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Abstract
The Arnold’s Cat Map (ACM) is one of the chaotic transformations, which is utilized by
numerous scrambling and encryption algorithms in Information Security. Traditionally, the
ACM is used in image scrambling whereby repeated application of the ACM matrix, any
image can be scrambled. The transformation obtained by the ACMmatrix is periodic; there-
fore, the original image can be reconstructed using the scrambled image whenever the
elements of the matrix, hence the key, is known. The transformation matrices in all the
chaotic maps employing ACM has limitations on the choice of the free parameters which
generally require the area-preserving property of the matrix used in transformation, that is,
the determinant of the transformation matrix to be ±1. This reduces the number of possible
set of keys which leads to discovering the ACM matrix in encryption algorithms using the
brute-force method. Additionally, the period obtained is small which also causes the faster
discovery of the original image by repeated application of the matrix. These two parame-
ters are important in a brute-force attack to find out the original image from a scrambled
one. The objective of the present study is to increase the key space of the ACM matrix,
hence increase the security of the scrambling process and make a brute-force attack more
difficult. It is proved mathematically that area-preserving property of the traditional matrix
is not required for the matrix to be used in scrambling process. Removing the restriction
enlarges the maximum possible key space and, in many cases, increases the period as well.
Additionally, it is supplied experimentally that, in scrambling images, the new ACM matrix
is equivalent or better compared to the traditional one with longer periods. Consequently,
the encryption techniques with ACM become more robust compared to the traditional ones.
The new ACM matrix is compatible with all algorithms that utilized the original matrix. In
this novel contribution, we proved that the traditional enforcement of the determinant of the
ACM matrix to be one is redundant and can be removed.
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1 Introduction

Information security is becoming the most important issue where the systems are increasing
in terms of capacity and the size of information they produce and exchange. One of the
common information exchange is done through images. Therefore, image security during
data transmission is very important. One of the widely used methods to secure and encrypt
images is chaotic transformations.

There has been many studies on chaotic maps in literature. Zia et al. presented a useful
survey including the recently published studies on chaos based image encryption techniques.
The algorithms are categorized into spatial, temporal, and spatiotemporal domains and each
is discussed in detail [26]. Some chaotic maps for image encryption are named as Arnold’s
Cat map [8, 24], Henon map [21], Tinkerbell map [7], Logistic maps [6, 13], Tent map [15]
and a 5D Hyper-chaotic map [5]. For example, in [18], a Lorenz Chaotic system is used. In
that paper, each bit plane is encrypted separately. In [20],Wavelet and Cosine transformations
are used to protect medical images. In conjunction with the discrete cosine transform and
singular value decomposition, the ACM matrix is used. In [18], Fibonacci series are utilized
digital images using an ACM matrix.

In classical ACM, the location of each pixel is multiplied by a matrix and a new location is
obtained for that pixel. The calculations are done inmodular arithmetic modulo N where N is
the image size. In these methods, the ACMmatrix is taken in such a way that its determinant
is ±1 and this transformation is periodic so that the original image can be recovered after
repeated application of the same transformation. During the scrambling process, the one with
lowest correlation is taken as the encrypted image.

Arnold’s Cat Map [2] is one of the chaotic transformations used to encrypt images suc-
cessfully. The transformation is periodic and reversible, therefore, it is suitable for encryption
purposes. The transform simply usesmatrixmultiplications, therefore, application of themap
is simple and effective. There are many applications and uses of the transformation. In [17],
ACM is used together with the Henon map successfully. An important combination of ACM
is implemented with AES encryption in [14]. The period of ACM transformation is analyzed
in [3].

