
Vol.:(0123456789)

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-024-18304-x

1 3

Real‑time diabetic foot ulcer classification based on deep
learning & parallel hardware computational tools

Mohammed A. Fadhel1 · Laith Alzubaidi2,3,4 · Yuantong Gu2,3 · Jose Santamaría5 ·
Ye Duan6

Received: 16 June 2022 / Revised: 8 October 2023 / Accepted: 19 January 2024
© Crown 2024

Abstract
Meeting the rising global demand for healthcare diagnostic tools is crucial, especially
with a shortage of medical professionals. This issue has increased interest in utilizing deep
learning (DL) and telemedicine technologies. DL, a branch of artificial intelligence, has
progressed due to advancements in digital technology and data availability and has proven
to be effective in solving previously challenging learning problems. Convolutional neural
networks (CNNs) show potential in image detection and recognition, particularly in health-
care applications. However, due to their resource-intensiveness, they surpass the capabili-
ties of general-purpose CPUs. Therefore, hardware accelerators such as application-specific
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), and graphics pro-
cessing units (GPUs) have been developed. With their parallelism efficiency and energy-
saving capabilities, FPGAs have gained popularity for DL networks. This research aims
to automate the classification of normal and abnormal (specifically Diabetic Foot Ulcer—
DFU) classes using various parallel hardware accelerators. The study introduces two CNN
models, namely DFU_FNet and DFU_TFNet. DFU_FNet is a simple model that extracts
features used to train classifiers like SVM and KNN. On the other hand, DFU_TFNet is
a deeper model that employs transfer learning to test hardware efficiency on both shal-
low and deep models. DFU_TFNet has outperformed AlexNet, VGG16, and GoogleNet
benchmarks with an accuracy 99.81%, precision 99.38% and F1-Score 99.25%. In addition,
the study evaluated two high-performance computing platforms, GPUs and FPGAs, for
real-time system requirements. The comparison of processing time and power consumption
revealed that while GPUs outpace FPGAs in processing speed, FPGAs exhibit significantly
lower power consumption than GPUs.

Keywords Deep learning · Double transfer learning · FPGA · GPU · DFU · Real-time ·
Parallel hardware · Medical imaging

Extended author information available on the last page of the article

http://orcid.org/0000-0002-7296-5413
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-18304-x&domain=pdf

 Multimedia Tools and Applications

1 3

1 Introduction

Machine learning (ML) and artificial intelligence (AI) have become an integral part of our
daily lives and have transformed various domains, such as image processing and speech
recognition [1–3]. A subset of ML called deep learning (DL) has been instrumental in
this revolution by enabling automatic feature extraction from large datasets, particularly
in domains like natural language processing, speech recognition, and computer vision [4].

The increasing global demand for healthcare diagnostic technologies and a shortage of
medical personnel have led to a growing interest in using Deep Learning (DL) and tel-
emedicine systems. However, DL’s dependence on large annotated datasets presents a
significant challenge in medical image analysis. Transfer Learning (TL) has emerged as a
potential solution to tackle this challenge, allowing models to leverage pre-training on ref-
erence datasets before fine-tuning specific tasks [3].

Despite TL’s success, researchers and application specialists are constrained by the need
for accelerated hardware to scale DL algorithms beyond current capacities. Graphics Pro-
cessing Units (GPUs) have become a dominant hardware accelerator for DL due to their
superior parallel computation capabilities [5, 6]. However, the paper contends that there
is a need to explore alternative hardware platforms, specifically Field-Programmable Gate
Arrays (FPGAs), which exhibit advantages such as adaptable hardware configurations and
power-saving performance for subprograms crucial to DL [7].

Although FPGAs offer attractive features, their adoption can be hindered by the require-
ment of specialized hardware knowledge. However, recent advancements in FPGA tools,
especially those that involve OpenCL, have made them more accessible to a broader audi-
ence, including application scientists and hardware researchers. For deep learning research-
ers, FPGAs provide a compelling option due to their high parallelism, reconfigurability,
and user-friendly development tools [8].

This paper aims to argue that FPGAs are the best hardware acceleration platforms for
deep learning (DL) among the current options available. It aims to provide an overview
of recent FPGA support for DL, highlight their associated limitations, and suggest future
trends in parallel hardware computational tools. The paper focuses explicitly on meeting
real-time requirements in learning strategies, particularly emphasizing the Diabetic Foot
Ulcer (DFU) classification.

The paper has three primary objectives. First, it aims to demonstrate that FPGAs are
superior to other contemporary hardware acceleration platforms. Second, it highlights the
recent support for DL on FPGAs while also identifying their limitations. Lastly, it aims to
provide insights and recommendations for future trends in parallel hardware computational
tools, specifically Convolutional Neural Networks (CNNs). The paper presents case studies
of DFU classification on two high-performance computing platforms, GPUs and FPGAs,
to accelerate the classification process and potentially prevent amputations in individuals
with DFU disease.

The unique contributions of this work include the introduction of two DFU classifica-
tion models (DFU_TFNet and DFU_FNet) employing a novel TL strategy, evaluation on
two parallel hardware platforms (FPGA and GPU), comparison with traditional classifi-
ers (SVM and KNN), training and testing of various CNN models (AlexNet, VGG16, and
GoogleNet) on the same dataset, calculation of power consumption and processing time
values, and the demonstration that FPGA can be a viable choice for portable embedded
devices, with the DFU_TFNet model achieving a remarkable accuracy 99.81%, precision
99.38% and F1-Score 99.25%.

Multimedia Tools and Applications

1 3

The rest of this paper is organized as follows: preliminaries and definitions are described
in Section 2. A brief discussion of related work is presented in Section 3. The methodology
for the proposed models and the hardware setup by FPGA for real-time requirements are
illustrated in Section 4. An evaluation of proposed models in terms of accuracy, precision,
F1-Score, processing time, and power consumption is listed in Section 5. Lastly, the paper
ends with a conclusion, which is Section 6.

2 Brief overview of CNNs with FPGA

In the implementation of DL methods using FPGAs, refer to Appendix 1. Notably, the
primary impediment in achieving the requisite hardware lies in the design size, posing
a significant challenge in this context. The exchange between density and the ability of
design reconfiguration means that the FPGA circuits are generally considered less dense
than hardware replacements. Thus, it is only sometimes possible to implement large neural
networks. Conversely, deep networks become applied on single FPGA schemes because
the current FPGA incorporates strengthened computational units and the common FPGA
fabric and continues developing reduced feature sizes for enhancing density. Figure 1 illus-
trates a summarized year-sequence of significant events in deep-learning research-based
FPGAs.

In the early 1990s, Cox et al. were the first group of researchers to implement neural
networks using FPGAs [9]. A few years later, Cloutier et al. recorded the first implementa-
tion of CNN using FPGAs [10]. These studies were restricted to utilizing low-precision
arithmetic due to FPGA size limitations. Moreover, density-strengthened multiply-accumu-
late units were yet to be available in FPGAs. Thus, arithmetic was an extremely slow and
expensive resource. The FPGA technology was then significantly modified, increasing the
strengthened computation units available in FPGAs, more inspired by reducing transistor
(feature) size and increasing the density of FPGAs fabric. The current CNN implementa-
tions using FPGAs have benefited from these design developments.

To the best of our knowledge, a team at Microsoft recently achieved forward propaga-
tion of CNN using FPGAs. Using the 1 K dataset on the ImageNet network, Ovtcharov
et al. [11] reported that the processing amount of 134 images/second was achieved when
operated on a Stratix V D5 at 25 W. This processing amount is approximately three times
the processing amount of their closest competitor. However, it is predicted that an improved
performance of up to approximately 233 images/second on an Arria 10 GX1150 with the

Fig. 1 Key events in the history of FPGA DL research

 Multimedia Tools and Applications

1 3

same power consumption can be achieved by utilizing the latest FPGAs. In contrast, the
high-performing GPU systems (Caffe + cuDNN) achieved 500–824 images/second with
235 W power consumption. This performance was attained utilizing FPGA servers and
boards designed by Microsoft as part of an investigational project where FPGAs integrate
inside the data centre applications. This project also increased the performance of large-
scale search engines (twice) to show the capacity of such FPGA applications.

