
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-024-18449-9

Simultaneous control of head pose and expressions in 3D
facial keypoint-based GAN

Tomoyuki Hatakeyama1 · Ryosuke Furuta1 · Yoichi Sato1

Received: 10 October 2023 / Revised: 10 January 2024 / Accepted: 25 January 2024
© The Author(s) 2024

Abstract
In this work, we present a novel method for simultaneously controlling the head pose and the
facial expressions of a given input image using a 3D keypoint-based GAN. Existing methods
for controlling head pose and expressions simultaneously are not suitable for real images, or
they generate unnatural results because it is not trivial to capture head pose (large changes) and
expressions (small changes) simultaneously. In this work, we achieve simultaneous control
of head pose and facial expressions by introducing 3D facial keypoints for GAN-based
facial image synthesis, unlike the existing 2D landmark-based approach. As a result, our
method can handle both large variations due to different head poses and subtle variations
due to changing facial expressions faithfully. Furthermore, our model takes audio input as
an additional modality for further enhancing the quality of generated images. Our model
was evaluated on the VoxCeleb2 dataset to demonstrate its state-of-the-art performance for
both facial reenactment and facial image manipulation tasks, and our model tends not to be
affected by the driving images.

Keywords Video generation · Facial attribute manipulation

1 Introduction

Many methods for manipulating facial images have been reported. Models used in domain-
based image-to-image translation methods [1–6] learn a mapping between domains (i.e.,
image domains that have different facial attributes) and used to control facial attributes. For
example, a facial image in the domain “sadness” can be converted into an image in another
domain, e.g., “happiness.” However, these methods cannot synthesize images for continuous
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labels because they deal with only discrete domains. On the other hand, many generative
models that solve this problem by enabling detailed adjustments have been reported [7–
10]. For example, head pose redirection models [7, 8] control face direction, and expression
manipulation models [9, 10] control the values of action units (AUs) [11], which describe the
intensity of facial muscle movement and are used to control facial expressions. For example,
AU12 corresponds to lip corner pulling, and AU45 corresponds to eyes blinking.

Although there are several models for manipulating head poses and expressions, only a
few can be used to simultaneously control head poses and expressions. For example, sev-
eral methods [12, 13] can control them simultaneously, but they deal with generated images
using StyleGAN [14, 15] and cannot deal with real, user-provided images. Although FACE-
GAN [10] was targeted for use with real images, it generates unnatural results because 2D
landmarks are used to describe the position of each facial part, and it is not a physically plau-
sible method to achieve 3D rotations. More concretely, it is not trivial to capture head pose
(large changes) and expressions (small changes) at the same time with its 2D landmark-based
approach. One might think that a head pose-control method [8] can be simply combined with
an expression-control method [9], but we experimentally demonstrated that this approach is
impractical.

We propose a practical method for simultaneously controlling head poses and expressions
that uses a 3D keypoint-based GAN. Simultaneous control is achieved by treating head
pose changes and expression changes, respectively as rotations and deformations of 3D
keypoint. Our method is more physically plausible compared to [10] in controlling rotations
and deformations thanks to the 3D keypoints. In addition, to generate more accurate control,
the proposed method handles multimodal inputs (images and audio). The audio is used to
predict how the mouth will be deformed, which enables the mouth region of the generated
images to be more accurate. We also propose to use a face parser to introduce segmentation
loss, which enables themodel to generate the eye andmouth areasmore realistically. Figure 1
shows an overview of the proposed method and an example of the manipulation results. The
experimental results show that the manipulation quality was much higher than that of the
baseline methods. Besides, we show that our method can reconstruct images with quality
comparable to that of state-of-the-art reconstruction-only methods. In addition, generated
images using the proposed method do not have leakage from the driving (reference) images
because of themodel architecture, thoughgenerated images using the state-of-the-artmethods
are easily affected by the driving images.

Our main contributions are summarized as follows:

– Physically plausible head pose control and expression control can be achieved simulta-
neously using unsupervisedly learned 3D keypoints.