In [9], the Hartley transform is combined with the ACM matrix in its fundamental form
(2.1). In [11], Turing machines are used with a three-dimensional map. As an encryption
algorithm, the ACM matrix is combined with a Gaussian logistic map in [10, 12]. In the
method, dynamic substitution and permutation are utilized. In [4, 22], the encryption contains
embedded logistic maps. In [23, 25], each bit plane is encrypted differently. Combining an
ACMmatrixwith theRC4 encryptionmethod is demonstrated in [1]. All proposed algorithms
that employ the ACMmatrix employ the formulation in (2.1), (2.2) or (2.3) where the number
of parameters is constrained.

The main contribution of this study is to present a novel transform matrix for the Arnold’s
Cat Map. Unlike the traditional ACMmatrices, the proposed method removes the restriction
that the transformation matrix has a unity determinant. Also, an algorithm is presented that
produces all possible matrices to be used in chaotic mapping applications. As a consequence
of this, the pool of matrices used for that purpose will be widened dramatically.

The paper is organized as follows. The preliminaries on the standard and generalized
ACM transformation are presented in Section 2. Section 3 is devoted to the construction of
new transform matrices. There it is proved that the area-preserving property is not compul-
sory. Besides, an algorithm is presented to generate all possible ACM matrices. Section 4
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is dedicated to experimental works. Finally, the discussion and conclusion part is given in
Section 5.

2 Preliminaries

The ACM transformation is based on several assumptions and the form of the matrices is
presented in equations (2.1), (2.2) and (2.3). In all forms, the determinant of the transform
matrix is 1 by design. The first parameter is always 1, and the free parameters a and b can
be selected freely. The fourth parameter is calculated so that the determinant is always 1.
The calculation is based on area-preservation. The sequence is both periodic, and hence, the
original data can be recovered. Because of these features, the ACM transformation is used
in encryption applications widely.

For an N × N image, the standard ACM is defined by[
x ′
y′

]
=

[
1 1
1 2

]
·
[
x
y

]
(mod N ) (2.1)

where x, y ∈ {0, 1, . . . , N − 1}, (x, y) is the pixel of the original image and (x ′, y′) is the
position of the mapped pixel. Note that the determinant of the transformation matrix is 1,
which guarantees that the mapping is one-to-one for all values of N .

Besides the traditional ACM, several modifications have been introduced by other
researchers. See, [16, 23] and the references therein. These modified ACMs differ from
the traditional method in terms of the matrix elements. Two of them are[

x ′
y′

]
=

[
1 1
i i + 1

]
·
[
x
y

]
(mod N ) (2.2)

where i ∈ {0, 1, . . . , N − 1}, and[
x ′
y′

]
=

[
1 a
b ab + 1

]
·
[
x
y

]
(mod N ) (2.3)

where a, b ∈ {0, 1, . . . , N − 1}. Notice that for i = 1, (2.2) becomes (2.1). Also, in (2.3),
taking a = b = 1 reveals (2.1) and a = 1, b = i results in (2.2). Therefore, (2.3) is the
most general one with two free parameters a and b. In all above methods, the ACM can be
described as [

x ′
y′

]
= M ·

[
x
y

]
(mod N ) (2.4)

where M is a specific 2 × 2 matrix whose determinant is 1.
In this paper, it will be shown that the unity determinant restriction is not a required

assumption and we will maximize the number of choices for each parameter without the
determinant requirement. Consequently, the key space becomes considerably large.

3 Construction of a new transformmatrix

In this part, a new method to construct the transform matrix will be presented. First, we shall
need the following well known auxiliary result which is easily derived from the Bézout’s
identity [19].
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Lemma 3.1 The number a has a multiplicative inverse modulo N if and only if a and N are
relatively prime, i.e., gcd(a, N ) = 1.

In other words, gcd(a, N ) = 1 if and only if there exists an integer a′ such that aa′ ≡ 1
(mod N ). Here, the number a′ is called the multiplicative inverse of a modulo N and is
denoted by a−1.

This result is also generalized for matrices and the fact is given below.

Lemma 3.2 A matrix M is invertible modulo N if and only if gcd(det M, N ) = 1.