Zhang et al. are the closest competitor to realize another significant achievement: pro-
cessing 46 images/second on Virtex 7485 T without reducing the power consumption
[12]. These results are better than several significant works presented by their competi-
tors [13–15]. These examples have a similar architectural design, including several parallel
processing units applied on FPGA fabric (generally employed for convolution), buffered
output and input, the ability to configure software layers, and usually utilizing off-chip
memory access. However, there are also significant differences in using FPGAs, such as
utilizing various operation frequencies, look-up table types, soft-cores, data-transfer mech-
anisms, memory subsystems, and completely diverse FPGAs. Therefore, more research is
required to identify optimal architecture decisions [16].

Transfer learning is often utilized to build medical imaging models with little training
data. One of the initial ideas for employing transfer learning [17] was to use pre-trained
ImageNet models instead of training from scratch. As the pre-trained CNN is effective in
computation and ease of algorithms, the main benefit of including FPGAs is accelerating
the forward propagation of such systems and informing the attained processing amount.
This issue is very significant for application engineers as they want to utilize viable pre-
trained networks for processing sizeable volumes of data effectively and rapidly. Con-
versely, accelerating rearward propagation is another aspect to consider in CNN design
using FPGA. The first to use parallelism in the learning phase on Virtex E FPGA was Paul
et al. in 2006 [18], who focused on accelerating the classification process inside CNN and
boosted this by using different software or hardware platforms to take advantage of paral-
lelism techniques.

In the realm of early detection and prognosis for diabetic foot ulcers, Thotad et al.
paved the way by introducing the use of the EfficientNet—a robust deep neural net-
work model [19]. Building upon this foundation, various end-to-end CNN-based deep
learning architectures, including AlexNet, VGG16/19, GoogLeNet, ResNet50.101,
MobileNet, SqueezeNet, and DenseNet, have been explored for infection and ischemia
categorization. This exploration was carried out using the DFU2020 benchmark data-
set [20]. Applying machine learning to infrared images offers promising avenues for
the early diagnosis of diabetic foot complications. Researchers delved into classical
machine learning algorithms incorporating feature engineering, convolutional neural
networks (CNN), and image enhancement techniques. These investigations aimed to
pinpoint the most effective network for classifying thermograms [21]. In a different
approach, [22] tackled the initial dataset’s disparity by leveraging the synthetic minor-
ity oversampling strategy. Through a univariable analysis, nine key variables—ran-
dom blood glucose, years with diabetes, cardiovascular diseases, peripheral arterial
diseases, DFU history, smoking history, albumin, creatinine, and C-reactive protein—
were identified. Subsequently, risk prediction models were independently developed
using five machine learning algorithms: decision tree, random forest, logistic regres-
sion, support vector machine, and extreme gradient boosting (XGBoost). This mul-
tifaceted exploration underscores the diverse strategies employed to enhance the
accuracy and effectiveness of diabetic foot ulcer prediction models. A comprehensive
examination yielded Table 1, which provides an insightful overview of advancements,

Multimedia Tools and Applications

1 3

Ta
bl

e
1

 O
ve

rv
ie

w
 o

f A
dv

an
ce

m
en

ts
, M

et
ho

do
lo

gi
es

, a
nd

 R
es

ea
rc

h
G

ap
s i

n
Re

le
va

nt
 S

tu
di

es

Re
fe

re
nc

e
K

ey
 A

dv
an

ce
m

en
ts

M
et

ho
do

lo
gi

es
Re

se
ar

ch
 G

ap
s

[9
]

- I
m

pl
em

en
te

d
ne

ur
al

 n
et

w
or

ks
 u

si
ng

 F
PG

A
s i

n
th

e
ea

rly
 1

99
0s

- U
se

d
lo

w
-p

re
ci

si
on

 a
rit

hm
et

ic
 d

ue
 to

 F
PG

A
 si

ze

lim
ita

tio
ns

- R
es

tri
ct

ed
 b

y
sl

ow
 a

nd
 e

xp
en

si
ve

 re
so

ur
ce

s d
ue

 to

FP
G

A
 si

ze
 a

nd
 a

rit
hm

et
ic

 c
on

str
ai

nt
s

[1
0]

- R
ec

or
de

d
th

e
fir

st
im

pl
em

en
ta

tio
n

of
 C

N
N

 u
si

ng

FP
G

A
s

- L
im

ite
d

to
 lo

w
-p

re
ci

si
on

 a
rit

hm
et

ic
 d

ue
 to

 F
PG

A

si
ze

 li
m

ita
tio

ns
- F

ac
ed

 c
ha

lle
ng

es
 d

ue
 to

 th
e

ab
se

nc
e

of
 d

en
si

ty
-

str
en

gt
he

ne
d

m
ul

tip
ly

-a
cc

um
ul

at
e

un
its

 in
 F

PG
A

s
at

 th
at

 ti
m

e
[1

1]
- A

ch
ie

ve
d

fo
rw

ar
d

pr
op

ag
at

io
n

of
 C

N
N

 u
si

ng

FP
G

A
s a

t h
ig

h
pr

oc
es

si
ng

 sp
ee

d
- U

til
iz

ed
 th

e
St

ra
tix

 V
 D

5
FP

G
A

, a
ch

ie
vi

ng
 1

34

im
ag

es
/s

ec
on

d
on

 th
e

1K
 d

at
as

et
- P

re
di

ct
ed

 im
pr

ov
ed

 p
er

fo
rm

an
ce

 o
f u

p
to

 2
33

im

ag
es

/s
ec

on
d

on
 a

n
A

rr
ia

 1
0

G
X

11
50

 w
ith

 th
e

la
te

st
FP

G
A

s
[1

2]
- R

ea
liz

ed
 a

 p
ro

ce
ss

in
g

am
ou

nt
 o

f 4
6

im
ag

es
/s

ec
on

d
on

 V
irt

ex
 7

48
5T

- D
em

on
str

at
ed

 c
om

pe
tit

iv
e

re
su

lts
 w

ith
ou

t r
ed

uc
-

in
g

po
w

er
 c

on
su

m
pt

io
n

- N
ee

d
fo

r m
or

e
re

se
ar

ch
 to

 id
en

tif
y

op
tim

al
 F

PG
A

ar

ch
ite

ct
ur

e
de

ci
si

on
s

[1
8]

