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Abstract
Meeting the rising global demand for healthcare diagnostic tools is crucial, especially 
with a shortage of medical professionals. This issue has increased interest in utilizing deep 
learning (DL) and telemedicine technologies. DL, a branch of artificial intelligence, has 
progressed due to advancements in digital technology and data availability and has proven 
to be effective in solving previously challenging learning problems. Convolutional neural 
networks (CNNs) show potential in image detection and recognition, particularly in health-
care applications. However, due to their resource-intensiveness, they surpass the capabili-
ties of general-purpose CPUs. Therefore, hardware accelerators such as application-specific 
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), and graphics pro-
cessing units (GPUs) have been developed. With their parallelism efficiency and energy-
saving capabilities, FPGAs have gained popularity for DL networks. This research aims 
to automate the classification of normal and abnormal (specifically Diabetic Foot Ulcer—
DFU) classes using various parallel hardware accelerators. The study introduces two CNN 
models, namely DFU_FNet and DFU_TFNet. DFU_FNet is a simple model that extracts 
features used to train classifiers like SVM and KNN. On the other hand, DFU_TFNet is 
a deeper model that employs transfer learning to test hardware efficiency on both shal-
low and deep models. DFU_TFNet has outperformed AlexNet, VGG16, and GoogleNet 
benchmarks with an accuracy 99.81%, precision 99.38% and F1-Score 99.25%. In addition, 
the study evaluated two high-performance computing platforms, GPUs and FPGAs, for 
real-time system requirements. The comparison of processing time and power consumption 
revealed that while GPUs outpace FPGAs in processing speed, FPGAs exhibit significantly 
lower power consumption than GPUs.
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1 Introduction

Machine learning (ML) and artificial intelligence (AI) have become an integral part of our 
daily lives and have transformed various domains, such as image processing and speech 
recognition [1–3]. A subset of ML called deep learning (DL) has been instrumental in 
this revolution by enabling automatic feature extraction from large datasets, particularly 
in domains like natural language processing, speech recognition, and computer vision [4].

The increasing global demand for healthcare diagnostic technologies and a shortage of 
medical personnel have led to a growing interest in using Deep Learning (DL) and tel-
emedicine systems. However, DL’s dependence on large annotated datasets presents a 
significant challenge in medical image analysis. Transfer Learning (TL) has emerged as a 
potential solution to tackle this challenge, allowing models to leverage pre-training on ref-
erence datasets before fine-tuning specific tasks [3].

Despite TL’s success, researchers and application specialists are constrained by the need 
for accelerated hardware to scale DL algorithms beyond current capacities. Graphics Pro-
cessing Units (GPUs) have become a dominant hardware accelerator for DL due to their 
superior parallel computation capabilities [5, 6]. However, the paper contends that there 
is a need to explore alternative hardware platforms, specifically Field-Programmable Gate 
Arrays (FPGAs), which exhibit advantages such as adaptable hardware configurations and 
power-saving performance for subprograms crucial to DL [7].

Although FPGAs offer attractive features, their adoption can be hindered by the require-
ment of specialized hardware knowledge. However, recent advancements in FPGA tools, 
especially those that involve OpenCL, have made them more accessible to a broader audi-
ence, including application scientists and hardware researchers. For deep learning research-
ers, FPGAs provide a compelling option due to their high parallelism, reconfigurability, 
and user-friendly development tools [8].

This paper aims to argue that FPGAs are the best hardware acceleration platforms for 
deep learning (DL) among the current options available. It aims to provide an overview 
of recent FPGA support for DL, highlight their associated limitations, and suggest future 
trends in parallel hardware computational tools. The paper focuses explicitly on meeting 
real-time requirements in learning strategies, particularly emphasizing the Diabetic Foot 
Ulcer (DFU) classification.

The paper has three primary objectives. First, it aims to demonstrate that FPGAs are 
superior to other contemporary hardware acceleration platforms. Second, it highlights the 
recent support for DL on FPGAs while also identifying their limitations. Lastly, it aims to 
provide insights and recommendations for future trends in parallel hardware computational 
tools, specifically Convolutional Neural Networks (CNNs). The paper presents case studies 
of DFU classification on two high-performance computing platforms, GPUs and FPGAs, 
to accelerate the classification process and potentially prevent amputations in individuals 
with DFU disease.

The unique contributions of this work include the introduction of two DFU classifica-
tion models (DFU_TFNet and DFU_FNet) employing a novel TL strategy, evaluation on 
two parallel hardware platforms (FPGA and GPU), comparison with traditional classifi-
ers (SVM and KNN), training and testing of various CNN models (AlexNet, VGG16, and 
GoogleNet) on the same dataset, calculation of power consumption and processing time 
values, and the demonstration that FPGA can be a viable choice for portable embedded 
devices, with the DFU_TFNet model achieving a remarkable accuracy 99.81%, precision 
99.38% and F1-Score 99.25%.



Multimedia Tools and Applications 

1 3

The rest of this paper is organized as follows: preliminaries and definitions are described 
in Section 2. A brief discussion of related work is presented in Section 3. The methodology 
for the proposed models and the hardware setup by FPGA for real-time requirements are 
illustrated in Section 4. An evaluation of proposed models in terms of accuracy, precision, 
F1-Score, processing time, and power consumption is listed in Section 5. Lastly, the paper 
ends with a conclusion, which is Section 6.