Denote byZ
2×2
N the set of all 2×2matriceswhose elements are inZN := {0, 1, . . . , N−1}.

The set of invertiblematrices inZ
2×2
N with ordinarymatrixmultiplication is called the general

linear groupof degree 2 and is denoted byGL(2,ZN ).The subgroupofGL(2,ZN ) consisting
of matrices with determinant 1 is called the special linear group of degree 2 and denoted by
SL(2,ZN ).

In almost all studies, starting with Arnold’s cat map, the transform matrix is assumed to
be in SL(2,ZN ). The main reason for this is that shuffling the image a certain finite number
of times should result in the original one. That is, starting from an image, for the matrix M,

there is a number of steps, say P, such that applying the transformation (2.4) P times should
give the original image. This, indeed, means that MP ≡ I (mod N ) where I stands for the
identity matrix. However, for such a purpose, one does not need to have det M ≡ 1 (mod N )

as the next theorem states.

Theorem 3.3 Given an image of size N × N . Any matrix M with gcd(det(M), N ) = 1 can
serve as an ACM matrix.

Proof Take any matrix M such that det(M) and N are relatively prime, that is, M ∈
GL(2,ZN ), and consider the sequence of matrices

M,M2,M3, . . . ,MN4+1 (mod N ).

Since there are N 4 different 2 × 2 matrices whose entries are in ZN and N 4 + 1 matrices in
this list, the matrices above cannot all be distinct. In particular, there are distinct integers i
and j such that Mi ≡ M j (mod N ). Without loss of generality, assume that i < j . Now,
multiplying both sides of this congruence by M−i leads to

M j−i ≡ I (mod N ).

In other words,

M j−i ·
[
x
y

]
≡

[
x
y

]
(mod N ) for all x, y ∈ {0, 1, . . . , N − 1}.

This means that any image can be recovered after applying the transformation j − i times
repeatedly. Hence, M can be taken as an ACM matrix. ��

Theorem 3.3 states that any matrix in GL(2,ZN ) can be taken as the transform matrix
not necessarily those who preserve area. Indeed, any invertible matrix modulo N , i.e.,
gcd(det(M), N ) = 1, can be taken as the shuffling matrix. In the proof above, the num-
ber P = j − i is the period of M modulo N .

To count the number of invertiblematrices inZ
2×2
N , i.e., number of possible ACMmatrices

for a given N , we shall need the following auxiliary results.
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Lemma 3.4 Let N = pk11 pk22 · · · pkrr where pi are distinct primes and ki ≥ 1 are integers.
Then |GL(2,ZN )| = |GL(2,Z

p
k1
1
)| · |GL(2,Z

p
k2
2
)| · · · |GL(2,Zpkrr

)|.

Proof Let M ∈ GL(2,ZN ). The result follows from the Chinese Remainder Theorem since
gcd(det M, N ) ≡ 1 if and only if gcd(det M, pkii ) ≡ 1 for every i = 1, 2, . . . , r . ��
The following result gives the number of matrices in GL(2,Zpk ) for a prime number p and
positive integer k.

Lemma 3.5 For any prime number p and positive integer k, there are p3k−2(p2−1)matrices
in SL(2,Zpk ). Moreover, the number of matrices in GL(2,Zpk ) is p4k−3(p − 1)(p2 − 1).

Proof Let M =
[
a b
c d

]
∈ Z

2×2
pk

and m = det M (mod pk). By Lemma 3.2, M is invertible

modulo pk if and only if p � m. That is, M ∈ GL(2,Zpk ) if and only if p � m. We shall
consider two cases:

Case 1 If p does not divide a, then a is invertible modulo pk . Let a−1 be the inverse
of a modulo pk, and for any b, c ∈ Zpk , take d = a−1(bc + 1) (mod pk). In this setting,
det M ≡ 1 (mod pk). Since there are (pk − pk−1) ways to choose a, pk ways to choose
each of b and c, and only one way to choose d, the number of such matrices is (pk − pk−1) ·
pk · pk · 1 = p3k−1(p − 1).