- I
nt

ro
du

ce
d

pa
ra

lle
lis

m
 in

 th
e

le
ar

ni
ng

 p
ha

se
 o

n
V

irt
ex

 E
 F

PG
A

- F
oc

us
ed

 o
n

ac
ce

le
ra

tin
g

th
e

cl
as

si
fic

at
io

n
pr

oc
es

s
in

si
de

 C
N

N
- E

xp
lo

re
d

di
ffe

re
nt

 so
ftw

ar
e

or
 h

ar
dw

ar
e

pl
at

fo
rm

s
to

 le
ve

ra
ge

 p
ar

al
le

lis
m

 te
ch

ni
qu

es
[1

9]
- I

nt
ro

du
ce

d
th

e
us

e
of

 E
ffi

ci
en

tN
et

 fo
r d

ia
be

tic
 fo

ot

ul
ce

r d
et

ec
tio

n
an

d
pr

og
no

si
s

- E
xp

lo
re

d
va

rio
us

 e
nd

-to
-e

nd
 C

N
N

-b
as

ed
 a

rc
hi

te
c-

tu
re

s f
or

 in
fe

ct
io

n
an

d
is

ch
em

ia
 c

at
eg

or
iz

at
io

n
- P

ot
en

tia
l g

ap
s i

n
un

de
rs

ta
nd

in
g

th
e

op
tim

al
 a

rc
hi

-
te

ct
ur

e
fo

r s
pe

ci
fic

 a
pp

lic
at

io
ns

 w
ith

in
 d

ia
be

tic
 fo

ot

ul
ce

r d
et

ec
tio

n
[2

0]
- E

xp
lo

re
d

C
N

N
-b

as
ed

 d
ee

p
le

ar
ni

ng
 a

rc
hi

te
ct

ur
es

fo

r i
nf

ec
tio

n
an

d
is

ch
em

ia
 c

at
eg

or
iz

at
io

n
- I

nv
es

tig
at

e
an

d
se

le
ct

 th
e

be
st

C
N

N
 m

od
el

 fo
r

D
FU

 c
la

ss
ifi

ca
tio

n
- E

ar
ly

 d
et

ec
tio

n
an

d
tre

at
m

en
t m

ay
 in

cr
ea

se
 su

rv
iv

al

an
d

de
cr

ea
se

 d
ea

th
[2

1]
- I

nv
es

tig
at

ed
 c

la
ss

ic
al

 m
ac

hi
ne

 le
ar

ni
ng

 a
lg

or
ith

m
s

an
d

C
N

N
 w

ith
 im

ag
e

en
ha

nc
em

en
t f

or
 th

er
m

o-
gr

am
 c

la
ss

ifi
ca

tio
n

- E
xp

lo
re

d
fe

at
ur

e
en

gi
ne

er
in

g
an

d
co

nv
ol

ut
io

na
l

ne
ur

al
 n

et
w

or
ks

 fo
r i

nf
ra

re
d

im
ag

e
an

al
ys

is
- I

nc
re

as
e

m
ac

hi
ne

 le
ar

ni
ng

 p
er

fo
rm

an
ce

 fo
r d

ia
be

tic

fo
ot

 u
lc

er
 id

en
tifi

ca
tio

n

[2
2]

- C
re

at
e

a
m

ac
hi

ne
 le

ar
ni

ng
-b

as
ed

 p
re

di
ct

io
n

al
go

-
rit

hm
 to

 id
en

tif
y

ne
w

ly
 a

dm
itt

ed
 D

FU
 p

at
ie

nt
s

w
ho

 n
ee

d
m

in
or

 a
m

pu
ta

tio
n

sw
ift

ly

- I
m

pl
em

en
te

d
de

ci
si

on
 tr

ee
, r

an
do

m
 fo

re
st,

 lo
gi

sti
c

re
gr

es
si

on
, s

up
po

rt
ve

ct
or

 m
ac

hi
ne

, a
nd

 e
xt

re
m

e
gr

ad
ie

nt
 b

oo
sti

ng

- N
o

cl
in

ic
al

 p
re

di
ct

io
n

m
et

ho
ds

 fo
r D

FU
 m

in
or

am

pu
ta

tio
ns

 Multimedia Tools and Applications

1 3

methodologies, and identified research gaps in the relevant studies. This table serves as
a valuable reference, encapsulating the current knowledge landscape and highlighting
areas where further research is warranted.

3 Methodology

This section is organized into two distinct parts. The first part centres around Diabetic Foot
Ulcer Classification Models, delving into the software-driven aspects of these models. The
discussion in this segment revolves around the intricacies of developing and refining clas-
sification models for diabetic foot ulcers.

In the second part, the focus shifts to Hardware Implementation on GPUs and FPGAs.
This section explores the practical implementation of the aforementioned software models
on Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays (FPGAs). It
elucidates the hardware-related considerations and optimizations essential for effectively
deploying and executing these models on specialized computing architectures. Together,
these two parts provide a comprehensive view of the software and hardware dimensions of
diabetic foot ulcer classification systems.

3.1 Diabetic foot ulcer classification models

The Diabetic Foot Ulcer Classification Models section encompasses the analysis of a spe-
cific dataset, details on image pre-processing techniques, and a focused exploration of pro-
posed models tailored for diabetic foot ulcer identification. It provides a concise yet com-
prehensive view of the key elements contributing to effective classification in this context.

3.1.1 Data set

Our team collected the dataset from patients in the Diabetic Center Department at Nasiri-
yah Hospital in Thi-Qar, Iraq, and some samples are shown in Fig. 2. The dataset is pub-
lic now and available at the following link (https:// www. kaggle. com/ laith jj/ diabe tic- foot-
ulcer- dfu). The dataset comprises 754 images of the feet of healthy and DFU patients.
The images were taken using a Samsung Galaxy Note 8 and iPad, and different angles
and lighting conditions were used to capture the images adequately. The images are color,
standardized for training the DFU_TFNet, DFU_FNet model, and pre-training well-known
models, i.e., VGG-16, GoogleNet, and AlexNet.

3.1.2 Image pre‑processing

Some pre-processing tasks were needed before using the dataset for the proposed and pre-
trained models. First, the images were cropped to a size of 224 × 224 pixels. The resulting
images show patches, so-called Regions of Interest (ROI), since each contains either the
ulcer and its surrounding tissues or healthy skin. The dataset’s total number of skin patches
was 1,609, including 542 healthy skin and 1,067 DFU patches. Next, these patches were
categorized by the medical expert into two types: healthy (normal) and DFU (abnormal).
The data augmentation techniques were used to increase the dataset and avoid the unbal-
anced issue. Finally, the labelled patches are all used for training. There are 200 samples

https://www.kaggle.com/laithjj/diabetic-foot-ulcer-dfu
https://www.kaggle.com/laithjj/diabetic-foot-ulcer-dfu

Multimedia Tools and Applications

1 3

that were collected for testing. These samples will be public once the ethical approval is
finished. The data augmentation techniques were applied only to the training set. Samples
of the initial dataset (before cropping) are illustrated in Fig. 3.

Fig. 2 Samples of our datasets. The blue box samples are abnormal, and the green box samples are normal

Fig. 3 Normal vs. Abnormal skin patches on a patient’s foot

 Multimedia Tools and Applications

1 3

3.1.3 DFU proposed models

Two CNN models, namely DFU_FNet and DFU_TFNet, have been introduced. DFU_
FNet, characterized by its simplicity, extracts features utilized for training classifiers such
as SVM and KNN. On the other hand, DFU_TFNet, a deeper model leveraging transfer
learning, assesses hardware efficiency across both shallow and deep models. The evalua-
tion parameters employed in setting up these proposed models include a learning rate of
0.001, a batch size of 32, 100 epochs, and using the SGD optimizer.

DFU_FNet model This CNN model is introduced in the proposed system to improve the
extraction of the critical features required for DFU classification. The concept of Directed
Acyclic Graph (DAG) is the basis of the DFU_FNet model [23]. Two key challenges
should be considered when using these types of networks. The first challenge involves
enhancing the model accuracy using additional convolution layers compared to the tradi-
tional network. Unfortunately, adding layers can decrease the performance of the model.
The second challenge is that discriminating between normal and abnormal DFU types
requires extracting additional vital features. Thus, a more complicated structure is required.
In this research, the width of the DFU_FNet model was increased, which can increase the
comparative computing cost.