3D keypoints RRotation

Expression
(surprise)

Fig. 1 Overview of the proposedmethod. In this example, head pose was rotated, and action units of “surprise”
(AU1, AU2, AU5, AU26) were activated. Source image is decomposed into 3D keypoints, which are rotated
and deformed to generate the target image. Head pose and expressions can be controlled simultaneously by
treating head pose changes and expression changes respectively as rotations and 3D keypoint deformations
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– The generated images are of comparable quality to those of state-of-the-art methods, and
the facial images can be manipulated using parameters. In addition, the generated images
are not affected by the driving images, unlike state-of-the-art methods.

– We use a face parser to introduce segmentation loss, which makes the eye and mouth
regions of the generated images more realistic, and handle multimodal inputs (images
and audio) to make the generated result more accurate.

2 Related works

Face reenactment In many methods [16–24], the source image is manipulated to have the
pose and expressions of the driving image, preserving the source identity. Thies et al. proposed
retrieving the mouth image and then transferring the source mouth region to an appropriate
mouth region in the driving image [16].However, their Face2Facemethod requires a sufficient
number of frames containing the mouth region in the driving video. Averbuch et al. [17]
proposed using 2D-warping from the source image to overcome this problem. However, both
of these methods generate unnatural results because the hidden parts (e.g., inner mouth)
are transferred from other images. Video-to-video synthesis methods [18, 19], which use
sketch-to-face models with a spatiotemporal adversarial objective, require the preparation of
other sketches in order to generate head poses and expressions. Zakharov et al. [20] proposed
using a face-to-face model based on landmarks, but this method requires few-shot training
before inference can be performed. In contrast, our approach requires only parameters rather
than landmarks for inference. Furthermore, our approach does not require additional training.
Tewari et al. [24] proposed using a first-order motion model (FOMM) to generate images on
the basis of the motions of 2D keypoints learned in an unsupervised manner. This approach
is aimed not only at face reenactment but also at animating objects such as the human body
and cartoon animals. Therefore, facial attributes cannot be explicitly controlled.

Head pose and expression control The RaR [7] face rotation method uses a 3D morphable
model (3DMM) and thus depends on the accuracy of the 3DMM feature extraction model. In
contrast, in our approach, the feature extraction network is in an end-to-end trainable network.
The approach most similar to ours is that used in FaceVid2Vid [8], in which 3D keypoints of
the images are generated and used to control head pose, whereas FOMM uses 2D keypoints.
Siarohin et al. [25] peoposed a novel view synthesis method by decomposing a RGB image
into semantically meaningful parts such as depth and normal. While the aim of these works
is to control only the head pose, our aim is also to control the expressions. GANimation [9]
uses the cycle-consistency loss to generate manipulated images of continuous AU labels.
While this method aims to control only the expressions, our method can also control the
head pose. FACEGAN [10] uses the AU values to control the expressions. Although it can
also control the head pose, 3D rotations cannot be applied theoretically because the model is
based on 2D landmarks. In addition, the generated results are unsatisfactory because it is not
easy to deal with changes in head pose (large rotations) and expressions (small deformations)
simultaneously with a 2D landmark-based approach. These methods [12, 13] aim to control
the facial attributes of the images generated by StyleGAN [14, 15], not the actual images
(ie, real images) provided by the users. More concretely, their methods take latent codes as
input and generate images. However, these methods do not aim at controlling the attributes
of real images (StyleGAN output images), so their applications are limited ([12] showed the
possibility of controlling the attributes of real images. However, to apply this to the problem
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settings, inverse mapping from images to latent codes is non-trivial). Our method, on the
contrary, aims to control the attributes of real facial images.

Audio-driven control Many recently reported methods [26–30] aim to manipulate facial
images using audio. One [26] uses audio to deform landmarks and uses them to generate
faces. Our approach does not deform landmarks but uses unsupervisedly learned keypoints,
enabling the network to be trained without considering the accuracy of landmark detection.
Another work [27] uses audio-based video editing as well as identity removal, and [30] can
generate natural expression deformation with the audio. Unlike three of these methods [26,
28–30], our method can handle head pose and expressions simultaneously, where changes
in expressions are predicted as deformations of 3D keypoints from both image and audio
input.