2  Brief overview of CNNs with FPGA

In the implementation of DL methods using FPGAs, refer to Appendix 1. Notably, the 
primary impediment in achieving the requisite hardware lies in the design size, posing 
a significant challenge in this context. The exchange between density and the ability of 
design reconfiguration means that the FPGA circuits are generally considered less dense 
than hardware replacements. Thus, it is only sometimes possible to implement large neural 
networks. Conversely, deep networks become applied on single FPGA schemes because 
the current FPGA incorporates strengthened computational units and the common FPGA 
fabric and continues developing reduced feature sizes for enhancing density. Figure 1 illus-
trates a summarized year-sequence of significant events in deep-learning research-based 
FPGAs.

In the early 1990s, Cox et al. were the first group of researchers to implement neural 
networks using FPGAs [9]. A few years later, Cloutier et al. recorded the first implementa-
tion of CNN using FPGAs [10]. These studies were restricted to utilizing low-precision 
arithmetic due to FPGA size limitations. Moreover, density-strengthened multiply-accumu-
late units were yet to be available in FPGAs. Thus, arithmetic was an extremely slow and 
expensive resource. The FPGA technology was then significantly modified, increasing the 
strengthened computation units available in FPGAs, more inspired by reducing transistor 
(feature) size and increasing the density of FPGAs fabric. The current CNN implementa-
tions using FPGAs have benefited from these design developments.

To the best of our knowledge, a team at Microsoft recently achieved forward propaga-
tion of CNN using FPGAs. Using the 1 K dataset on the ImageNet network, Ovtcharov 
et al. [11] reported that the processing amount of 134 images/second was achieved when 
operated on a Stratix V D5 at 25 W. This processing amount is approximately three times 
the processing amount of their closest competitor. However, it is predicted that an improved 
performance of up to approximately 233 images/second on an Arria 10 GX1150 with the 

Fig. 1  Key events in the history of FPGA DL research
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same power consumption can be achieved by utilizing the latest FPGAs. In contrast, the 
high-performing GPU systems (Caffe + cuDNN) achieved 500–824 images/second with 
235 W power consumption. This performance was attained utilizing FPGA servers and 
boards designed by Microsoft as part of an investigational project where FPGAs integrate 
inside the data centre applications. This project also increased the performance of large-
scale search engines (twice) to show the capacity of such FPGA applications.

Zhang et al. are the closest competitor to realize another significant achievement: pro-
cessing 46 images/second on Virtex 7485  T without reducing the power consumption 
[12]. These results are better than several significant works presented by their competi-
tors [13–15]. These examples have a similar architectural design, including several parallel 
processing units applied on FPGA fabric (generally employed for convolution), buffered 
output and input, the ability to configure software layers, and usually utilizing off-chip 
memory access. However, there are also significant differences in using FPGAs, such as 
utilizing various operation frequencies, look-up table types, soft-cores, data-transfer mech-
anisms, memory subsystems, and completely diverse FPGAs. Therefore, more research is 
required to identify optimal architecture decisions [16].

Transfer learning is often utilized to build medical imaging models with little training 
data. One of the initial ideas for employing transfer learning [17] was to use pre-trained 
ImageNet models instead of training from scratch. As the pre-trained CNN is effective in 
computation and ease of algorithms, the main benefit of including FPGAs is accelerating 
the forward propagation of such systems and informing the attained processing amount. 
This issue is very significant for application engineers as they want to utilize viable pre-
trained networks for processing sizeable volumes of data effectively and rapidly. Con-
versely, accelerating rearward propagation is another aspect to consider in CNN design 
using FPGA. The first to use parallelism in the learning phase on Virtex E FPGA was Paul 
et al. in 2006 [18], who focused on accelerating the classification process inside CNN and 
boosted this by using different software or hardware platforms to take advantage of paral-
lelism techniques.

In the realm of early detection and prognosis for diabetic foot ulcers, Thotad et al. 
paved the way by introducing the use of the EfficientNet—a robust deep neural net-
work model [19]. Building upon this foundation, various end-to-end CNN-based deep 
learning architectures, including AlexNet, VGG16/19, GoogLeNet, ResNet50.101, 
MobileNet, SqueezeNet, and DenseNet, have been explored for infection and ischemia 
categorization. This exploration was carried out using the DFU2020 benchmark data-
set [20]. Applying machine learning to infrared images offers promising avenues for 
the early diagnosis of diabetic foot complications. Researchers delved into classical 
machine learning algorithms incorporating feature engineering, convolutional neural 
networks (CNN), and image enhancement techniques. These investigations aimed to 
pinpoint the most effective network for classifying thermograms [21]. In a different 
approach, [22] tackled the initial dataset’s disparity by leveraging the synthetic minor-
ity oversampling strategy. Through a univariable analysis, nine key variables—ran-
dom blood glucose, years with diabetes, cardiovascular diseases, peripheral arterial 
diseases, DFU history, smoking history, albumin, creatinine, and C-reactive protein—
were identified. Subsequently, risk prediction models were independently developed 
using five machine learning algorithms: decision tree, random forest, logistic regres-
sion, support vector machine, and extreme gradient boosting (XGBoost). This mul-
tifaceted exploration underscores the diverse strategies employed to enhance the 
accuracy and effectiveness of diabetic foot ulcer prediction models. A comprehensive 
examination yielded Table 1, which provides an insightful overview of advancements, 
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methodologies, and identified research gaps in the relevant studies. This table serves as 
a valuable reference, encapsulating the current knowledge landscape and highlighting 
areas where further research is warranted.