The structure of the DFU_FNet model, see Fig. 4, was instrumental in accelerating the
possible learning details and enhancing its accuracy. The structure included eight layers.

 i. Input layer: Three channels with 224 × 224 pixels each. The final patches were entered
through these channels to train the model.

 ii. Convolution layer: The output of the input layer is convolved via a set of learnable
filters [24]. As the weights identify these filters, two-dimensional filter activation
maps are generated, and all filters are slipped across the input volume, height, and
width. It should be noted that all filters had the exact depth of the input. Three hyper-
parameters manipulated the output size: zero-padding (to preserve its size, zeros are
padded around the input borders); stride (number of skipped pixels when the filter
slides through the image); and depth (number of operated filters identifying structures
like a blob, corner, or edge over the image). This work had 17 convolution layers, and
all filters had a size of 3 × 3 pixels. Two types of layers, batch normalization and the
rectified linear unit, followed each convolution layer.

 iii. Batch normalization layer: A mini-batch was used to normalize each input channel,
diminish the sensitivity of the network initialization, and speed up the training process
of the CNNs [4]. This was located after the convolutional layer and consisted of 17
layers. Subtracting the mini-batch average from each channel’s activations and divid-
ing by the mini-batch standard deviation was the first step of the layer mechanism
(i.e., normalizing these activations). Next, a learnable offset β and a learnable scale
factor γ were added and scaled, respectively.

 iv. Rectified linear unit (ReLU): Data filtering was the main objective of this layer, and
the function max (0, x) [4] was used to achieve this goal (note that x is the neuron
input).

 v. Addition layer: The inputs of two or more neural network layers were added to this
layer. To use this layer correctly, these inputs should have similar dimensions.

Multimedia Tools and Applications

1 3

 vi. Average pooling layer: The input of this layer was partitioned into smaller pooling
regions of various dimensions like 3 × 3, 2 × 2, etc., to reduce the input size. The aver-
age of each small spatial block, which may have vital and a reduced amount of vital

Fig. 4 DFU_FNet architecture on FPGA

 Multimedia Tools and Applications

1 3

pixel information to signify improving features, was then calculated to get normalized
feature information [25]. It is important to note that in traditional CNNs, the max-
pooling layer is next to the convolution layer and could lose valuable features. In this
study, the average pooling was applied at the last partition of the network.

 vii. Dropout layer: This is utilized to enhance model performance by preventing the occur-
rence of overfitting [26]. More specifically, neurons were arbitrarily turned off and on
in all layers to avoid overfitting. This model used one dropout layer with a probability
of p = 0.5 between the fully connected layers.

 viii. Fully connected layer: All previous layer neurons were connected to this layer, thereby
mixing the DFU patch classification features. This network used only two fully con-
nected layers.

The overall number of layers in the model was 58. The output layer was placed over the
second fully connected layer. The softmax function, located in the output layer, was utilized
for classification. The output extracted features of the model were employed to train the
classifiers of Support vector machines (SVM) (DFU_FNet + SVM) and k-nearest neighbors
(KNN) (DFU_FNet + KNN). The SVM classifier was margin-based. The concept for the
SVM algorithm was to determine the optimum partition line between two classes, aiming
that objects would have the largest distance from that line. The SVM utilized kernels such
as polynomial, linear, Sigmund, and radial basis functions.

In comparison, the KNN classifier of the object depended on the nearest training samples
inside the feature space. Several discriminative features were available in each convolution layer.
In contrast, skin abnormalities (ulcers) produced higher activations. A public dataset was used
to train the proposed and pre-trained models for 100 epochs pending the learning termination.

As a final consideration, the pre-trained models (i.e., VGG-16 [27], AlexNet [28], and
GoogleNet [29]) were trained with our dataset using the same training parameters that were
utilized to train both the DFU_FNet. The pre-trained models have been fine-tuned for the
DUF task by transferring the knowledge of these models learned from the ImageNet dataset.

DFU_TFNet model With this model, we provide a new TL technique for addressing the
issue of the small dataset of DFU. This TL type helps to overcome the issue of transfer
learning from the pre-trained models of ImageNet to medical imaging applications where
ImageNet images are different from medical images, which could not help with small data-
sets. At the same time, the proposed TL helps to learn the relevant features. It also helps to
reduce the time of the annotation process of medical images. Because there has been sig-
nificant growth in the amount of unannotated medical images, the recommended technique
was based on training the DFU_TFNet model on a large number of unannotated images
that look similar to DFU images. The collected images for TL include different datasets of
skin cancer and wounds. The total number of images is 100 thousand images. The DFU_
TFNet model is then fine-tuned and trained on the DFU dataset.

In order to improve the feature extraction as well as address the gradient-vanishing and
overfitting concerns, we designed the DFU_TFNet model with the following components
that make it robust against the aforementioned concern:

1. Typical convolutional layers at the model’s beginning minimize the size of input images.
2. Parallel convolutional layers with varied filter sizes extract diverse data, ensuring the

model learns small and large features.

Multimedia Tools and Applications

1 3

3. For enhanced extracting features, residue and deep interconnectivity are used. Addition-
ally, these connections alleviate the gradient vanishing issue.

4. In order to speed up the training process, batch normalization was used.
5. The vanishing gradient problem is less of an issue because a rectified linear unit (ReLU)

does not compress the input value.
6. Dropout to prevent the problem of overfitting.
7. Global average pooling reduces complexity to one dimension. This layer helps reduce

overfitting.

Figure 5 provides detailed explanations of the DFU_TFNet model. The model begins
with two standard convolutional layers that are applied in succession. The first convolution
has a filter size of 3 × 3, whereas the second has a filter size of 5 × 5. Following both con-
volutional layers are the BN and ReLU layers. We avoided using tiny filters, such as 1 × 1,
at the start of the model to avoid losing little features, which would restrict the results.
Following the typical convolutional layers are six blocks of parallel convolutional layers.
Each block is made up of four parallel convolutional layers with four different filter sizes
(1 × 1, 3 × 3, 5 × 5, and 7 × 7). The output of these four levels is combined at the concat-
enation layer before proceeding to the next block. Following all convolutional layers in
all six blocks are the BN and ReLU layers. The blocks are linked by 10 links. Some are
short, others are long, and all have a single convolutional layer. These links maintain the
model’s capacity to have multiple degrees of features for improved feature representation.
Because gradient propagation may occur from several channels, parallel convolutions and
connections are necessary. Two connected layers with one dropout layer between them are
employed. Our structure combines 34 convolutional layers.

The training process was achieved by three different cycles:

1. Cycle#1: Training the DFU_TFNet only with the DFU dataset.
2. Cycle#2: Training the DFU_TFNet with the DFU dataset plus augmented data.
3. Cycle#3: In the first step, training the DFU_TFNet on a large number of look-like images

to DFU, such as the DermNet collection [30]. Then, the DFU_TFNet only with the DFU
dataset. Figure 6 depicts the general concept of the transfer learning technique.

Obtaining a large number of labeled images for some medical imaging applications,
such as DFU, is challenging. To the authors’ knowledge, there are only two public DFU
datasets [23] and [30]. Therefore, the proposed TL can solve the issue of the small dataset
and help the model to generalize very well. We have used the proposed TL with the DFU_
TFNet due to its deep architecture, which requires a large amount of data to perform well.
Moreover, the proposed TL may be easily adapted to any medical imaging application uti-
lizing the same domain transfer learning. The scarcity of annotated medical data drove the
decision to use same-domain transfer learning. This enabled the model to harness features
acquired from ImageNet, expediting training, tailoring generic features to medical imaging
tasks, and improving performance through effective generalization. Figure 7 shows some
learned features from the first convolutional layer of the DFU_TFNet model.

Another tool used to visualize, Grad-CAM, or Gradient-weighted Class Activation
Mapping, stands out as a potent method in interpretability for deep learning models. Its
significance lies in being a valuable resource for comprehending and illustrating how neu-
ral networks arrive at decisions, especially in tasks related to image classification. The fun-
damental concept behind Grad-CAM involves emphasizing the sections of an input image

 Multimedia Tools and Applications

1 3

that contribute significantly to the model’s predictions. This is achieved by utilizing gradi-
ent information from the final convolutional layer. The outcome is a heatmap that visually
depicts noteworthy areas, shedding light on the features and patterns the network considers

Fig. 5 The DFU_TFNet model structure

Multimedia Tools and Applications

1 3

during decision-making. Grad-CAM plays a crucial role in improving model transparency
as an indispensable tool for researchers and practitioners aiming to demystify the opaque
nature of deep learning models [31].