3 Method

Themodel in our proposed method is trained by reconstructing the driving image xd from the
source image xs using a two-step process: feature extraction and image generation (Fig. 5).
In the first step, the identity feature I and the canonical keypoints are extracted from the
source image. Then, the source and driving key points (Ks and Kd ) are calculated by rotating
and deforming the canonical keypoints. In the second step, the driving image is reconstructed
using the extracted feature I and the calculated keypoints (Ks and Kd ). Although these two
steps are based on FaceVid2Vid [8], changes in head pose and expressions can be handled
simultaneously, unlike with FaceVid2Vid [8]. The key idea is that head pose changes and
expression changes are treated, respectively, as rotations and deformations of 3D keypoints.
To achieve this, we introduce an AU-driven deformation estimator and an audio-driven
deformation estimator, which predict deformations of 3D keypoints from AU and audio,
respectively. In addition, to improve the quality of the generated image, we introduce a
segmentation loss, which penalizes the difference between the face parsing results of the
driving image and those of the generated image.

3.1 Feature extraction

As shown in Fig. 2, the 3D identity feature I is extracted, and the source and driving keypoints
(Ks and Kd ) are calculated. Two images are randomly selected from a speech video; one
is treated as source image xs ∈ R

H×W×C and the other is treated as driving image xd ∈
R

H×W×C . Figure 3 shows the network architectures used in the experiment. We explain the
architectures in more detail.

The identity extractor extracts from xs 3D identity feature I ∈ R
H×W×D for each

channel (this feature represents hair color, eye shape, background, etc.). In addition, it is
expected to compute the identity feature without dependence on camera parameters and
perspective projection/distortion.

The canonical detector takes xs as input and predicts canonical 3D keypoints Kc ∈ R
k×3,

where k is the number of the keypoints. These keypoints indicate the points in a neutral head
pose (front face) and a neutral expression. Figure 4 shows the visualization of the canonical
3D keypoints. Note that these keypoints are learned without facial landmarks and optimized
to reduce the loss.
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Fig. 2 Feature extraction procedure. Rotated and deformed keypoints are calculated from identity feature,
canonical keypoints, head pose, AU-driven deformation, and audio-driven deformation. The first two (identity
feature and canonical keypoints) are extracted from only the source image and not from the driving image

The head pose estimator outputs the angles ∈ R
3 (pitch, yaw, and roll) to be used to

estimate rotationmatrices R∗ ∈ R
3×3 from input image x∗, where ∗ ∈ {s, d}. It also estimates

translation vectors t∗ ∈ R
3, which represent the offset of the person’s position.

The AU-driven deformation estimator takes AU values AU∗ ∈ [0, 5]17 as input and
predicts AU-driven deformation δAU∗ ∈ R

k×3, which represents how the AUs affect the
expressions.

In the network, AU∗ ∈ [0, 5]17 is normalized to [0, 1]17. Then, the deformation δAU∗,i ∈ R
3

is extracted by two linear layers and activation of GELU for the keypoint i . The deformations
are concatenated into the audio deformation

The audio-driven deformation estimator predicts audio-driven deformation δaudio∗ ∈
R
k×3, which enables the model to generate a more detailed mouth region. The audio of the

corresponding frames is converted into aMel spectrogram, and the speech content is analyzed
usingDeepSpeech [31] trained onLibrispeech [32] to obtain audio feature a∗ ∈ R

n×29, where
n is the number of audio chunks. The audio feature is interpolated, as the number of chunks
is the same as the number of video frames.