3  Methodology

This section is organized into two distinct parts. The first part centres around Diabetic Foot 
Ulcer Classification Models, delving into the software-driven aspects of these models. The 
discussion in this segment revolves around the intricacies of developing and refining clas-
sification models for diabetic foot ulcers.

In the second part, the focus shifts to Hardware Implementation on GPUs and FPGAs. 
This section explores the practical implementation of the aforementioned software models 
on Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays (FPGAs). It 
elucidates the hardware-related considerations and optimizations essential for effectively 
deploying and executing these models on specialized computing architectures. Together, 
these two parts provide a comprehensive view of the software and hardware dimensions of 
diabetic foot ulcer classification systems.

3.1  Diabetic foot ulcer classification models

The Diabetic Foot Ulcer Classification Models section encompasses the analysis of a spe-
cific dataset, details on image pre-processing techniques, and a focused exploration of pro-
posed models tailored for diabetic foot ulcer identification. It provides a concise yet com-
prehensive view of the key elements contributing to effective classification in this context.

3.1.1  Data set

Our team collected the dataset from patients in the Diabetic Center Department at Nasiri-
yah Hospital in Thi-Qar, Iraq, and some samples are shown in Fig. 2. The dataset is pub-
lic now and available at the following link (https:// www. kaggle. com/ laith jj/ diabe tic- foot- 
ulcer- dfu). The dataset comprises 754 images of the feet of healthy and DFU patients. 
The images were taken using a Samsung Galaxy Note 8 and iPad, and different angles 
and lighting conditions were used to capture the images adequately. The images are color, 
standardized for training the DFU_TFNet, DFU_FNet model, and pre-training well-known 
models, i.e., VGG-16, GoogleNet, and AlexNet.

3.1.2  Image pre‑processing

Some pre-processing tasks were needed before using the dataset for the proposed and pre-
trained models. First, the images were cropped to a size of 224 × 224 pixels. The resulting 
images show patches, so-called Regions of Interest (ROI), since each contains either the 
ulcer and its surrounding tissues or healthy skin. The dataset’s total number of skin patches 
was 1,609, including 542 healthy skin and 1,067 DFU patches. Next, these patches were 
categorized by the medical expert into two types: healthy (normal) and DFU (abnormal). 
The data augmentation techniques were used to increase the dataset and avoid the unbal-
anced issue. Finally, the labelled patches are all used for training. There are 200 samples 

https://www.kaggle.com/laithjj/diabetic-foot-ulcer-dfu
https://www.kaggle.com/laithjj/diabetic-foot-ulcer-dfu
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that were collected for testing. These samples will be public once the ethical approval is 
finished. The data augmentation techniques were applied only to the training set. Samples 
of the initial dataset (before cropping) are illustrated in Fig. 3.

Fig. 2  Samples of our datasets. The blue box samples are abnormal, and the green box samples are normal

Fig. 3  Normal vs. Abnormal skin patches on a patient’s foot
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3.1.3  DFU proposed models

Two CNN models, namely DFU_FNet and DFU_TFNet, have been introduced. DFU_
FNet, characterized by its simplicity, extracts features utilized for training classifiers such 
as SVM and KNN. On the other hand, DFU_TFNet, a deeper model leveraging transfer 
learning, assesses hardware efficiency across both shallow and deep models. The evalua-
tion parameters employed in setting up these proposed models include a learning rate of 
0.001, a batch size of 32, 100 epochs, and using the SGD optimizer.

DFU_FNet model This CNN model is introduced in the proposed system to improve the 
extraction of the critical features required for DFU classification. The concept of Directed 
Acyclic Graph (DAG) is the basis of the DFU_FNet model [23]. Two key challenges 
should be considered when using these types of networks. The first challenge involves 
enhancing the model accuracy using additional convolution layers compared to the tradi-
tional network. Unfortunately, adding layers can decrease the performance of the model. 
The second challenge is that discriminating between normal and abnormal DFU types 
requires extracting additional vital features. Thus, a more complicated structure is required. 
In this research, the width of the DFU_FNet model was increased, which can increase the 
comparative computing cost.

The structure of the DFU_FNet model, see Fig. 4, was instrumental in accelerating the 
possible learning details and enhancing its accuracy. The structure included eight layers.

 i. Input layer: Three channels with 224 × 224 pixels each. The final patches were entered 
through these channels to train the model.

 ii. Convolution layer: The output of the input layer is convolved via a set of learnable 
filters [24]. As the weights identify these filters, two-dimensional filter activation 
maps are generated, and all filters are slipped across the input volume, height, and 
width. It should be noted that all filters had the exact depth of the input. Three hyper-
parameters manipulated the output size: zero-padding (to preserve its size, zeros are 
padded around the input borders); stride (number of skipped pixels when the filter 
slides through the image); and depth (number of operated filters identifying structures 
like a blob, corner, or edge over the image). This work had 17 convolution layers, and 
all filters had a size of 3 × 3 pixels. Two types of layers, batch normalization and the 
rectified linear unit, followed each convolution layer.

 iii. Batch normalization layer: A mini-batch was used to normalize each input channel, 
diminish the sensitivity of the network initialization, and speed up the training process 
of the CNNs [4]. This was located after the convolutional layer and consisted of 17 
layers. Subtracting the mini-batch average from each channel’s activations and divid-
ing by the mini-batch standard deviation was the first step of the layer mechanism 
(i.e., normalizing these activations). Next, a learnable offset β and a learnable scale 
factor γ were added and scaled, respectively.

