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Abstract
This comprehensive review of concept-supported interpretation methods in Explain-
able Artificial Intelligence (XAI) navigates the multifaceted landscape. As machine learn-
ing models become more complex, there is a greater need for interpretation methods that 
deconstruct their decision-making processes. Traditional interpretation techniques fre-
quently emphasise lower-level attributes, resulting in a schism between complex algorithms 
and human cognition. To bridge this gap, our research focuses on concept-supported XAI, 
a new line of research in XAI that emphasises higher-level attributes or ’concepts’ that 
are more aligned with end-user understanding and needs. We provide a thorough examina-
tion of over twenty-five seminal works, highlighting their respective strengths and weak-
nesses. A comprehensive list of available concept datasets, as opposed to training datasets, 
is presented, along with a discussion of sufficiency metrics and the importance of robust 
evaluation methods. In addition, we identify six key factors that influence the efficacy of 
concept-supported interpretation: network architecture, network settings, training proto-
cols, concept datasets, the presence of confounding attributes, and standardised evalua-
tion methodology. We also investigate the robustness of these concept-supported methods, 
emphasising their potential to significantly advance the field by addressing issues like mis-
generalization, information overload, trustworthiness, effective human-AI communication, 
and ethical concerns. The paper concludes with an exploration of open challenges such 
as the development of automatic concept discovery methods, strategies for expert-AI inte-
gration, optimising primary and concept model settings, managing confounding attributes, 
and designing efficient evaluation processes.
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1 Introduction

Deep Neural Networks (DNN) have performed admirably in recent decades, resulting 
in significant advances in Artificial Intelligence (AI) fields such as computer vision [1, 
2] and natural language modelling [3]. DNNs have effectively addressed critical limita-
tions of traditional Machine Learning (ML) models, such as the requirement for exten-
sive expert knowledge, the difficulty of feature vector selection, and the complex pro-
cess of transforming raw pixel intensities into appropriate representations [4]. DNNs, 
on the other hand, are inherently a black-box approach due to their recursive func-
tionality, complex architecture, and intricate decision-making logic, which can be dif-
ficult for humans to comprehend [5–7]. The general pipeline of black box neural nets 
is depicted in Fig. 1 with the output provided to the end user without any explanation.

DNNs’ black box nature limits their full capability and application in sensitive and 
high-stakes domains such as healthcare [8, 9], criminal justice [10], self-driving [11], 
security [12], and finance [13]. Authors in [14], discovered a limit in the generalisation 
of convolutional neural network (CNN) models with diverse hospital datasets in medi-
cine. They show that, while the trained CNN model performed well in image classifica-
tion tasks for specific radiology datasets, the model can be misleading for new datasets 
with even slightly different scanner settings. Work in [15] highlighted the sensitivity of 
CNN models within the training dataset in Plant pathology. They imply that annotation 
errors in the original input data can harm the learning process and significantly reduce 
the performance of the CNN model. [16] describe the CNN model’s poor performance 
and attempts to improve it through network architecture changes, data augmentation, 
and natural adversarial instances. As a result, a reasonable explanation of the black 
box model’s decision to be compresence by humans is required.

The need for interpretable ML models has been heightened by the General Data Pro-
tection Regulation (GDPR) [17, 18], which requires audits and assessments of intel-
ligent systems and requires explainability of ML decision-making processes. GDPR 
regulations establish mandatory audit and assessment for intelligent systems, as well 
as the capability of explaining ML decision tasks. In practise, the terms IML [19–21], 
XAI [22–25], and self-explainable models [26–29] are frequently used to refer to mod-
els or methods that aim to explain the learning and decision approach of ML or DNN 
models in a way that humans can understand. The current review focuses on concept-
supported interpretation methods, which are a promising approach to bridging the gap 
between the complex logic of DNNs and human reasoning.

Fig. 1  General pipeline of black box neural network architecture (source: Authors’ own elaboration)
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1.1  General types of XAI methods

Current DNN models can be interpreted and comprehended from two perspectives: 
global and local. Global interpretation methods [30–35] place a premium on model per-
formance and what the entire trained model learned based on a set of features, data 
points, or classes. These methods can be useful for tracking the logic behind overall 
results, comprehending training details such as weights and data structures, and reveal-
ing patterns in data to aid decision-making. However, due to the heavy computations, it 
is extremely difficult to interpret the entire complex DNN models using global interpre-
tation approaches [36]. Local interpretation methods [37–41] on the other hand, attempt 
to explain specific input data in order to comprehend the specific attributes. They pro-
vide a thorough understanding of individual examples that are frequently overlooked in 
global explanations. Local interpretation methods, as opposed to global interpretation 
methods, have low computation and simple model implementation [41]. Saliency map 
[42, 43] are examples of local interpretation methods that assign an importance score to 
each image pixel in order to perform interpretation tasks locally.

Interpretation methods can also be classified based on the approach they use to solve 
a problem, which is known as the post-hoc and intrinsic method [44]. The primary and 
classical techniques used to explain DL models are post-hoc methods [45–48] also 
known as model-agnostic [49] or passive [50] interpretation methods. These methods 
employ an independent model to interpret existing DL models following the training 
and learning process. Post-hoc methods are frequently used to understand how perturb-
ing input data affects model decision making. Post-hoc based methods include LIME 
[51], and SHAP [52]. In contrast, intrinsic models, also known as inherently interpret-
able or self-explainable models, are used during the training process to explain inner 
components of DL architecture [53]. These models, also known as active approaches, 
actively modify the network architecture to improve human-readable interpretation by 
utilising internal features [54]. The trade-off between model precision and explanation 
performance is one of the major differences between post-hoc and intrinsic approaches. 
Intrinsic models typically provide accurate interpretation due to their inherent approach, 
but they may cause model decision tasks such as prediction or classification to be 
reduced. Post-hoc models, on the other hand, retain model performance because they 
are not involved in the training process, but they are limited in their function of approxi-
mations [38]. Researchers regard post-hoc models as untrustworthy because they fre-
quently fail to provide adequate information [55, 56]. Figures 2 and 3 show an overview 
of the post-hoc and intrinsic-based XAI pipelines, respectively.