Each audio feature is combined with the adjacent features, and a per-frame feature ∈ R
32

is computed using CNN and linear layers. The filtered audio expression ∈ R
32 is calculated

considering adjacent eight per-frame features through an self-attention architecture such as
Audio2ExpressionNet [28]. The deformation δaudio∗,i ∈ R

3 is extracted by two linear layers
and activation of GELU for the keypoint i . The deformations are concatenated into the audio
deformation δaudio∗ ∈ R

k×3, where k is the number of keypoints.
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Fig. 3 Network architectures. We determined hyperparameters based on [8], but some details differ to reduce
computational resources. ↓ n: stride of the convolution is n, IN: InstantNorm, LReLU: LeakyReLU

Finally, the rotated and deformed keypoints K∗ are calculated as following:

K∗ = R∗(Kc + δAU∗ + δaudio∗ ) + t∗, (3.1)

Fig. 4 Examples of the detected keypoints using the proposedmethod. In thismodel, for example, one keypoint
(purple) is around the left eye, and another keypoint (yellow green) is located around the mouse
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Fig. 5 Generator pipeline

3.2 Image generation

As shown inFig. 5, driving image xd is reconstructed using identity feature I andkeypoints Ks

and Kd , as described in more detail elsewhere [8, 24]. A heatmap representing the difference
between the source and driving keypoints and the identity feature deformed by the Jacobian
J∗ are fed into the network and used to calculate the composite flow field w. Then, the
warped identity feature w(I ) is fed into the image generator, and reconstruction results xr
are generated. Rotations are used as the Jacobian to reduce the computational resources
required, as is done in FaceVid2Vid [8].

Driving and reconstructed images xd and xr , and driving keypoints Kd are used to train
the discriminator, which distinguishes whether the given keypoints and images are real.

More details about the networks can be found in the supplemental material.

3.3 Losses

Our model is trained to minimize eight losses, which are described below. Total loss L is
given by:

L = λPLP + λGLG + λFLF + λELE

+λKLK + λHLH + λ�L� + λSLS, (3.2)

The four losses are aimed at making the generated image more realistic. Perceptual loss
LP is the L1 distance of the features obtained by feeding the real and output images into
a VGG19 model trained on the ImageNet dataset [33] and a VGG16 model trained on the
VGGFace dataset [34]. GAN loss LG makes the generated image more realistic by using a
hinge loss term [35]. Feature matching loss LF penalizes the difference in characteristics
in the discriminator. Equivariance lossLE is the L1 distance between the driving keypoints
and the transformed keypoints, which are inversed to match the driving keypoints.

Three losses are used to manage the dynamics of head poses and expressions. Keypoint
prior loss LK brings the key points closer. Head pose loss LH penalizes the difference
between the head pose predictions. The HopeNet model [36] trained on the 300W-LP
dataset [37] is used to make the prediction. Deformation prior loss L� keeps deforma-
tion δ small, since the deformation is forced to be a slight change in expressions.
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In addition to the above losses,which are used inFaceVid2Vid,we introduce segmentation
loss LS , which penalizes the distance between the facial parts of the driving and generated
images byusing the face parser network.TheBiSeNetmodel [38] trainedon theCelebAMask-
HQ dataset [39] is used as the face parser. Total loss consists of two losses:Lupper andLlower.
Lupper is the L1 distance between the eyes and eyebrow regions in the face parsing results
obtained from the driving image and those from the generated image. Formally, let the face
parser and the generated image be F and xg , respectively. We denote the face parsing results
as F(xg), F(xd) ∈ [0, 1]h×w×c where c ∈ {eyes, eyebrows}. Lupper is denoted as:

Lupper = |F(xg) − F(xd)|1, (3.3)

On the other hand,Llower is the L1 distance of the lips and mouth regions and is denoted the
same as in (3.3), but with c ∈ {lips, mouth}. Total loss is defined as the weighted sum of the
losses:

LS = Lupper + λLlower, (3.4)

where λ is a parameter indicating how much the facial reconstruction of the mouth part is
emphasized.

3.4 Manipulation time

Reference-required control The head pose and expressions can be controlled to have the
attributes as those of the driving image while maintaining the identity of the source image.
Self-motion transfer is the setting in which the person in the source and driving images is the
same. Cross-motion transfer is the setting in which the person in the source image and the
one in the driving image differ.