 iv. Rectified linear unit (ReLU): Data filtering was the main objective of this layer, and 
the function max (0, x) [4] was used to achieve this goal (note that x is the neuron 
input).

 v. Addition layer: The inputs of two or more neural network layers were added to this 
layer. To use this layer correctly, these inputs should have similar dimensions.
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 vi. Average pooling layer: The input of this layer was partitioned into smaller pooling 
regions of various dimensions like 3 × 3, 2 × 2, etc., to reduce the input size. The aver-
age of each small spatial block, which may have vital and a reduced amount of vital 

Fig. 4  DFU_FNet architecture on FPGA
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pixel information to signify improving features, was then calculated to get normalized 
feature information [25]. It is important to note that in traditional CNNs, the max-
pooling layer is next to the convolution layer and could lose valuable features. In this 
study, the average pooling was applied at the last partition of the network.

 vii. Dropout layer: This is utilized to enhance model performance by preventing the occur-
rence of overfitting [26]. More specifically, neurons were arbitrarily turned off and on 
in all layers to avoid overfitting. This model used one dropout layer with a probability 
of p = 0.5 between the fully connected layers.

 viii. Fully connected layer: All previous layer neurons were connected to this layer, thereby 
mixing the DFU patch classification features. This network used only two fully con-
nected layers.

The overall number of layers in the model was 58. The output layer was placed over the 
second fully connected layer. The softmax function, located in the output layer, was utilized 
for classification. The output extracted features of the model were employed to train the 
classifiers of Support vector machines (SVM) (DFU_FNet + SVM) and k-nearest neighbors 
(KNN) (DFU_FNet + KNN). The SVM classifier was margin-based. The concept for the 
SVM algorithm was to determine the optimum partition line between two classes, aiming 
that objects would have the largest distance from that line. The SVM utilized kernels such 
as polynomial, linear, Sigmund, and radial basis functions.

In comparison, the KNN classifier of the object depended on the nearest training samples 
inside the feature space. Several discriminative features were available in each convolution layer. 
In contrast, skin abnormalities (ulcers) produced higher activations. A public dataset was used 
to train the proposed and pre-trained models for 100 epochs pending the learning termination.

As a final consideration, the pre-trained models (i.e., VGG-16 [27], AlexNet [28], and 
GoogleNet [29]) were trained with our dataset using the same training parameters that were 
utilized to train both the DFU_FNet. The pre-trained models have been fine-tuned for the 
DUF task by transferring the knowledge of these models learned from the ImageNet dataset.

DFU_TFNet model With this model, we provide a new TL technique for addressing the 
issue of the small dataset of DFU. This TL type helps to overcome the issue of transfer 
learning from the pre-trained models of ImageNet to medical imaging applications where 
ImageNet images are different from medical images, which could not help with small data-
sets. At the same time, the proposed TL helps to learn the relevant features. It also helps to 
reduce the time of the annotation process of medical images. Because there has been sig-
nificant growth in the amount of unannotated medical images, the recommended technique 
was based on training the DFU_TFNet model on a large number of unannotated images 
that look similar to DFU images. The collected images for TL include different datasets of 
skin cancer and wounds. The total number of images is 100 thousand images. The DFU_
TFNet model is then fine-tuned and trained on the DFU dataset.

In order to improve the feature extraction as well as address the gradient-vanishing and 
overfitting concerns, we designed the DFU_TFNet model with the following components 
that make it robust against the aforementioned concern:

1. Typical convolutional layers at the model’s beginning minimize the size of input images.
2. Parallel convolutional layers with varied filter sizes extract diverse data, ensuring the 

model learns small and large features.
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3. For enhanced extracting features, residue and deep interconnectivity are used. Addition-
ally, these connections alleviate the gradient vanishing issue.

4. In order to speed up the training process, batch normalization was used.
5. The vanishing gradient problem is less of an issue because a rectified linear unit (ReLU) 

does not compress the input value.
6. Dropout to prevent the problem of overfitting.
7. Global average pooling reduces complexity to one dimension. This layer helps reduce 

overfitting.

Figure 5 provides detailed explanations of the DFU_TFNet model. The model begins 
with two standard convolutional layers that are applied in succession. The first convolution 
has a filter size of 3 × 3, whereas the second has a filter size of 5 × 5. Following both con-
volutional layers are the BN and ReLU layers. We avoided using tiny filters, such as 1 × 1, 
at the start of the model to avoid losing little features, which would restrict the results. 
Following the typical convolutional layers are six blocks of parallel convolutional layers. 
Each block is made up of four parallel convolutional layers with four different filter sizes 
(1 × 1, 3 × 3, 5 × 5, and 7 × 7). The output of these four levels is combined at the concat-
enation layer before proceeding to the next block. Following all convolutional layers in 
all six blocks are the BN and ReLU layers. The blocks are linked by 10 links. Some are 
short, others are long, and all have a single convolutional layer. These links maintain the 
model’s capacity to have multiple degrees of features for improved feature representation. 
Because gradient propagation may occur from several channels, parallel convolutions and 
connections are necessary. Two connected layers with one dropout layer between them are 
employed. Our structure combines 34 convolutional layers.

