBs of the selected path of the MES in the cover image to create the
stego-image.

Fig. 7 Three bits of secret message, embedded into the LSBs of one RGB pixel of the cover image
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3.2 The decoder-steganalysis

During the decoding the same process is applied. From the stego-image, the LSBs of the three
image plans R, G, and B were reset. The RGB image (after the LSB reset) was converted to
grayscale values by forming a weighted sum of the R, G, and B components as in (2). From
the grayscale image the gradient image was generated as in (1). At each iteration, a new
cumulative maximum energy M was generated with a new threshold and the MES’s were
created from them one by one. The LSBs of the RGB pixels along the MES’s were carrying
the secret data. Extracting and reordering the bits will yield the secret message.

4 Experimental results

To demonstrate the quality of the process, we emulated the algorithm using Matlab script.
Several experiments were conducted:

4.1 Lena image as a stego-data

In the first experiment, a small gray-level image of LENAwas hidden in the RGB cover image
of the Golden Gate Bridge (Fig. 8(a) and (b)). Lena’s image size is 38 x 38 x 8 = 11,552 bits
with a 24-bit header that is used to indicate the data type and the image size, yielding 11,576
bits of hidden data. As a cover image we use the Golden Gate Bridge RGB image, at a size of
488 x 664 = 297,472 pixels. The ratio between hidden message size in bits and the number
of pixels in the cover image is about 3.8%. Figure 8(b) represents the iterative process that
selects the best MES’s to carry the hidden data in the cover image. The 11,576 secret bits
are inserted into eight MES’s. The red pixels along the MES represent pixels which carry the
secret data. The blue pixels are not used to carry data, since they were under the calculated
threshold (Fig. 8(c)). The length of each MES in the Golden Gate Bridge as a cover image
is 664 pixels, the width of the image. Each pixel could carry three bits, so the maximum
capacity of each MES is 1992 bits. Figure 8 shows that the MES lines are formed mainly on
the edge lines. In the process of creating the MES’s, the constraint of eight-connected path
may cause intermediate transitions in smooth areas. Using the threshold T specified in (8)
enables the assimilation of the hidden information only in the desired areas. In our tests, we
use a high dynamic threshold with k = 0.9 in (8) which is updated at each iteration in order to
ensure that the quality of the original image will not reduce. We repeat the same experiment
using a Carriage image as cover image, Fig. 8(d) and (e).

The different amount of data that eachMES carries for each image is illustrated in Table 1.
The selected threshold influences the number of bits that each MES carries. Since each RGB
pixel carries three bits from the stego-data and the secret message contains 11,576 bits, there
is a 7/8 probability that the amount of 3,859 pixels could change. Assume the binomial
distribution the probability of getting at least one change in a pixel is given by the cumulative
mass function in (10), where n=3 and p=0.5.

Pr(1 ≤ X ≥ 3) =
3∑

i=1

((
n
i )pi (1 − p)(n−i) (10)

The experimental results in Table 2 show that 2218 out of 3,859 pixels have been changed
in the Golden Gate Bridge image, and 2305 out of 3,859 pixels have been changed in the
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Fig. 8 Embedding Lena image [8(a)] into Golden Gate cover image [8(b)], and into Carriage cover image
[8(d)]. The red part of the lines demonstrates the MES’s that carry the data [8(c),8(e)]

Table 1 The amount of data that
each MES is carrying

Number of hidden bits per MES
Stego seam # Golden Gate image Carriage image

1 1827 1749

2 1551 1566

3 1563 1623

4 1647 1566

5 1509 1584

6 1320 1374

7 1167 1404

8 993 711

SUM 11576 11576
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Table 2 The number of bits that
were modified in the pixels that
belong to the MES

Golden Gate image Carriage image

One bit change 1,656 1710

Two bits change 519 552

Three bits change 43 43

Total 2218 2305

Carriage image, which is less than the calculated probability. Table 2 summarizes the number
of bits that changed in each image. The visual impairment was so low that it was impossible
for the HVS to distinguish between the original image and the stego-image.