Reference-free control If the driving image is the same as the source image, i.e., xd = xs ,
we can control the facial attributes without reference images. The head pose parameters can
be perturbed using {

Rd ← Ru Rd

td ← tu + td ,
(3.5)

where Ru ∈ R
3×3 and tu ∈ R

3 are the user-defined rotation matrix and translation vector,
respectively. Similarly, the expression parameters can be perturbed using{

δAUd ← δAUu · δAUd
δaudiod ← δaudiou · δaudiod ,

(3.6)

where δAUu ∈ R
k and δaudiou ∈ R

k are the user-defined AU-driven deformation magnifica-
tion vector and the audio-driven deformation magnification vector. Furthermore, AU-driven
deformation can be controlled by directly changing AU values: AUd ← AUd + AUu . For
example, the lip corner is depressed when AU15 is large, and the eyes blink when AU45 is
large.

4 Experiments

4.1 Training

In each of the three experiments, we trained the proposed method on three 32GB GPUs
(NVIDIA V100 in DGX-1). The pipeline was implemented in PyTorch and optimized using
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Table 1 Quantitative comparison of face reconstruction

L1 ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑ CSIM ↑ FID ↓
Bilayer [44] 41.8 13.1 0.444 N/A 0.826 188.6

Bilayer [44] + segmentation 34.1 14.5 0.497 N/A 0.876 96.3

FOMM [24] 13.8 22.2 0.749 0.815 0.975 16.0

FaceVid2Vid [8] 21.4 18.6 0.703 0.730 0.956 18.2

FaceGANimation (a) 26.9 16.5 0.602 N/A 0.923 21.2

FaceGANimation (b) 26.0 16.8 0.589 N/A 0.927 44.3

Ours 17.8 19.9 0.717 0.740 0.959 14.7

(↑ means that larger is better; ↓ means that smaller is better)

the Adam [40] with custom settings (β1 = 0.5, β2 = 0.999) and a learning rate of 5.0×10−5.
Other settings and hyperparameters are shown in the supplemental material.

We trained the proposed and baseline methods on VoxCeleb2 [41], a large-scale video
dataset containing more than 100K videos. In each video, one person is recorded talking for
a few seconds, and their face is aligned to a size of 224× 224. We resized them to 256× 256
for comparison with other methods. Videos without audio data or for which AU detection
using OpenFace [42, 43] failed were excluded. The data we used is openly available on the
VoxCeleb2 website.1

4.2 Facial reenactment

For facial reenactment, the driving image was reconstructed from the source image and the
driving attributes.

Baselines Three methods were used as baselines: Bilayer [44], FOMM [24], and Face-
Vid2Vid [8]. The Bilayer [44] model generates only the area of the head and body, so
we complemented the background region of each image by reverting the background to
the generated image. We also created a “FaceGANimation” baseline, which combines the
FaceVid2Vid [8] and GANimation [9] models. FaceVid2Vid controls only head poses, and
GANimation manipulates only expressions. This baseline had two variants: (a) FaceVid2Vid
and GANimation were pre-trained independently on the dataset and then combined; (b)
FaceVid2Vid and GANimation were trained after they were combined in the same model.

Evaluationmetrics We evaluated the reconstruction results using six metrics. L1 represents
the average distance of the pixel values between the driving and generated images. The
driving and generated images were compared using the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [45], multi-scale SSIM (MS-SSIM) [46], and cosine similarity
(CSIM). The distributions of the real (driving) and generated images were compared using
the Fréchet inception distance (FID) [47].

Selfmotion transfer As shown in Table 1, the proposedmethod obtained results comparable
to those of the baseline facial reconstruction methods. The FOMM method obtained better
results than the other methods, including ours. However, the difference between the FOMM
results and our results could possibly be reduced by training our model with a larger batch
size and using more computational resources (such as eight GPUs as were used in [8]). In

1 https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html
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source driving Bilayer FOMM FaceVid2Vid
FaceGANimation 

Ours(a) (b)

Fig. 6 Qualitative comparison of reconstruction results: Bilayer [44], FOMM [24], FaceVid2Vid [8],
FaceGANimation, and proposed. FaceGANimation consists of FaceVid2Vid [8] and GANimation [9]: (a)
independently trained; (b) simultaneously trained

addition, note that our objective is not to present a model that can reconstruct images with
better quality. Instead, it is to present a model that can manipulate head pose and expressions
simultaneously by using a 3D keypoint-based approach. The aim of the first experiment was
simply to determine whether our model could obtain comparable quality if we reconstructed
the driving images. As shown in Fig. 6, our method captured identity better than the other
methods. For example, when there was a hand in the source image, the reconstruction images
generated with our method showed the hand more clearly. Our method successfully captured
the identity because the expressions are driven only by AUs and audio and are independent
of identity.