Case 2 If p divides a, then a is not invertible modulo pk . In that case, p should divide
none of b and c. That is, both b and c should be invertible. Now, for b, d ∈ Zpk with p � b,

take c = b−1(ad − 1) (mod pk). Then, det M ≡ 1 (mod pk). Since a, b, c and d can be
chosen in pk−1, pk − pk−1, 1 and pk ways, respectively, the number of such matrices is
pk−1 · (pk − pk−1) · 1 · pk = p3k−2(p − 1).

Thus, adding the results in both cases gives us p3k−1(p−1)+ p3k−2(p−1) = p3k−2(p2−
1) matrices in SL(2,Zpk ).

Finally, since there are pk − pk−1 invertible m’s modulo pk, the number of invertible
matrices in GL(2,Zpk ) is (p

k − pk−1)p3k−2(p2 −1) = p4k−3(p−1)(p2 −1) as claimed.��
Now, combining the results of Lemmas 3.4 and 3.5, one derives the following outcome

which in fact gives the number of transform matrices.

Theorem 3.6 Let N = pk11 pk22 · · · pkrr where pi are distinct primes and ki ≥ 1 are integers.
Then,

|GL(2,ZN )| =
r∏

i=1

p4ki−3
i (pi − 1)(p2i − 1). (3.1)

It is worth mentioning that for an image of size N , the number of possible matrices that
can be used as ACM transformation is given by (3.1). As an example, for an image of size
200×200, one has N = 200 = 23 ·52. That is, p1 = 2, k1 = 3, p2 = 5, k2 = 2. Therefore,
the number of transform matrices is

29 · (2 − 1) · (22 − 1) · 55 · (5 − 1) · (52 − 1) = 4.608 · 108.
For the same N , the number of transform matrices in (2.2) is 200, and in (2.3) it is 4 · 104.
One can easily see that the number of keys provided in the present paper is much more than
the ones in the literature.

The proof of the next assertion gives a method to construct all possible transformmatrices
which gets its main idea from the Chinese Remainder Theorem [19, 16.1.G.8].
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Theorem 3.7 Let N = pk11 pk22 · · · pkrr where pi are distinct primes and ki ≥ 1 are integers.
For each i = 1, 2, . . . , r , take an arbitrary matrix Ai ∈ GL(2,Z

p
ki
i
). Then, there exists a

unique matrix M ∈ GL(2,ZN ) such that

M ≡ Ai (mod pkii ) for all i = 1, 2, . . . , r . (3.2)

Proof For each i = 1, 2, . . . , r , let ni = N/pkii . Clearly, gcd(ni , p
ki
i ) = 1, and hence, by

Lemma 3.1, ni has a multiplicative inverse, say ni , modulo pkii . Set

M = n1n1A1 + n2n2A2 + · · · + nrnr Ar (mod N ).

It is evident that the matrix M satisfies (3.2) since, by the definition of ni one has that p
ki
i |n j

whenever j �= i meaning that n jn j ≡ 0 (mod pkii ) and by the definition of ni that nini ≡ 1

(mod pkii ).

To see why M is invertible in Z
2×2
N , simply note that

det M ≡ det Ai (mod pkii ).

As Ai ∈ GL(2,Z
p
ki
i
), one gets gcd(det M, pkii ) = 1 for all i = 1, 2, . . . , r which leads to

gcd(det M, N ) = 1. Therefore, M ∈ GL(2,ZN ). ��
The proof implies that one can construct the matrix M alternatively as follows. For each

i = 1, 2, . . . , r , take an arbitrary matrix

Ai =
[
ai bi
ci di

]
∈ GL(2,Z

p
ki
i
).