3.2 Hardware Implementation on GPUs and FPGAs

This section is divided into two parts. The first part explores model implementation on
Graphics Processing Units (GPUs), scrutinizing optimizations for this hardware. The sec-
ond part focuses on Field-Programmable Gate Arrays (FPGAs), elucidating the intricacies
of adapting models for efficient execution on these platforms.

Fig. 6 The transfer learning approach

Fig. 7 Some learned features from the first convolutional layer of the DFU_TFNet model

 Multimedia Tools and Applications

1 3

3.2.1 GPU

The experimental work used the combination of the Intel i7-9750H processor, RTX 3070
Ti GPU with 8 GB of VRAM, and 16 GB of RAM, providing a robust setup for experi-
mental work. The high clock speed of 3.3 GHz on the i7-9750H is beneficial for CPU-
intensive tasks, while the RTX 3070 Ti GPU brings substantial parallel processing power,
especially with its 8 GB of VRAM, making it well-suited for deep learning tasks.

Having a powerful GPU like the RTX 3070 Ti significantly accelerates computations,
especially in scenarios involving machine learning and deep learning where parallel pro-
cessing is crucial [32]. The ample 16 GB of RAM ensures the system has enough memory
to handle large datasets and complex computations without bottlenecks. This hardware
configuration seems well-matched for the experimental work described in the paper, par-
ticularly in training and testing various models for diabetic foot ulcer classification. Com-
bining a high-performance CPU and GPU is essential for achieving optimal results in tasks
that demand significant computational power.

3.2.2 FPGA

The potential of ML in serving people is growing rapidly, and there is an increasing
requirement for ML to operate in real-time. The hardware accelerator-based FPGA is simi-
lar to the motherboard CPU in a general-purpose computer. Specifically, the FPGA sys-
tem (board) can be divided into three primary partitions: FPGA (parallel processing array),
HPS (control unit), and the memory partition (software storage), as displayed in Fig. 8.

Usually, HPS is mainly composed of a microprocessor unit (MPU) subsystem with sin-
gle or dual processors, synchronous DRAM (SDRAM), flash memory controllers, support
and interface peripherals, on-chip memories, debug capabilities, and phase-locked loops
(PLLs). However, the fabric of FPGA includes a CB (control block), PLLs, and high-speed

Fig. 8 Block diagram of SoC FPGA

Multimedia Tools and Applications

1 3

serial interface (HSSI), depending on the device version. Additionally, it can incorporate
HSSI transceivers, hard PCI Express (PCIe) controllers, RAM, and multipliers [33, 34].

The HPS and FPGA elements are separated, as shown in Fig. 8. From one of many
sources, it booted for HPS and deployed the FPGAs via the HPS or any external device to
switch them between.

Please note: FPGA refers to the whole system (the board), and FPGA Part refers to the
computational partition of the board.

More specifically, the FPGA performs all calculations and computations similar to the
CPU but in parallel with the HPS, interpreting the system and user commands and the
memory partition for storing data, system, and user programs. The HPS handles the com-
mands and the rest of the layer computations, including ReLU and max-pooling. Due to
memory limitations on the board, loading input and filters to registers is performed line
by line in a split manner. In this research, the Altera DE1-SoC board is the type of FPGA
system selected [35], as shown in Fig. 9.

Working with FPGA first requires coding the user program using the unique program-
ming language Verilog. The user program and its data are stored in the memory portion.
The HPS interprets each line in the user program and generates suitable commands for
execution. The user program has several functions and commands (system programs); one
of the essential functions is Send_command, which generates a command for the FPGA to
set the next state and the number of packets it is supposed to receive.

Initially, the HPS imports an image and decodes it. The model weights are also loaded and
ready for processing at the FPGA input. The HPS sends a compute command to the FPGA
to perform the required computations and returns the result to the HPS. The result is a fea-
ture of the input image sent to the monitor for display through the VGA port on the FPGA
board. Note that the input images are pre-processed using MATLAB 2021a. The pre-process-
ing functions include extracting the RGB values, calculating the mean values, and subtracting
from the original data. Subtraction of the dataset is very helpful in centering the data, thus
boosting the learning speed. Experimentally, when a 16 fixed-point format of 1:7:8 is adopted,

Fig. 9 Block diagram of DFU classification-based FPGA

 Multimedia Tools and Applications

1 3

the input data range is -127 to 127, and all the weights have relatively small values of between
0.03–0.3.

Due to the presence of three input lines, three registers are loaded to implement the
pre-trained CNN models using the function load_mem. This function saves the input file
pointer, numbering the required locations for reading and setting the padding options. It
sends a line from the input file to the FPGA with two data in a packet each time. When
padding is enabled, 0 data are added at the line’s front and end. The whole line is sent if
that line is the first or the last. All the data are sent out at the function end, waiting for the
ACK signal and returning with the pointer to read the following line. Next, the function
load_fil is applied to load the first 16 filters into the filter register inside the FPGA. This
function saves the input file pointer and sends the content of the 16 filters to the FPGA,
with each filter containing nine weights. At the end of the function, all the weights are
sent out, waiting for the ACK signal and returned with the pointer for reading the next
filter. When the input becomes ready, the function compute (which sends a command to
the FPGA to compute and wait for the ACK signal when it finishes the computations) is
applied to perform the convolutional computation for the first 16 filters as well as the first
three lines of the input file. The next step is to read the result of the 16 filters and save it in
the local files using the function to get the result. This step is repeated pending the whole
filters are handled. The last step is loading a new line, and then the process is repeated.
This step is also iterated, assuming all filters are multiplied by the whole lines in the input
files.

4 Results and Discussion

DFU proposed a 64-computations array of 16-bit DSP on FPGA DE1-SoC accelerated other
pre-training models. This acceleration process contained two elements: the software used for
control, known as HPS, and the hardware responsible for convolutional calculations. Only
13 convolutional layers were used to increase efficiency while adjusting to the limitations of
FPGA fabrics on DE1-Soc. Software completed The remaining calculations as they could be
performed faster than hardware.

Each convolution layer (CONV) mainly comprises separate control logic and parallel
adder. At the same time, the multipliers, which serve as the primary computational engines
are linked throughout all layers, as seen in Fig. 10. The data input for the convolution is saved
in the on-chip buffers, and the multiplier outputs are transferred to CONV for summing and
accumulation. The results of CONV are routed to several different on-chip memory, which
will be utilized for the next stage.

Accuracy assesses overall correctness, precision evaluates the accuracy of positive pre-
dictions, and recall measures the model’s ability to capture all positive instances. Together,
these metrics provide a nuanced understanding of a classification model’s performance.
Recall (R) and precision (P) are fundamental metrics for evaluating a suggested method. (see
Eqs. 1, 2, 3, 4).

(1)Accuracy = (TP+TN)
/

(TP+TN+FP+FN)

(2)Precision (P) = TP
/

TP+FP

Multimedia Tools and Applications

1 3

Here, TP (True Positive) denotes the number of relevant images properly identified by
the network. A true negative is the number of images properly identified as irrelevant by
the network as TN (True Negative). The number of images the network incorrectly classi-
fies as relevant is denoted by the letter FP (False Positive). The number of relevant images
the network fails to recognize is denoted by the FN (False Negative).