To quantify the difference between the original image and the stego-image, we use three
objective image quality assessments.

Mean Squared Error (MSE) between images x and y is given by:

MSE = 1

N

N∑

i=1

(xi − yi )
2 (11)

where N is the number of pixels in the image.
Peak Signal-to-Noise ratio (PSNR) [16, 17] is given by:

PSN R = 10 log10
max(x2)

MSE
(12)

where max(x2) is the maximum pixel value of the image x. Structural SIMilarity (SSIM)
[16, 18, 19] index between images x and y [20]:

SSI M(x, y) = ((2μxμy + C1)(2σxy + C2))

((μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2))
(13)

whereμx ,μy , σx , σy , and σxy are the local means, standard deviations, and cross-covariance
for images x, y. The constants C1 = (K1L)2 and C2 = (K2L)2 are included to avoid unstable
results when either (μ2

x + μ2
y) or (σ 2

x + σ 2
y ) are very close to zero. L is the dynamic range

of the pixel values and K2 	 1, K1 	 1 are small constants.
The MSE and the PSNR have clear physical meanings, but they are not matched to the

perceived visual quality, the structural similarity (SSIM) predicts the perceived image quality
[20]. For the Golden Gate image and the Carriage image, the SSIM calculation in this case
yields the maximum possible value 1, which means a complete visual similarity between the
original image and the stego-image. Table 3 shows the results of the PSNR, MSE and SSIM
calculations.

The results indicate that the differences between the cover image and the stego-image are
not large. The amount of information that can be embedded in the picture at a high level of

Table 3 The measures when
using Lena image as stego-data

Golden Gate image Carriage image

SSIM 1 1

PSNR 70.3505 70.4522

SNR 66.1351 66.1134

MSE 0.0060 0.0059
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concealment depends on the target image. The higher the texture, the more information can
be embedded in the image. In our study, we used images with large smooth areas, allowing
us to assimilate information at a density of about 5% of the image size, at high level of
concealment.

4.2 Text data as a stego-data

The second experiment was conducted with text as the stego-data. The English pangram
“The quick brown fox jumps over the lazy dog” is a sentence using every letter of the English
alphabet . The sentence was repeated 43 times and used as stego-data. The data size was 43
chars x 33 lines x 8 bits = 11,352 bits, plus a 24-bit header, yielding 11,376 bits of hidden
data that could influence 3,792 pixels in the cover image. (The size of the information is
about the size of the previous experiment with the Lena image). As a cover image we use the
same Golden Gate Bridge and Carriage images, as described in section 5a. The experimental
results show that out of 3,792 pixels, 2,102 pixels have been changed. As in section 5a,
the maximum capacity of each MES is 1992 bits. We ensured visual similarity between the
original image and the stego image by using k=0.9 as a threshold in (8). Table 4 illustrates the
measures between the stego-image and the original image: the MSE, PSNR and the SSIM.
The SSIM is 1 since the original image and the stego-image were indistinguishable to the
human eye.

The results indicate that the differences between the cover image and the stego-image are
not large. The higher the texture of the cover image, the more information can be embedded
in the image. In this experiment, the hidden information density is about 5% of the image
size, with high level of concealment.

4.3 Iterative process to carve theMES’s

During the iterative algorithm, the MES’s were generated without overlap between the pix-
els which carry data. During the process in the Golden Gate Bridge image, the algorithm
generated 57 possible MES’s. Eight of them fulfills the conditions of maximum energy and
continuity along the horizontal axis, and also had values higher than the threshold as in (7).
These eight MES’s were selected to carry the secret data. Figure 9(a) demonstrates the 57
experimental MES’s on top of the energy image. Figure 9(b) demonstrates the same action
for the Carriage image. Here the algorithms found, from among 26 possible MES’s, eight
which fulfill the conditions and could carry the secret data.