Then, by the Chinese Remainder theorem, there is a unique number a ∈ ZN such that a ≡ ai
(mod pkii ) for all i = 1, 2, . . . , r . Similarly, one can find the numbers b, c and d satisfying

b ≡ bi (mod pkii ), c ≡ ci (mod pkii ), d ≡ di (mod pkii ), i = 1, 2, . . . r ,

respectively. Finally, one has

M =
[
a b
c d

]
∈ GL(2,ZN ).

Remark 3.1 When the image size N is a prime number, say N = p for a prime number p, the
matrix can be taken as any invertible matrix inZ

2×2
p . In that case the number of possible ACM

matrices is N (N − 1)(N 2 − 1). It is important to mention that if N is not a prime number,
then by adding sufficiently many null rows and columns to the image, one can enlarge the
image so that its size becomes a prime number. This leads to even much larger key space.

The following Algorithm 1 produces an invertible matrix modulo pk for a prime number
p and a positive integer k which is provided by Lemma 3.5, and Algorithm 2 returns a matrix
that can be used as ACM matrix.

As an example, let us construct a transform matrix for an image of size 200 × 200.
According to Algorithm 2, first, one factorizes N . Since N = 200 = 23 · 52, one has
p1 = 2, k1 = 3, p2 = 5 and k2 = 2. Following the notations as in Theorem 3.7, one writes
n1 = N/pk11 = 25 and n2 = N/pk22 = 8. Then, since n1 · 1 ≡ 1 (mod 8) and n2 · 22 ≡ 1
(mod 25), one finds n1 = 1 and n2 = 22. Now, select arbitrary matrices A1 ∈ GL(2,Z8)

and A2 ∈ GL(2,Z25). To generate A1, one runs Algorithm 1 with p1 = 2 and k1 = 3. First,
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Algorithm 1 Generate an invertible matrix modulo pk .
function generate_matrix_A
Input: p (a prime number), k
Output: A2x2 with det(A) = m such that gcd(m, pk ) = 1.
Do

Select m ∈ {1, 2, . . . , pk − 1} such that m%p �= 0.
Select a ∈ {0, 1, . . . , pk − 1}.
If a%p �= 0

find a ∈ {1, 2, . . . , pk − 1} such that a · a ≡ 1 (mod pk ).
select b ∈ {0, 1, . . . , pk − 1}.
select c ∈ {0, 1, . . . , pk − 1}.
define d = a(bc + m) (mod pk ).

else
select b ∈ {0, 1, . . . , pk − 1} such that b%p �= 0.
find b ∈ {1, 2, . . . , pk − 1} such that b · b ≡ 1 (mod pk ).
select d ∈ {0, 1, . . . , pk − 1}.
define c = b(ad − m) (mod pk ).

end If
End

return A =
[
a b
c d

]

select m ∈ {1, 2, . . . , 7} such that m%2 �= 0. Take, for example, m = 5. Then, select any
a ∈ {0, 1, . . . , 7}, say a = 4. Since 4%2 = 0, one has to select b such that it is not a multiple
of 2, say, b = 1. As b · 1 ≡ 1 (mod 8), we have b = 1. Then d can be taken as any number
in {0, 1, . . . , 7}, say d = 3. Finally, c = b(ad − m) (mod 8) gives us c = 7. Therefore,
Algorithm 1 returns

A1 =
[
4 1
7 3

]
.

Now, Algorithm 1 is run again, but this time with p2 = 5 and k2 = 2. First, select m ∈
{1, 2, . . . , 24} such thatm is not a multiple of 5, saym = 6. Then, take a ∈ 0, 1, . . . , 24, say
a = 2. Since a%5 �= 0, we find a ∈ {1, 2, . . . , 24} such that 2a ≡ 1 (mod 25). Obviously,
a = 13. Next, b and c can be any numbers in {0, 1, . . . , 24}, say b = 5 and c = 8. Finally,
d = a(bc + m) (mod 25) = 13 · (5 · 8 + 6) (mod 25) = 23. Thefore, Algorithm 1 returns

A2 =
[
2 5
8 23

]
.