The training process was achieved by three different cycles:

1. Cycle#1: Training the DFU_TFNet only with the DFU dataset.
2. Cycle#2: Training the DFU_TFNet with the DFU dataset plus augmented data.
3. Cycle#3: In the first step, training the DFU_TFNet on a large number of look-like images 

to DFU, such as the DermNet collection [30]. Then, the DFU_TFNet only with the DFU 
dataset. Figure 6 depicts the general concept of the transfer learning technique.

Obtaining a large number of labeled images for some medical imaging applications, 
such as DFU, is challenging. To the authors’ knowledge, there are only two public DFU 
datasets [23] and [30]. Therefore, the proposed TL can solve the issue of the small dataset 
and help the model to generalize very well. We have used the proposed TL with the DFU_
TFNet due to its deep architecture, which requires a large amount of data to perform well. 
Moreover, the proposed TL may be easily adapted to any medical imaging application uti-
lizing the same domain transfer learning. The scarcity of annotated medical data drove the 
decision to use same-domain transfer learning. This enabled the model to harness features 
acquired from ImageNet, expediting training, tailoring generic features to medical imaging 
tasks, and improving performance through effective generalization. Figure 7 shows some 
learned features from the first convolutional layer of the DFU_TFNet model.

Another tool used to visualize, Grad-CAM, or Gradient-weighted Class Activation 
Mapping, stands out as a potent method in interpretability for deep learning models. Its 
significance lies in being a valuable resource for comprehending and illustrating how neu-
ral networks arrive at decisions, especially in tasks related to image classification. The fun-
damental concept behind Grad-CAM involves emphasizing the sections of an input image 
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that contribute significantly to the model’s predictions. This is achieved by utilizing gradi-
ent information from the final convolutional layer. The outcome is a heatmap that visually 
depicts noteworthy areas, shedding light on the features and patterns the network considers 

Fig. 5  The DFU_TFNet model structure
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during decision-making. Grad-CAM plays a crucial role in improving model transparency 
as an indispensable tool for researchers and practitioners aiming to demystify the opaque 
nature of deep learning models [31].

3.2  Hardware Implementation on GPUs and FPGAs

This section is divided into two parts. The first part explores model implementation on 
Graphics Processing Units (GPUs), scrutinizing optimizations for this hardware. The sec-
ond part focuses on Field-Programmable Gate Arrays (FPGAs), elucidating the intricacies 
of adapting models for efficient execution on these platforms.

Fig. 6  The transfer learning approach

Fig. 7  Some learned features from the first convolutional layer of the DFU_TFNet model
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3.2.1  GPU

The experimental work used the combination of the Intel i7-9750H processor, RTX 3070 
Ti GPU with 8 GB of VRAM, and 16 GB of RAM, providing a robust setup for experi-
mental work. The high clock speed of 3.3  GHz on the i7-9750H is beneficial for CPU-
intensive tasks, while the RTX 3070 Ti GPU brings substantial parallel processing power, 
especially with its 8 GB of VRAM, making it well-suited for deep learning tasks.

Having a powerful GPU like the RTX 3070 Ti significantly accelerates computations, 
especially in scenarios involving machine learning and deep learning where parallel pro-
cessing is crucial [32]. The ample 16 GB of RAM ensures the system has enough memory 
to handle large datasets and complex computations without bottlenecks. This hardware 
configuration seems well-matched for the experimental work described in the paper, par-
ticularly in training and testing various models for diabetic foot ulcer classification. Com-
bining a high-performance CPU and GPU is essential for achieving optimal results in tasks 
that demand significant computational power.

3.2.2  FPGA

The potential of ML in serving people is growing rapidly, and there is an increasing 
requirement for ML to operate in real-time. The hardware accelerator-based FPGA is simi-
lar to the motherboard CPU in a general-purpose computer. Specifically, the FPGA sys-
tem (board) can be divided into three primary partitions: FPGA (parallel processing array), 
HPS (control unit), and the memory partition (software storage), as displayed in Fig. 8.

Usually, HPS is mainly composed of a microprocessor unit (MPU) subsystem with sin-
gle or dual processors, synchronous DRAM (SDRAM), flash memory controllers, support 
and interface peripherals, on-chip memories, debug capabilities, and phase-locked loops 
(PLLs). However, the fabric of FPGA includes a CB (control block), PLLs, and high-speed 

Fig. 8  Block diagram of SoC FPGA
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serial interface (HSSI), depending on the device version. Additionally, it can incorporate 
HSSI transceivers, hard PCI Express (PCIe) controllers, RAM, and multipliers [33, 34].

The HPS and FPGA elements are separated, as shown in Fig.  8. From one of many 
sources, it booted for HPS and deployed the FPGAs via the HPS or any external device to 
switch them between.

Please note: FPGA refers to the whole system (the board), and FPGA Part refers to the 
computational partition of the board.

More specifically, the FPGA performs all calculations and computations similar to the 
CPU but in parallel with the HPS, interpreting the system and user commands and the 
memory partition for storing data, system, and user programs. The HPS handles the com-
mands and the rest of the layer computations, including ReLU and max-pooling. Due to 
memory limitations on the board, loading input and filters to registers is performed line 
by line in a split manner. In this research, the Altera DE1-SoC board is the type of FPGA 
system selected [35], as shown in Fig. 9.

Working with FPGA first requires coding the user program using the unique program-
ming language Verilog. The user program and its data are stored in the memory portion. 
The HPS interprets each line in the user program and generates suitable commands for 
execution. The user program has several functions and commands (system programs); one 
of the essential functions is Send_command, which generates a command for the FPGA to 
set the next state and the number of packets it is supposed to receive.