The evaluation of our models involved calculating key metrics such as accuracy, preci-
sion, and F1-Score, and comparing their performance across different scenarios. Table 2
presented a comprehensive comparison of various classifiers, each configured with differ-
ent approaches, based on their time of processing, power consumption, and performance
metrics. Notably, the DFU_TFNet series undergoes cycles, with processing times ranging
from 102 to 310 ms. While DFU_TFNet (Cycle#1) achieves the lowest processing time
and power consumption at 8.00 W, DFU_TFNet (Cycle#3) attains the highest accuracy,
precision, and F1-Score at 99.81%, 99.38%, and 99.25%, respectively. On the other hand,
DFU_FNet + SoftMax demonstrates lower processing time and power consumption,

(3)Recall (R) = TP
/

TP+FN

(4)F1 − Score = 2 × (P×R
/

P+R)

Fig. 10 Convolutional Block Diagram inside FPGA

Table 2 Comparison between DFU_FNet and DFU_TFNet

Classifier Time of processing Power Consump-
tion

Accuracy Precision F1-Score

FPGA GPU FPGA GPU

DFU_FNet + SoftMax 143 ms 109 ms 8.60 W 290 W 92.67% 93.21% 93.4%
DFU_FNet + KNN 155 ms 136 ms 8.88 W 290 W 92.85% 92.82% 93.2%
DFU_FNet + SVM 187 ms 119 ms 8.91 W 290 W 94.71% 93.95% 94.5%
DFU_TFNet (Cycle#1) 102 ms 97 ms 8.00 W 290 W 88.19% 86.71 86.00%
DFU_TFNet (Cycle#2) 227 ms 177 ms 9.02 W 290 W 96.34% 96.44% 96.25%
DFU_TFNet (Cycle#3), Ours 310 ms 184 ms 9.16 W 290 W 99.81% 99.38% 99.25%

 Multimedia Tools and Applications

1 3

making it an efficient alternative. Figure 11 shows the heatmap through virtualization using
the DFU_TFNet model with Grad-CAM.

Moving to Table 3, shown a comparative analysis of various deep learning models,
including AlexNet, VGG16, GoogleNet, DFU_FNet + SVM, and DFU_TFNet (Cycle#3),
across key performance metrics. Notably, the processing times for these models vary, with
FPGA consistently demonstrating lower processing times than GPU. Furthermore, the
power consumption of FPGA is considerably lower than that of GPU across all models,
underscoring its energy efficiency. In terms of accuracy, precision, and F1-Score, DFU_
TFNet (Cycle#3) emerges as a standout performer, boasting an impressive accuracy of
99.81%, precision of 99.38%, and an F1-Score of 99.25%. These metrics reflect the mod-
el’s robust performance. The trade-offs between FPGA and GPU are evident, with FPGA
offering energy efficiency at the cost of slightly longer processing times. The FPGA evalu-
ations in Table 4 considered essential resources like total logic elements, block memory,
and logic registers within the DE1-Soc.

The processing time comparison between GPU and FPGA revealed that while GPU
is faster, it demands significant power. Conversely, FPGA exhibits substantially lower
power consumption, making it an attractive choice for smart devices with limited battery
resources. With advancements in FPGA properties, processing times could become com-
parable to GPUs. As summarized in Table 5, the overall results guide us to conclude the
preferred platforms based on the achieved metrics and performance benchmarks.

Table 6 presented a comparative analysis of various deep learning models, predomi-
nantly focused on DFU detection. The EfficientNet [19] achieved an impressive 98.97%
accuracy, accompanied by high F1-score, recall, and precision on a GPU, with correspond-
ingly high-power consumption. ResNet50 [20] demonstrated a notable 99.49% accuracy for
Ischaemia and 84.76% for infection, also on a GPU with high power consumption. DFU_
QUTNet [23] and DFUNet [26], both utilizing GPUs, exhibited a F1-score of 94.5% and
an accuracy of 96.1%, respectively. The proposed model, DFU_TFNet (Cycle#3), stands
out with remarkable accuracy, precision, recall, and F1-score of 99.81%, 99.38%, 99.76%,
and 99.25%, respectively. Notably, DFU_TFNet utilizes both FPGA and GPU, potentially
mitigating power consumption with a low setting on FPGA. This combination of high per-
formance and potentially lower power usage makes DFU_TFNet an intriguing prospect for
real-world applications in medical imaging and diagnostics.

5 Conclusions

This research proposes new diagnostic tools with real-time processing capabilities for DFU
classification, which addresses a significant healthcare challenge. The key findings of this
research include the effectiveness of pre-trained CNN models, namely, DFU_FNet and
DFU_TFNet, in automatically categorizing DFU cases into normal and abnormal foot skin.
These models were designed to overcome deep learning pitfalls, utilizing techniques such
as domain-transfer learning. The results of this research indicate that when compared with
various classifiers like SVM, KNN, and pre-trained CNN models like AlexNet, VGG16,
and GoogleNet, DFU_FNet and DFU_TFNet exhibit superior performance. The models
were trained and tested on different HPC parallel platforms, including GPUs and FPGAs,
significantly reducing power consumption and execution time. Additionally, features
extracted by DFU_FNet were leveraged to train SVM and KNN classifiers, further enhanc-
ing the overall classification process. The proposed framework, particularly DFU_TFNet

Multimedia Tools and Applications

1 3

Fig. 11 Grad-CAM heatmap visualization for DFU_TFNet (Cycle#3) model

 Multimedia Tools and Applications

1 3

(Cycle#3), achieved an impressive accuracy, precision, recall, and F1-score of 99.81%,
99.38%, 99.76%, and 99.25%, respectively, surpassing current methodologies. The FPGA
implementation, utilizing DE1-SoC resources, exhibited a reasonable power consumption
of 9.16W. Future directions involve transforming the model into a wearable smart applica-
tion, enabling patients to monitor their condition anytime, anywhere, with prolonged bat-
tery life and swift processing. Training images will be securely stored on an online server
to prioritize data privacy. During testing, the wearable device designated for testing pur-
poses will reduce data exposure and align with security best practices. Furthermore, strong
encryption will safeguard data transmission between the device and the server.

Table 3 Our proposal vs. pre-trained CNN models

Models Time of processing Power Consump-
tion

Accuracy Precision F1-Score

FPGA GPU FPGA GPU

AlexNet 153 ms 136 ms 2.1 W 290 W 89.11% 88.35% 88.1%
VGG16 4.32 s 8.6 s 5 W 290 W 90.37% 89.35% 90.9%
GoogleNet 7.38 s 14.3 s 23 W 290 W 91.93% 92.5% 92.9%
DFU_FNet + SVM, Ours 187 ms 119 ms 8.98 W 290 W 94.71% 93.95% 94.5%
DFU_TFNet

(Cycle#3), Ours
310 ms 184 ms 9.16 W 290 W 99.81% 99.38% 99.25%

Table 4 Summary of resources for DE1- Soc

Models Total logic elements
out of 32,070

Total block memory out of
4,056,280 bits

Total logic registers

AlexNet 11,983 63,789 32,985
VGG16 21,617 81,920 44,773
GoogleNet 29,833 240,763 89,762
DFU_FNet + SVM 12,974 94,670 65,765
DFU_TFNet (Cycle#3), Ours 18,018 121,471 89,111

Table 5 Platforms are recommended based on hardware analysis

Feature Evaluation Winner

Training GPU floating-point performance has improved GPU
Analyzing large amounts of data FPGAs are excellent for inline computation FPGA
Power Consumption Personalized designs might be preferable FPGA
Time of processing GPUs triumph due to their superior processing power GPU
Interfaces FPGAs may integrate a wide range of interfaces FPGA
Changeability GPUs make it simpler to make modifications to application

capabilities
GPU

Customization FPGAs enable more adaptability FPGA
Size FPGA’s lower power consumption leads to smaller volume

solutions
FPGA

Multimedia Tools and Applications

1 3

Ta
bl

e
6

 C
om

pa
ris

on
 b

et
w

ee
n

ou
t p

ro
po

se
d

m
od

el
 a

nd
 o

th
er

 st
ud

ie
s

Re
f

N
am

e
of

 m
od

el
Ev

al
ua

tio
n

pa
ra

m
et

er
s

H
ar

dw
ar

e
us

ed
Po

w
er

 C
on

-
su

m
pt

io
n

(H
ig

h
| L

ow
)

[1
9]

Effi
ci

en
tN

et
A

cc
ur

ac
y,

 F
1-

sc
or

e,
 re

ca
ll,

 a
nd

 p
re

ci
si

on
 o

f 9
8.