Algorithm 2 Generate a new ACM matrix.
function generate_new_ACM
Input: N (image size)
Output: M2x2 such that gcd(det(M), N ) = 1.
Do

Write N = p
k1
1 p

k2
2 · · · pkrr where pi are distinct primes and ki ≥ 1 are integers.

For each i ∈ {1, 2, . . . , r}
define ni = N/p

ki
i .

find ni ∈ {1, 2, . . . , pkii − 1} such that ni · ni ≡ 1 (mod p
ki
i ).

Ai=Algorithm 1(pi , ki ).
End
return M = n1n1A1 + n2n2A2 + · · · + nr nr Ar (mod N )
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Finally, according to Algoritm 2, since

n1n1A1 + n2n2A2 = 25

[
4 1
7 3

]
+ 176

[
2 5
8 23

]
=

[
452 905
1583 4123

]
,

one obtains

M = n1n1A1 + n2n2A2 (mod 200) =
[
52 105
183 123

]

as an ACM matrix to shuffle and image of size 200 × 200.

4 Experimental work

One of the applications of the Arnold’s Cat Map is to reshuffle the pixel positions of an image
to hide the content. During this process, the pixel positions are moved by multiplying with
the ACM matrix as given in (2.4). Since the process is periodic, when repeatedly applied,
the original image is recovered. The best shuffled image obtained during the iterations with
the lowest self-correlation is taken as the encrypted image. In this procedure, a long period
is important since this will make it more difficult to discover the original data and guessing
the ACM matrix will be difficult. Moreover, a low self-correlation is important so that the
content of the image is better encrypted. It should be noted that there are many different
contexts where an ACMmatrix is used and the one proposed in this paper is compatible with
any application.

The mathematical proof to the extension of the ACM matrix given above is also tested
experimentally. The reshuffling process is implemented with the old ACM matrix where the
determinant is one, and with the new ACMmatrix where the determinant does not need to be
one. The period and self-correlation values are measured and original and reshuffled images
are given as well.

With the new ACM matrix, in most cases, we obtained longer periods and lower self-
correlation values. The classical ACM matrix has a period which never exceeds three times
the size of the image [3]. This limitation makes the encryption process very difficult. The
new ACM matrix will have a longer period especially when the size of the image is a prime
number. The period of some examples are similar to classical ACM matrices. The reason is
that the classical ACMmatrices form a subset of the newACMmatrix set. Some examples are
given in Tables 1 and 2. The determinant of the matrices generated by the proposed method
may not be equal to 1. In Table 2, sample matrices are given along with the period obtained
when applied to an image. The determinant of each matrix has a non-unity value with longer
periods. In Table 1, the same images as in Table 2 are used with randomly selected old ACM
matrices.

For the purpose of comparison with the results known in the literature, five random figures
of size 347 × 347 are selected. Then, corresponding to each figure a random old ACM,

Mold =
[
1 5
6 31

]
, and a random new ACM, Mnew =

[
334 54
336 207

]
, has been selected. The

period of Mold is Pold = 173 and the period of Mnew is Pnew = 30102. Clearly, the period of
newly generated matrix is larger than that of the old one. In both cases, during the scrambling
process, the figure with the lowest correlation number is taken as the encrypted image and
the correlation of both images are calculated. The results are given in Table 3 where it is
clearly seen that the new ACM works better.