Initially, the HPS imports an image and decodes it. The model weights are also loaded and 
ready for processing at the FPGA input. The HPS sends a compute command to the FPGA 
to perform the required computations and returns the result to the HPS. The result is a fea-
ture of the input image sent to the monitor for display through the VGA port on the FPGA 
board. Note that the input images are pre-processed using MATLAB 2021a. The pre-process-
ing functions include extracting the RGB values, calculating the mean values, and subtracting 
from the original data. Subtraction of the dataset is very helpful in centering the data, thus 
boosting the learning speed. Experimentally, when a 16 fixed-point format of 1:7:8 is adopted, 

Fig. 9  Block diagram of DFU classification-based FPGA
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the input data range is -127 to 127, and all the weights have relatively small values of between 
0.03–0.3.

Due to the presence of three input lines, three registers are loaded to implement the 
pre-trained CNN models using the function load_mem. This function saves the input file 
pointer, numbering the required locations for reading and setting the padding options. It 
sends a line from the input file to the FPGA with two data in a packet each time. When 
padding is enabled, 0 data are added at the line’s front and end. The whole line is sent if 
that line is the first or the last. All the data are sent out at the function end, waiting for the 
ACK signal and returning with the pointer to read the following line. Next, the function 
load_fil is applied to load the first 16 filters into the filter register inside the FPGA. This 
function saves the input file pointer and sends the content of the 16 filters to the FPGA, 
with each filter containing nine weights. At the end of the function, all the weights are 
sent out, waiting for the ACK signal and returned with the pointer for reading the next 
filter. When the input becomes ready, the function compute (which sends a command to 
the FPGA to compute and wait for the ACK signal when it finishes the computations) is 
applied to perform the convolutional computation for the first 16 filters as well as the first 
three lines of the input file. The next step is to read the result of the 16 filters and save it in 
the local files using the function to get the result. This step is repeated pending the whole 
filters are handled. The last step is loading a new line, and then the process is repeated. 
This step is also iterated, assuming all filters are multiplied by the whole lines in the input 
files.

4  Results and Discussion

DFU proposed a 64-computations array of 16-bit DSP on FPGA DE1-SoC accelerated other 
pre-training models. This acceleration process contained two elements: the software used for 
control, known as HPS, and the hardware responsible for convolutional calculations. Only 
13 convolutional layers were used to increase efficiency while adjusting to the limitations of 
FPGA fabrics on DE1-Soc. Software completed The remaining calculations as they could be 
performed faster than hardware.

Each convolution layer (CONV) mainly comprises separate control logic and parallel 
adder. At the same time, the multipliers, which serve as the primary computational engines 
are linked throughout all layers, as seen in Fig. 10. The data input for the convolution is saved 
in the on-chip buffers, and the multiplier outputs are transferred to CONV for summing and 
accumulation. The results of CONV are routed to several different on-chip memory, which 
will be utilized for the next stage.

Accuracy assesses overall correctness, precision evaluates the accuracy of positive pre-
dictions, and recall measures the model’s ability to capture all positive instances. Together, 
these metrics provide a nuanced understanding of a classification model’s performance. 
Recall (R) and precision (P) are fundamental metrics for evaluating a suggested method. (see 
Eqs. 1, 2, 3, 4).

(1)Accuracy = (TP+TN)
/

(TP+TN+FP+FN)

(2)Precision (P) = TP
/

TP+FP
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Here, TP (True Positive) denotes the number of relevant images properly identified by 
the network. A true negative is the number of images properly identified as irrelevant by 
the network as TN (True Negative). The number of images the network incorrectly classi-
fies as relevant is denoted by the letter FP (False Positive). The number of relevant images 
the network fails to recognize is denoted by the FN (False Negative).

The evaluation of our models involved calculating key metrics such as accuracy, preci-
sion, and F1-Score, and comparing their performance across different scenarios. Table 2 
presented a comprehensive comparison of various classifiers, each configured with differ-
ent approaches, based on their time of processing, power consumption, and performance 
metrics. Notably, the DFU_TFNet series undergoes cycles, with processing times ranging 
from 102 to 310 ms. While DFU_TFNet (Cycle#1) achieves the lowest processing time 
and power consumption at 8.00 W, DFU_TFNet (Cycle#3) attains the highest accuracy, 
precision, and F1-Score at 99.81%, 99.38%, and 99.25%, respectively. On the other hand, 
DFU_FNet + SoftMax demonstrates lower processing time and power consumption, 

(3)Recall (R) = TP
/

TP+FN

(4)F1 − Score = 2 × ( P×R
/

P+R )

Fig. 10  Convolutional Block Diagram inside FPGA

Table 2  Comparison between DFU_FNet and DFU_TFNet

Classifier Time of processing Power Consump-
tion

Accuracy Precision F1-Score

FPGA GPU FPGA GPU

DFU_FNet + SoftMax 143 ms 109 ms 8.60 W 290 W 92.67% 93.21% 93.4%
DFU_FNet + KNN 155 ms 136 ms 8.88 W 290 W 92.85% 92.82% 93.2%
DFU_FNet + SVM 187 ms 119 ms 8.91 W 290 W 94.71% 93.95% 94.5%
DFU_TFNet (Cycle#1) 102 ms 97 ms 8.00 W 290 W 88.19% 86.71 86.00%
DFU_TFNet (Cycle#2) 227 ms 177 ms 9.02 W 290 W 96.34% 96.44% 96.25%
DFU_TFNet (Cycle#3), Ours 310 ms 184 ms 9.16 W 290 W 99.81% 99.38% 99.25%
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making it an efficient alternative. Figure 11 shows the heatmap through virtualization using 
the DFU_TFNet model with Grad-CAM.