97
%

, 9
8%

, 9
8%

, a
nd

 9
9%

, r
es

pe
ct

iv
el

y
G

PU
H

ig
h

[2
0]

Re
sN

et
50

A
cc

ur
ac

y
of

 9
9.

49
%

 a
nd

 8
4.

76
%

 fo
r I

sc
ha

em
ia

 a
nd

 in
fe

ct
io

n,
 re

sp
ec

tiv
el

y
G

PU
H

ig
h

[2
3]

D
FU

_Q
U

TN
et

F1
-s

co
re

 9
4.

5%
G

PU
H

ig
h

[2
6]

D
FU

N
et

A
cc

ur
ac

y
96

.1
%

G
PU

H
ig

h
O

ur
 p

ro
po

se
d

D
FU

_T
FN

et
 (C

yc
le

#3
)

A
cc

ur
ac

y,
 p

re
ci

si
on

, r
ec

al
l,

F1
-s

co
re

 o
f 9

9.
81

%
, 9

9.
38

, 9
9.

76
%

, 9
9.

25
%

 re
sp

ec
tiv

el
y

FP
G

A
 |

G
PU

Lo
w

 |
H

ig
h

 Multimedia Tools and Applications

1 3

Appendix 1

Preliminaries and Definitions

Deep learning

A traditional technique used in artificial intelligence is to employ computations to solve prob-
lems analytically, and this requires specific knowledge of the field and the problem under con-
sideration [1]. This approach was able to address simple problems since the programs were
small and accessible in design. In addition, domain-specific knowledge could convert an ordi-
nary volume of data into helpful representations for learning. The progress of artificial intel-
ligence has enhanced interest in solving extra-complicated problems where relevant knowledge
is hard to extract. However, professional knowledge which is related to problems like medi-
cal research, speech transcription, and face recognition is hard to express, and traditional tech-
niques are less successful at processing implied information in the raw data. In addition, the
great evolution in data storage and acquisition indicates that a significant capacity to employ
implied information is more important than ever. Lately, different applications demonstrating
innovative performance have been based on the recent technique of DL. In this technique, the
implied information is extracted automatically via learning task-related features available in the
raw data. Several reviews have recently developed due to the interest in this research field [2, 3].

The DL applications and models have several common characteristics, which are well
matched for parallelization utilizing hardware accelerators, including [4, 5]:

a. Data parallelism – In pixel-based sensory input, the parallelism characteristic estab-
lishes itself in tasks by simultaneously applying it to the local areas or the whole pixels.
In addition, nearly all common methods of training models are through processing
"mini-batches" of normally hundreds/thousands of examples, and not by processing one
example at a time.

b. Model parallelism – Such models include biologically inspired models. They consist of
redundant processing units, i.e., they can be updated in parallel and allocated in hard-
ware. One of the recent works on accelerating CNN utilizing multi-GPUs has employed
leading-edge approaches for balancing model-based parallelism and data, in which dis-
similar segments of the architecture are parallelized in diverse but optimum methods [6].

c. Pipeline parallelism – The computation in architectures that has a feed-ahead nature
such as CNN (i.e., well-suited hardware for exploring pipeline parallelism like FPGA)
can present an actual benefit. However, GPUs and GPPs depend on processing paral-
lel themes on multi-core hardware, while FPGA can produce personalized hardware
circuits, which are characterized as integrally multiple threads and intensely pipelined.

FPGA

Assessing the acceleration of various hardware platforms should take into account the
transaction between performance and flexibility. Considering the spectrum of the hardware
platforms, GPPs are at one end of the spectrum. They offer simplicity of use and exten-
sive flexibility, but with comparatively inefficient performance. Such platforms are suit-
able for an extensive variety of uses/reuses, are made inexpensively, and tend to be easily
accessible. At the other end of the spectrum are the ASICs (application-specific integrated

Multimedia Tools and Applications

1 3

circuits). These offer great performance and are cost-effective, but they are inflexible and
time-consuming to produce as they are specialized for use with certain systems.

The development of customized CNN accelerators for each CNN model has been
achieved before using register transfer level (RTL)—based FPGA approaches [7]. It is
possible to make use of fine-grained hardware-level optimization to achieve excellent per-
formance and energy efficiency in this manner. However, the customized RTL accelerator
takes a significant amount of development time, such as several months, making it impos-
sible to keep up with the constantly developing CNN algorithms and the wide range of
applications that are available as displayed in Fig. 12.

However, FPGAs work cooperatively between the two ends of this spectrum. FPGAs
belong to a common class of PLD (programmable logic devices) and are reconfigurable inte-
grated circuits. This offers the reconfigurable flexibility of the general-purpose processors
with the performance advantages of the integrated circuit. FPGAs can execute combinational
logic via the utilization of look-up tables (LUT) and sequential logic via the use of flip-flops
from a low-level point of view. Current FPGAs are composed of hardware components for
dealing with frequent tasks like Block RAM, arithmetic cores, communication cores, and full
processor cores. Current FPGAs also tend to have a system-on-chip (SoC) design method
since FPGA and ARM co-processors are usually obtained on similar frameworks. Altera and
Xilinx dominate the current FPGA market and together represent 85% of the total market [8].
For fixed-function logic, FPGAs are fast devices taking the place of application-specific inte-
grated circuits and general-specific standard products. This is important in relation to DL, as
FPGAs offer a clear capacity for achieving real-time results beyond the possible tasks able to
be performed by conventional general-purpose CPU processors [9].

Fig. 12 Implementation of CNN learnable element in FPGA according to RTL block diagram

 Multimedia Tools and Applications

1 3

Author contributions Conceptualization, M.A.F., L.A., and Y.G.; methodology, M.A.F., L.A., and Y.G.;
software, L.A., and M.A.F.; validation, M.A.F., J.S., L.A., and Y.G.; formal analysis, M.A.F., J.S., L.A.,
and Y.G.; investigation, M.A.F., J.S., Y.D., L.A., and Y.G.; resources, L.A., and M.A.F.; data curation, L.A.
and M.A.F.; writing—original draft preparation, M.A.F., J.S., Y.D., L.A., and O.A.-S; writing—review and
editing, M.A.F., J.S., Y.D., L.A., and Y.G.; visualization, L.A. and M.A.F.; supervision, L.A., J.S., and Y.D.;
project administration, L.A., J.S., Y.G. and Y.D.; funding acquisition, L.A., Y.G.; All authors have read and
agreed to the published version of the manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions The authors
would like to acknowledge the support received through the following funding schemes of Australian
Government: ARC Industrial Transformation Training Centre (ITTC) for Joint Biomechanics under grant
IC190100020. Laith Alzubaidi would like to acknowledge the support received through the QUT ECR
SCHEME 2022, The Queensland University of Technology.

Data availability The collected dataset has been uploaded. ULR: https:// www. kaggle. com/ datas ets/ laith jj/
diabe tic- foot- ulcer- dfu

Declarations

Conflicts of interest The authors declare no conflict of interest.

Institutional review board Not applicable.