4.4 Increasing the number of hidden bits per pixel

In order to test the strength of the algorithms and the sensitivity of human vision to the areas
onwhich the hidden informationwaswritten, the following two experiments were conducted:

Table 4 The measures when
using text as stego-data

Golden Gate image Carriage image

SSIM 1 1

PSNR 70.3826 70.4659

SNR 66.0438 66.2506

MSE 0.0060 0.0058
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Fig. 9 The dynamic selection of MESs by generating valid options

In the first experiment, we use the fixed-size image of Lena that was hidden in the RGB cover
image of the Golden Gate Bridge (as in Section 4.1). The hidden data size of 11,576 bits was
embedded into the image at the size of 488x664 pixels of 24 bits. We control the number of
hidden bits that have been written per pixel, in order to measure the stego-image quality with
different quantity of MES’s. In Table 5, the first row indicates the number of bits that were
embedded per pixel. The other rows are the quality measures of the stego-image in each case.
The last row is the number of MES’s that contain the hidden data. From the quality measures
(PSNR, MSE, SSIM ), we can see that a large change in fewer MES’s is more significant
than small changes in more MES’s. Since the MES’s are located on the image edges, due
to the Mach Bands effect, a large change in the values of the MES’s is not perceived by the
HVS. Together with a fine threshold of K=0.9, in all the illustrated cases it was impossible to
distinguish from observation that the image has an unusual phenomenon in the zone of the
MES’s.

In the second experiment we used a different sized Lena image, which was hidden on
a fixed-size (488 x 664 pixels) Golden Gate Bridge image that was used as cover image.
In Table 6, the first and the second rows indicate the hidden data size that was embedded

Table 5 Quality measures of stego-image with the same stego-data, but with different number of hidden bits
per pixel

Bits Per Pixel 3 6 9 12 15

PSNR 63.3670 66.6847 62.1507 55.6034 50.0105

SNR 59.0282 62.3459 57.8119 51.2646 45.6717

MSE 0.0299 0.0140 0.0396 0.1790 0.6487

SSIM 1.0000 1.0000 1.0000 0.9999 0.9995

MES’s’ 8 4 3 2 2
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Table 6 Quality measures of stego-image with the different amounts of stego-data and with different numbers
of hidden bits per pixel

38 x 38 50 x 50 60 x 60 70 x 70 80 x 80

Hidden Data 12824 20024 28824 39224 51224

Bits Per Pixel 3 6 9 12 15

PSNR 63.3670 66.6847 62.1507 55.6034 50.0105

SNR 59.0282 62.3459 57.8119 51.2646 45.6717

MSE 0.0299 0.0140 0.0396 0.1790 0.6487

SSIM 1.0000 1.0000 1.0000 0.9999 0.9995

MES’s’ 8 4 3 2 2

into the cover image. Increasing the size of the hidden data influences the number of hidden
bits that have been written per pixel by maintaining the same number of MES’s (the last
row). The other rows contain the quality measures of the stego-image in each of the cases.
From the results, we can see that quality measures are affected by the amount of hidden
information. But even with a large amount of hidden information, the objective measures
(PSNR and MSE) are quite good, and the SSIM index also gives a good result. As in the
previous experiment, due to the location of the MES’s on the edges and as well as the Mach
bands effect, a large change in the values of theMES’s is not perceived by the HVS. Together
with a fine threshold of K=0.9, in all the illustrated cases it was impossible to distinguish
from observation that the image has an unusual phenomenon in the zone of the MES’s.

5 Conclusion and future work

In this paper, we propose a new method for image steganography in the spatial domain. The
method is based on LSB substitution, embedding the secret data into RGB images without
creating a perceptible distortion. The method uses an energy function to define the saliency
map of the image. From the saliency image a cumulative maximum energy matrix is created.
The max energy horizontal seams are selected from the cumulative matrix and the secret
message is embedded along the seams. The experimental results show that the algorithm has
a fair capacity and good invisibility.. Some open issues that can be further incorporated in our
future work include: diverse options for generating the saliency image; different approaches
for selecting the MES’s; and considering approaches to defense against attacks intended to
destroy or detect the embedded information. Finally, the method presented here could be
extended to video and audio signals.
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