Moving to Table  3, shown a comparative analysis of various deep learning models, 
including AlexNet, VGG16, GoogleNet, DFU_FNet + SVM, and DFU_TFNet (Cycle#3), 
across key performance metrics. Notably, the processing times for these models vary, with 
FPGA consistently demonstrating lower processing times than GPU. Furthermore, the 
power consumption of FPGA is considerably lower than that of GPU across all models, 
underscoring its energy efficiency. In terms of accuracy, precision, and F1-Score, DFU_
TFNet (Cycle#3) emerges as a standout performer, boasting an impressive accuracy of 
99.81%, precision of 99.38%, and an F1-Score of 99.25%. These metrics reflect the mod-
el’s robust performance. The trade-offs between FPGA and GPU are evident, with FPGA 
offering energy efficiency at the cost of slightly longer processing times. The FPGA evalu-
ations in Table 4 considered essential resources like total logic elements, block memory, 
and logic registers within the DE1-Soc.

The processing time comparison between GPU and FPGA revealed that while GPU 
is faster, it demands significant power. Conversely, FPGA exhibits substantially lower 
power consumption, making it an attractive choice for smart devices with limited battery 
resources. With advancements in FPGA properties, processing times could become com-
parable to GPUs. As summarized in Table 5, the overall results guide us to conclude the 
preferred platforms based on the achieved metrics and performance benchmarks.

Table  6 presented a comparative analysis of various deep learning models, predomi-
nantly focused on DFU detection. The EfficientNet [19] achieved an impressive 98.97% 
accuracy, accompanied by high F1-score, recall, and precision on a GPU, with correspond-
ingly high-power consumption. ResNet50 [20] demonstrated a notable 99.49% accuracy for 
Ischaemia and 84.76% for infection, also on a GPU with high power consumption. DFU_
QUTNet [23] and DFUNet [26], both utilizing GPUs, exhibited a F1-score of 94.5% and 
an accuracy of 96.1%, respectively. The proposed model, DFU_TFNet (Cycle#3), stands 
out with remarkable accuracy, precision, recall, and F1-score of 99.81%, 99.38%, 99.76%, 
and 99.25%, respectively. Notably, DFU_TFNet utilizes both FPGA and GPU, potentially 
mitigating power consumption with a low setting on FPGA. This combination of high per-
formance and potentially lower power usage makes DFU_TFNet an intriguing prospect for 
real-world applications in medical imaging and diagnostics.

5  Conclusions

This research proposes new diagnostic tools with real-time processing capabilities for DFU 
classification, which addresses a significant healthcare challenge. The key findings of this 
research include the effectiveness of pre-trained CNN models, namely, DFU_FNet and 
DFU_TFNet, in automatically categorizing DFU cases into normal and abnormal foot skin. 
These models were designed to overcome deep learning pitfalls, utilizing techniques such 
as domain-transfer learning. The results of this research indicate that when compared with 
various classifiers like SVM, KNN, and pre-trained CNN models like AlexNet, VGG16, 
and GoogleNet, DFU_FNet and DFU_TFNet exhibit superior performance. The models 
were trained and tested on different HPC parallel platforms, including GPUs and FPGAs, 
significantly reducing power consumption and execution time. Additionally, features 
extracted by DFU_FNet were leveraged to train SVM and KNN classifiers, further enhanc-
ing the overall classification process. The proposed framework, particularly DFU_TFNet 
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Fig. 11  Grad-CAM heatmap visualization for DFU_TFNet (Cycle#3) model
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(Cycle#3), achieved an impressive accuracy, precision, recall, and F1-score of 99.81%, 
99.38%, 99.76%, and 99.25%, respectively, surpassing current methodologies. The FPGA 
implementation, utilizing DE1-SoC resources, exhibited a reasonable power consumption 
of 9.16W. Future directions involve transforming the model into a wearable smart applica-
tion, enabling patients to monitor their condition anytime, anywhere, with prolonged bat-
tery life and swift processing. Training images will be securely stored on an online server 
to prioritize data privacy. During testing, the wearable device designated for testing pur-
poses will reduce data exposure and align with security best practices. Furthermore, strong 
encryption will safeguard data transmission between the device and the server.