For further comparison, in different N values, 100 matrices are randomly selected both
from old ACM pool and the newly introduced pool. For each values of N , the average period
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Table 1 Some old ACM matrices together with their periods for various image size and lowest correlation
when applied to a specific image of that size

N Old ACM matrix, its period (P) and lowest correlation (C)

79

[
1 1
1 2

] [
1 1
2 3

] [
1 2
1 3

] [
1 2
2 5

] [
1 2
3 7

]

P = 39 P = 80 P = 80 P = 13 P = 40

C = 0.0503 C = 0.0214 C = 0.0276 C = 0.0408 C = 0.0253

128

[
1 1
5 6

] [
1 1
6 7

] [
1 2
5 11

] [
1 2
6 13

] [
1 2
10 21

]

P = 48 P = 32 P = 64 P = 64 P = 64

C = 0.0042 C = 0.0298 C = 0.0121 C = 0.0052 C = 0.0117

139

[
1 3
4 13

] [
1 3
6 19

] [
1 3
8 25

] [
1 3
9 28

] [
1 4
1 5

]

P = 35 P = 138 P = 69 P = 14 P = 140

C = 0.0192 C = 0.0078 C = 0.016 C = 0.0574 C = 0.0042

166

[
1 4
2 9

] [
1 4
3 13

] [
1 4
4 17

] [
1 5
5 26

] [
1 5
6 31

]

P = 7 P = 82 P = 28 P = 123 P = 28

C = 0.0279 C = 0.002 C = 0.0086 C = 0.0117 C = 0.0325

173

[
1 5
7 36

] [
1 2
7 15

] [
1 6
1 7

] [
1 6
2 13

] [
1 6
5 31

]

P = 174 P = 43 P = 87 P = 87 P = 227

C = 0.0097 C = 0.0051 C = 0.019 C = 0.0054 C = 0.012

227

[
1 2
4 9

] [
1 2
8 17

] [
1 8
3 25

] [
1 8
4 33

] [
1 9
2 19

]

P = 57 P = 76 P = 57 P = 38 P = 226

C = 0.0066 C = 0.0057 C = 0.0026 C = 0.002 C = 0.002

256

[
1 2
3 7

] [
1 2
8 17

] [
1 4
5 21

] [
1 7
9 64

] [
1 6
2 13

]

P = 64 P =128 P = 256 P = 12 P = 128

C = 0.0065 C = 0.0032 C = 0.0039 C = 0.0207 C = 0.0027

347

[
1 9
2 19

] [
1 6
7 43

] [
1 1
1 2

] [
1 7
3 22

] [
1 8
8 65

]

P = 346 P = 173 P = 116 P = 174 P = 348

C = 0.001 C = 0.0025 C = 0.0045 C = 0.0058 C = 0.0029

512

[
1 8
5 41

] [
1 3
2 7

] [
1 7
2 15

] [
1 1
1 2

] [
1 8
7 57

]

P = 512 P = 128 P = 64 P = 384 P = 512

C = 0.0036 C = 0.0046 C = 0.0322 C = 0.0058 C = 0.0039

of those randomly selected matrices and the lowest correlation when applied to specific
figures are calculated. The results are presented in Table 4. It is easily seen that, in the new
pool, average period is drastically larger than the traditional ones. Considering the size of the
new pool, the results of Table 4 makes more sense. Since the number given in Theorem 3.7
is incomparable larger than the number of traditional matrices, selecting only 100 random
matrices and obtaining a very large average period shows the novelty on the current research.
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Table 2 Some new ACM matrices together with their periods for various image size and lowest correlation
when applied to a specific image of that size

N New ACM matrix, its period (P) and lowest correlation (C)

79

[
63 42
24 14

] [
38 27
0 13

] [
7 21
31 64

] [
44 68
11 50

] [
28 32
40 7

]

P = 3120 P = 39 P = 6240 P = 78 P = 39

C = 0.001685 C = 0.0307 C = 0.0021 C = 0.0268 C = 0.0251

128

[
105 124
91 69

] [
79 55
99 12

] [
59 67
112 121

] [
45 87
99 78

] [
107 79
32 75

]

P = 128 P = 192 P = 64 P = 96 P = 128

C = 0.0117 C = 0.0094 C = 0.0317 C = 0.0268 C = 0.0081

139

[
69 47
68 126

] [
33 115
49 3

] [
91 77
62 42

] [
122 87
76 82

] [
118 32
27 24

]