Informed consent Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Alzubaidi L, Bai J, Al-Sabaawi A, Santamaría J, Albahri AS, Al-dabbagh BSN, Fadhel MA et al.
(2023) A survey on deep learning tools dealing with data scarcity: definitions, challenges, solu-
tions, tips, and applications. J Big Data 10, (1): 46

 2. Albahri AS, Duhaim AM, Fadhel MA, Alnoor A, Baqer NS, Alzubaidi L, Albahri OS et al (2023)
A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment
of quality, bias risk, and data fusion. Information Fusion

 3. Nozawa T, Uchiyama M, Honda K, Nakano T, Miyake Y (2020) Speech Discrimination in Real-
World Group Communication Using Audio-Motion Multimodal Sensing. Sensors 20(10):2948

 4. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel
MA, Al-Amidie M, Farhan L (2021) Review of deep learning: Concepts, CNN architectures, chal-
lenges, applications, future directions. J Big Data 8, (1): 1–74

 5. Seritan S, Bannwarth C, Fales BS, Hohenstein EG, Isborn CM, Kokkila‐Schumacher SIL, Li X
et al. (2021) TeraChem: A graphical processing unit‐accelerated electronic structure package for
large‐scale ab initio molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecu-
lar Science 11, (2): e1494

 6. Coates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N (2013) Deep learning with cots HPC
systems. In Proceedings of the 30th International Conference on Machine Learning, 1337–1345

 7. Fowers J, Brown G, Cooke P, Stitt G (2012) A performance and energy comparison of FPGAs,
GPUs, and multicores for sliding-window applications. In Proceedings of the ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, 47–56

https://www.kaggle.com/datasets/laithjj/diabetic-foot-ulcer-dfu
https://www.kaggle.com/datasets/laithjj/diabetic-foot-ulcer-dfu
http://creativecommons.org/licenses/by/4.0/

Multimedia Tools and Applications

1 3

 8. Seng KP, Lee PJ, Ang LM (2021) Embedded Intelligence on FPGA: Survey, Applications and
Challenges. Electronics 10, no. 8: 895

 9. Cox CE, Ekkehard Blanz W (1992) GANGLION-a fast field-programmable gate array implementa-
tion of a connectionist classifier. IEEE J Solid-State Circuits 27, (3): 288–299

 10. Cloutier J, Cosatto E, Pigeon S, Boyer FR, Simard PY (1996) Vip: An fpga-based processor for
image processing and neural networks. In Proceedings of the Fifth International Conference on
Microelectronics for Neural Networks, pp. 330–336. IEEE

 11. Ovtcharov K, Ruwase O, Kim J-Y, Fowers J, Strauss K, Chung ES (2015) Accelerating deep convo-
lutional neural networks using specialized hardware. Microsoft Research Whitepaper 2(11):1–4

 12. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing fpga-based accelerator design
for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA international
symposium on field-programmable gate arrays, pp. 161–170

 13. Baba A, Bonny T (2023) FPGA-based parallel implementation to classify Hyperspectral images by
using a Convolutional Neural Network. Integration 92:15–23

 14. Parizotto R, Coelho BL, Nunes DC, Haque I, Schaeffer-Filho A (2023) Offloading Machine Learn-
ing to Programmable Data Planes: A Systematic Survey. ACM Computing Surveys

 15. Almomany A, Ayyad WR, Jarrah A (2022) Optimized implementation of an improved KNN clas-
sification algorithm using Intel FPGA platform: Covid-19 case study. Journal of King Saud Univer-
sity-Computer and Information Sciences 34(6):3815–3827

 16. Mohamed NA, Cavallaro JR (2023) A Unified Parallel CORDIC-based Hardware Architecture for
LSTM Network Acceleration. IEEE Transactions on Computers

 17. Heartlin MH, Kayalvizhi R, Malarvizhi S, Venkatraman R, Patil S, Senthil Kumar A (2023) Real-
time deployment of BI-RADS breast cancer classifier using deep-learning and FPGA techniques. J
Real-Time Image Process 20, no. 4: 80

 18. Paul K and Rajopadhye S (2006) Back-propagation algorithm achieving 5 gops on the virtex-e. In
FPGA Implementations of Neural Networks, pp. 137–165. Springer: Boston

 19. Thotad PN, Bharamagoudar GR, Anami BS (2023) Diabetic foot ulcer detection using deep learn-
ing approaches. Sensors International 4:100210

 20. Ahsan M, Naz S, Ahmad R, Ehsan H, Sikandar A (2023) A deep learning approach for diabetic foot
ulcer classification and recognition. Information 14(1):36

 21. Khandakar A, Chowdhury MEH, Reaz MBI, Md Ali SH, Abbas TO, Alam T, Ayari MA et al.
(2022) Thermal change index-based diabetic foot thermogram image classification using machine
learning techniques. Sensors 22, no. 5: 1793

 22. Wang S, Wang J, Zhu MX, Tan Q (2022) Machine learning for the prediction of minor amputation
in University of Texas grade 3 diabetic foot ulcers. Plos one 17, no. 12: e0278445

 23. Alzubaidi L, Fadhel MA, Oleiwi SR, Al-Shamma O, Zhang J (2020) DFU_QUTNet: diabetic
foot ulcer classification using novel deep convolutional neural network. Multimed Tools Appl
79(21):15655–15677

 24. Sarvamangala DR, Kulkarni RV (2022) Convolutional neural networks in medical image under-
standing: a survey. Evolutionary intelligence 15, no. 1: 1–22

 25. Pattanayak S (2023) Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to
Advanced Artificial Intelligence in Python. Apress

 26. Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH (2020) DFUNet: Convolu-
tional Neural Networks for Diabetic Foot Ulcer Classification." IEEE Transactions on Emerging
Topics in Computational Intelligence 4, no. 5: 728–739

 27. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neu-
ral networks. Adv Neural Inf Process Syst 25:1097–1105

 28. Iman M, Arabnia HR, Rasheed K (2023) A review of deep transfer learning and recent advance-
ments. Technologies 11, no. 2: 40

 29. Wang X, Chen G, Qian G, Gao P, Wei X-Y, Wang Y, Tian Y, Gao W (2023) Large-scale multi-
modal pre-trained models: A comprehensive survey. Machine Intelligence Research: 1–36

 30. Dermnetnz Online Medical Resources | Home. Available online: https:// www. dermn etnz. org/
(accessed on 5 March 2022)

 31. Lim WX, Chen ZY, Ahmed A (2022) The adoption of deep learning interpretability techniques on
diabetic retinopathy analysis: a review. Med Biol Eng Comput 60, no. 3: 633–642

 32. Kazim M, Hong JG, Kim M-G, Kim K-KK (2023) Recent Advances in Path Integral Control for Trajectory
Optimization: An Overview in Theoretical and Algorithmic Perspectives. arXiv preprint arXiv: 2309. 12566

 33. Manual, DE1-SoC User. "Terasic Inc." Hsinchu, Taiwan, Feb (2014)
 34. Akesson B, Nasri M, Nelissen G, Altmeyer S, Davis RI (2022) A comprehensive survey of industry

practice in real-time systems. Real-Time Systems 58(3):358–398

https://www.dermnetnz.org/
http://arxiv.org/abs/2309.12566

 Multimedia Tools and Applications

1 3

Authors and Affiliations

Mohammed A. Fadhel1 · Laith Alzubaidi2,3,4 · Yuantong Gu2,3 · Jose Santamaría5 ·
Ye Duan6

 * Laith Alzubaidi
 l.alzubaidi@qut.edu.au

1 College of Computer Science and Information Technology, University of Sumer, 64005, Thi Qar,
Iraq

2 School of Mechanical, Medical and Process Engineering, Queensland University of Technology,
Brisbane, QLD 4000, Australia

3 ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University
of Technology, Brisbane, QLD 4000, Australia

4 Akunah Medical Technology Pty Ltd Company, Brisbane, QLD 4120, Australia
5 Department of Computer Science, University of Jaén, 23071 Jaén, Spain
6 School of Computing, Clemson University, Clemson, SC 29631, USA

 35. Kashani S, Beuchat R (2020) Soc-fpga design guide de1-soc edition

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://orcid.org/0000-0002-7296-5413

	Real-time diabetic foot ulcer classification based on deep learning & parallel hardware computational tools
	Abstract
	1 Introduction
	2 Brief overview of CNNs with FPGA
	3 Methodology
	3.1 Diabetic foot ulcer classification models
	3.1.1 Data set
	3.1.2 Image pre-processing
	3.1.3 DFU proposed models

	3.2 Hardware Implementation on GPUs and FPGAs
	3.2.1 GPU
	3.2.2 FPGA

	4 Results and Discussion
	5 Conclusions
	Appendix 1
	Preliminaries and Definitions
	Deep learning

	FPGA

	References