Table 3  Our proposal vs. pre-trained CNN models

Models Time of processing Power Consump-
tion

Accuracy Precision F1-Score

FPGA GPU FPGA GPU

AlexNet 153 ms 136 ms 2.1 W 290 W 89.11% 88.35% 88.1%
VGG16 4.32 s 8.6 s 5 W 290 W 90.37% 89.35% 90.9%
GoogleNet 7.38 s 14.3 s 23 W 290 W 91.93% 92.5% 92.9%
DFU_FNet + SVM, Ours 187 ms 119 ms 8.98 W 290 W 94.71% 93.95% 94.5%
DFU_TFNet 

(Cycle#3), Ours
310 ms 184 ms 9.16 W 290 W 99.81% 99.38% 99.25%

Table 4  Summary of resources for DE1- Soc

Models Total logic elements 
out of 32,070

Total block memory out of 
4,056,280 bits

Total logic registers

AlexNet 11,983 63,789 32,985
VGG16 21,617 81,920 44,773
GoogleNet 29,833 240,763 89,762
DFU_FNet + SVM 12,974 94,670 65,765
DFU_TFNet (Cycle#3), Ours 18,018 121,471 89,111

Table 5  Platforms are recommended based on hardware analysis

Feature Evaluation Winner

Training GPU floating-point performance has improved GPU
Analyzing large amounts of data FPGAs are excellent for inline computation FPGA
Power Consumption Personalized designs might be preferable FPGA
Time of processing GPUs triumph due to their superior processing power GPU
Interfaces FPGAs may integrate a wide range of interfaces FPGA
Changeability GPUs make it simpler to make modifications to application 

capabilities
GPU

Customization FPGAs enable more adaptability FPGA
Size FPGA’s lower power consumption leads to smaller volume 

solutions
FPGA
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Appendix 1

Preliminaries and Definitions

Deep learning

A traditional technique used in artificial intelligence is to employ computations to solve prob-
lems analytically, and this requires specific knowledge of the field and the problem under con-
sideration [1]. This approach was able to address simple problems since the programs were 
small and accessible in design. In addition, domain-specific knowledge could convert an ordi-
nary volume of data into helpful representations for learning. The progress of artificial intel-
ligence has enhanced interest in solving extra-complicated problems where relevant knowledge 
is hard to extract. However, professional knowledge which is related to problems like medi-
cal research, speech transcription, and face recognition is hard to express, and traditional tech-
niques are less successful at processing implied information in the raw data. In addition, the 
great evolution in data storage and acquisition indicates that a significant capacity to employ 
implied information is more important than ever. Lately, different applications demonstrating 
innovative performance have been based on the recent technique of DL. In this technique, the 
implied information is extracted automatically via learning task-related features available in the 
raw data. Several reviews have recently developed due to the interest in this research field [2, 3].

The DL applications and models have several common characteristics, which are well 
matched for parallelization utilizing hardware accelerators, including [4, 5]:

a. Data parallelism – In pixel-based sensory input, the parallelism characteristic estab-
lishes itself in tasks by simultaneously applying it to the local areas or the whole pixels. 
In addition, nearly all common methods of training models are through processing 
"mini-batches" of normally hundreds/thousands of examples, and not by processing one 
example at a time.

b. Model parallelism – Such models include biologically inspired models. They consist of 
redundant processing units, i.e., they can be updated in parallel and allocated in hard-
ware. One of the recent works on accelerating CNN utilizing multi-GPUs has employed 
leading-edge approaches for balancing model-based parallelism and data, in which dis-
similar segments of the architecture are parallelized in diverse but optimum methods [6].

c. Pipeline parallelism – The computation in architectures that has a feed-ahead nature 
such as CNN (i.e., well-suited hardware for exploring pipeline parallelism like FPGA) 
can present an actual benefit. However, GPUs and GPPs depend on processing paral-
lel themes on multi-core hardware, while FPGA can produce personalized hardware 
circuits, which are characterized as integrally multiple threads and intensely pipelined.

FPGA

Assessing the acceleration of various hardware platforms should take into account the 
transaction between performance and flexibility. Considering the spectrum of the hardware 
platforms, GPPs are at one end of the spectrum. They offer simplicity of use and exten-
sive flexibility, but with comparatively inefficient performance. Such platforms are suit-
able for an extensive variety of uses/reuses, are made inexpensively, and tend to be easily 
accessible. At the other end of the spectrum are the ASICs (application-specific integrated 
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circuits). These offer great performance and are cost-effective, but they are inflexible and 
time-consuming to produce as they are specialized for use with certain systems.

The development of customized CNN accelerators for each CNN model has been 
achieved before using register transfer level (RTL)—based FPGA approaches [7]. It is 
possible to make use of fine-grained hardware-level optimization to achieve excellent per-
formance and energy efficiency in this manner. However, the customized RTL accelerator 
takes a significant amount of development time, such as several months, making it impos-
sible to keep up with the constantly developing CNN algorithms and the wide range of 
applications that are available as displayed in Fig. 12.

However, FPGAs work cooperatively between the two ends of this spectrum. FPGAs 
belong to a common class of PLD (programmable logic devices) and are reconfigurable inte-
grated circuits. This offers the reconfigurable flexibility of the general-purpose processors 
with the performance advantages of the integrated circuit. FPGAs can execute combinational 
logic via the utilization of look-up tables (LUT) and sequential logic via the use of flip-flops 
from a low-level point of view. Current FPGAs are composed of hardware components for 
dealing with frequent tasks like Block RAM, arithmetic cores, communication cores, and full 
processor cores. Current FPGAs also tend to have a system-on-chip (SoC) design method 
since FPGA and ARM co-processors are usually obtained on similar frameworks. Altera and 
Xilinx dominate the current FPGA market and together represent 85% of the total market [8]. 
For fixed-function logic, FPGAs are fast devices taking the place of application-specific inte-
grated circuits and general-specific standard products. This is important in relation to DL, as 
FPGAs offer a clear capacity for achieving real-time results beyond the possible tasks able to 
be performed by conventional general-purpose CPU processors [9]. 

Fig. 12  Implementation of CNN learnable element in FPGA according to RTL block diagram
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