Ablation study Table 2 shows the results of facial reconstruction after ablating the audio
driven deformation and components of the proposed method, and Fig. 7 shows qualitative
examples. We used our model with only the AU-driven deformation as a baseline. The audio-
driven deformation made the images more accurate when the mouth in the driving image

Table 2 Quantitative comparison of face reconstruction after audio-driven deformation and segmentation loss
were ablated

L1 ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑ CSIM ↑ FID ↓
δAU 18.1 19.8 0.717 0.740 0.959 17.9

δAU + δaudio 17.6 20.0 0.720 0.744 0.960 25.0

δAU +LS 18.1 19.8 0.711 0.730 0.958 14.0

δAU + δaudio + LS 17.8 19.9 0.717 0.740 0.959 14.7

δAU: AU-driven deformation; δaudio: audio-driven deformation; LS : segmentation loss
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source driving
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+
AU

+
AU audioAU

+

Fig. 7 Qualitative comparison of AU-driven deformation δAU, audio-driven deformation δaudio and segmen-
tation lossLS

was opened widely, as shown in the second row of the figure. However, the scores Table 2
did not improve significantly because only small regions, such as the mouth, were affected.
Face parser (FP) helped the method generate images with a lower FID because it made the
model focus on the eye and mouth regions, so the background noise tended to disappear.

As shown in Table 3, LS makes better results with SSIM but worse with FID for
FOMM [24]. This is because the accuracy for eyes and mouth was higher, though the gener-
ated images are relatively blurred.

Figure 8 shows the generated results with addition or removal of the deformations.
AU-driven deformation δAU aims to make coarse-grained expressions, and audio-driven
deformation δAudio aims to make expressions more detailed, especially for the mouth region.

Cross motion transfer Our method can also be used when the person in the source image
differs from the one in the driving image. As shown in Fig. 9, FOMM had good reenactment
results, but there tended to be blurred areas in the hair, body, and background. FaveVid2Vid
tended to have a blurred facial outline (first and second rows). In contrast, our method
struck the right balance between reflecting driving attributes and maintaining source identity.
Furthermore, the images generated by FOMM and FaceVid2Vid tended to be affected by the
driving identity. For example, the generated images have background artifacts (Fig. 9) and
caption remnants (Fig. 9 second row). The artifacts appeared in the FOMM and FaceVid2Vid
generated images because the models capture deformations from images. In contrast, our
method extracts from only AUs and audio.

Table 3 Self motion transfer results of FOMM [24]; LS : segmentation loss

L1 ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑ CSIM ↑ FID ↓
FOMM 13.8 22.2 0.749 0.815 0.975 16.0

FOMM + LS 13.6 22.3 0.778 0.815 0.975 21.3

123



Multimedia Tools and Applications

drivingsource

Fig. 8 The generated results with addition or removal of the deformations. By removingAU-driven andAudio-
driven deformations for the source image, the expression of the source image gets to neutral. We can add the
deformations corresponding to the AUs and the audio of the driving frame

4.3 Facial imagemanipulation

Our method can control head pose and expressions simultaneously, as illustrated in Fig. 10,
which shows the results of the combined control. Both frontalization (head pose changes)
and emotion control (expression changes) were achieved. In this experiment, each emotion
was driven by activating the corresponding AUs. For example, the image was made “happy”
by activating AU06 and AU12.