P = 460 P = 9660 P = 138 P = 19320 P = 2760

C = 0.0024 C = 0.0017 C = 0.0064 C = 0.00099 C = 0.0039

166

[
73 154
51 31

] [
151 73
162 19

] [
77 91
159 82

] [
163 84
118 79

] [
33 57
81 158

]

P = 82 P = 1722 P = 6888 P = 6888 P = 123

C = 0.0155 C = 0.0017 C = 0.0012 C = 0.0025 C = 0.0038

173

[
74 164
94 73

] [
23 30
172 6

] [
98 116
152 33

] [
149 66
111 34

] [
75 21
83 102

]

P = 172 P = 172 P = 29928 P = 172 P = 86

C = 0.0062 C = 0.0047 C = 0.00075 C = 0.00062 C = 0.0072

227

[
52 133
87 58

] [
66 61
140 188

] [
224 79
165 133

] [
25 200
205 186

] [
71 41
36 96

]

P = 226 P = 113 P = 25764 P = 2712 P = 226

C = 0.0025 C = 0.0034 C = 0.00022 C = 0.00006 C = 0.0014

256

[
48 125
249 114

] [
181 193
70 159

] [
128 245
61 87

] [
228 245
233 140

] [
66 215
221 65

]

P = 256 P = 128 P = 384 P = 128 P = 384

C = 0.0016 C = 0.0041 C = 0.0018 C = 0.0038 C = 0.00046

347

[
317 274
332 109

] [
13 294
324 218

] [
263 257
136 114

] [
60 244
11 89

] [
16 33
285 95

]

P = 346 P = 346 P = 15051 P = 346 P = 120408

C = 0.0029 C = 0.00099 C = 0.0.00021 C = 0.0026 C = 0.00004

512

[
333 456
440 317

] [
317 84
423 343

] [
21 119
184 293

] [
453 241
81 244

] [
244 325
401 49

]

P = 128 P = 256 P = 512 P = 768 P = 768

C = 0.0.0142 C = 0.0.0018 C = 0.00032 C = 0.01 C = 0.0011

5 Conclusions

In the literature, it is commonly known that the ACM matrix should be area-preserving, that
is, the determinant should be either +1 or −1. Actually, this is only a mathematical fact
observed for the original ACMmatrix introduced by Arnold. After that, all newly introduced
matrices are assumed to obey this restriction. For the discrete image scrambling processes
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Table 4 Average period and correlation values using 100 random old and new ACM matrices

N Average Pold Average Pnew Average Cold Average Cnew

173 100.46 8557 0.0064 0.0038

227 135.57 14424 0.0037 0.0015

256 140.08 193.08 0.0023 0.0027

347 210.25 32739 0.0021 0.0010

512 280.16 385.6 0.0051 0.0068

area-preserving property is not needed at all. The main objective of the current study is to
remove that restriction and fill the gap in the direction to increase the number of possible
matrices that can be used as anACMmatrix. It is provedmathematically that the ACMmatrix
may not possess the area-preserving property. Besides, removing this restriction makes the
possible key space comparably large.

What is more, an algorithm is presented to generate all possible matrices that can be used
in image scrambling. Experiments are provided to support the justified results. Comparison
with the classical methods are given and they also show the novelty of the current research. In
many new cases, the period is longer which makes it more robust against brute-force attacks.

The proposed method maximizes the number of parameters that can be used in an ACM
matrix by removing the unity determinant requirement. In many cases the period of the newly
proposedmatrix ismuch longer than the periodobtainedwith the classicalACMmatrix. These
two new features decrease the possibility of any brute-force attack in encryption algorithms
where ACM is used. The usage of the new ACM matrix is not limited to encryption. All
methods that use ACM matrix will benefit from the increased parameter space and longer
periods.
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