Figure 11 shows that our method can transform images forAUs and rotation (pitch/yaw/roll)
with continuous labels. For example, the higher the intensity of AU12, the more smiling the
generated face is. We can thus intuitively control facial images using parameters without
reference images.
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source driving FOMM FaceVid2Vid Ours

Fig. 9 Cross-motion transfer results for FOMM [24], FaceVid2Vid [8], and proposed methods

Table 4 shows the L1 distance between the target attributes (head pose and AUs of the
driving image) and those of the generated image. This experiment was conducted on cross
motion transfer settings, and each attribute was predicted using OpenFace. As shown in
the table, our method outperformed the baselines for manipulating all attributes. Additional
results are shown in the supplemental material.

5 Limitations and discussions

Our method does have limitations. As exemplified by the failure cases illustrated in Fig. 12,
we can control the AUs in Fig. 11, but the generated image can be affected by other AUs

source neutral happy disgust anger

Fig. 10 Our method enables simultaneous frontalization and facial expression control
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AU09 AU10 AU12 AU14
in
te
ns

ity
AU15AU01 AU17 AU25 AU26 AU45 pitch yaw roll

Fig. 11 Proposed method can control facial images continuously for rotations and action units. For AUs, the
lower the image, the greater the intensity of activation. AU01: inner brow raiser; AU09: nose wrinkler; AU10:
upper lip raiser; AU12: lip corner puller; AU14: dimpler; AU15: lip corner depressor; AU17: chin raiser;
AU25: lips part; AU26: jaw drop; AU45: blinking

if the target AU tends to be activated along with the other AUs at the same time. That is,
our model cannot control AUs independently. For example, AU09 (nose wrinkler) tends to
be activated with mouth opening units such as AU10 (upper lip raiser), which affects the
generated results (Fig. 12a left). We cannot control AUs that do not appear very often or
intensely. For example, our model cannot control a face for AU05 (upper lid raiser), which
does not appear clearly in many videos (Fig. 12a right). Furthermore, our model is based on
OpenFace [42, 43] prediction, so the precision of manipulation depends on the prediction
model.

Another limitation is related to head pose manipulation. Figure 12b shows examples of
when our model failed to generate objects. Changes in head pose often distort objects, such
as the caption and microphone. The generated images are thus blurred and unnatural when
the head poses of the source and driving images significantly differ (Fig. 12c). This failure
happens because the head pose does not change much in videos with an average duration
of 8 seconds from which we randomly pick two frames to determine the source and driving
images.

6 Conclusion

We have presented a physically plausible method based on unsupervisedly learned 3D key-
points for simultaneously controlling the head pose and expressions of a facial image. Existing
methods that simultaneously control these attributes are not suitable for real images [12, 13]

Table 4 L1 distance between the target attributes (head pose and AUs of the driving image) and the attributes
of the generated image AUupper : action units around eye, nose, and cheek

Pitch Yaw Roll AUupper AUlower

FaceGANimation (a) 0.105 0.171 0.103 0.362 0.388

FaceGANimation (b) 0.120 0.175 0.096 0.593 0.426

Ours 0.043 0.039 0.027 0.307 0.296

AUlower: action units around mouth and jaw. Pitch, yaw, and roll represent head rotations
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intensity intensity

(a) AU controls. Left: AU09 activation. Right: AU05 activation.

source driving generated pitch-change yaw-changesource

source driving generated source driving generated

(b) Failure cases of generating object such as caption and microphone.

source driving generated source driving generated

(c) Rotation failure cases.

Fig. 12 Example failure cases

or generate unnatural results due to using a 2D keypoint-based approach [10]. Suppose we
combine the methods of the 3D keypoint-based rotation model [8] and the action unit-based
animation model [9]. In that case, the generated images tend to collapse because it is difficult
to capture the head pose (large changes) and the expressions (small changes) at the same time.

To alleviate this problem, themodel used in ourmethod handles head pose changes as rota-
tions and expression changes as keypoint deformations. As a result, the model’s outputs were
comparable to those of state-of-the-art methods and of much higher quality than combined
methods, and they were not affected by the driving images. Our experiments demonstrated
that ourmodel can simultaneously control the head pose and expression. Futurework includes
adding gaze control to our method.
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