Fig. 2  Overview pipeline of Post-hoc XAI methods in convolutional neural network (source: Authors’ own 
elaboration)
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1.2  Gap between XAI’s goals and traditional XAI

Explainable AI is attempting to address the issues associated with ambiguity and lack of 
interpretability in advanced complex machine learning models. XAI’s goals are to make AI 
systems more transparent, understandable, and accountable. Several previous studies [44, 
57–60] have well explained these objectives. Earlier attempts to provide explanation and 
address these goals included Saliency Map [42, 43], Grad-CAM [61] LIME [51], SHAP 
[52], DeepLIFT [62], and LRP [63]. They are typically based on how they map the input 
low level features such as pixels, weights, or vectors in order to estimate the significance 
of features used for the model’s decision. As reported by [64], prediction tasks rely heavily 
on attributes. These features or pixel-based explanation methods, however, have significant 
limitations and have not fully achieved the key defined objectives of XAI methods. For 
example, [65] examined Saliency Map to determine its limits and discovered that the suc-
cess ratio was very low at 60.7%. In another paper, [66] stated that existing explanation 
methods are not completely faithful to the primary computation functions of the black box 
model and cannot guarantee the true explanation and correct conclusion. Table 1 summa-
rises some of the drawbacks of the existing feature-based XAI methods that discussed in 
the following.

Trustworthiness: One of the most important goals is to ensure that end-users can rely 
on model prediction. It refers to the dependability, credibility, and ethical soundness of 
an AI system’s explanations. In other words, trustworthiness is a multifaceted concept 
that includes technical knowledge, transparency, and ethical considerations. Building 
and maintaining trust in AI systems is critical for their successful adoption and deploy-
ment in the real world. However, as many studies have shown, these methods are still 

Fig. 3  Overview pipeline of Intrinsic XAI methods in convolutional neural network (source: Authors’ own 
elaboration)

Table 1  Comparative analysis of 
XAI performance against stated 
goals in existing literature

XAI Goals Reference Traditional 
XAI Perfor-
mance

Reference

Trustworthiness [23, 60, 75] Poor [55, 67–69, 76]
Informativeness [23, 60] Poor [70, 71]
Human-AI interaction [57, 71, 77] Poor [69, 71]
Ethical AI [23, 57] Poor [48, 73, 74]
End-user satisfaction [44, 75] Poor [71, 78]
Understandability [60, 75] Poor [76, 78]
Faithfulness [60] Poor [58, 66]
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ineffective at gaining end-user trust [55, 67, 68]. For example, [69] tested explanation 
methods with humans and discovered that they are very sensitive to human decision 
biases and do not improve human perception of trust in the model.
Informativeness: This goal refers to providing meaningful and relevant information 
about decisions or predictions in terms of both quality and quantity. Traditional meth-
ods, on the other hand, do not help to provide contextual information that has a signifi-
cant impact on the model’s decision. As an example, Rudin [70] examined the model 
using the Saliency Map method and discovered that the explanation is insufficient to 
provide adequate information and details to comprehend the black box learning mecha-
nism. According to the author, the performance of these methods can be the same for 
multiple classes (either correct or incorrect) and uninformative in helping users under-
stand why there is a misclassification in the model. Recently, authors in [71] compre-
hensively evaluated these methods using Saliency Map and Grad-CAM, as well as 
human experimentation, to understand end-user feedback. They notice that, while these 
methods provide users with some understanding of black box decisions, some partici-
pants dislike them and argue that the explanations are uninformative and rough.
Human-AI interaction: The core component targeted by explainable AI models is 
effective human-AI interaction, also known as collaboration [71]. Finally, we would 
like to gain trust and be understood by end users, whether they are experts, stakehold-
ers, decision makers, or non-experts. This goal is related to fields where end users are 
extremely important, and their ability to interact with models is what ensures success. 
We must foster trust by ensuring that AI is consistent with human values and expertise. 
Furthermore, it is critical to incorporate user feedback and leverage human expertise in 
decision-making to improve model performance. Traditional XAI approaches, on the 
other hand, perform based on lower-level attributes such as pixel intensities, which do 
not correspond with human rational thinking, and they have significant limitations in 
communicating with domain experts [69].
Ethical AI: Ethical consideration, also known as fairness [23], refers to an AI system 
that makes decisions that are unbiased. Its goal is to address biases in AI decision-mak-
ing and promote fairness, as well as to support ethical standards in AI development and 
deployment. Fair treatment of different groups and the avoidance of discriminatory out-
comes contribute to the system’s overall trustworthiness. Biassed results from the distri-
bution of input data [72] or from misleading explanations [48]. However, a recent inten-
sive evaluation on fairness performed by [48] revealed the limitations of these methods 
and reported that, while fairness is one of the key pillars in XAI, little research has been 
conducted in this area. In another effort, [73, 74] pointed out that methods that cannot 
provide a high importance score may result in unfair explanations.

1.3  Transitioning to human‑centred XAI

Early AI applications were designed to mimic human cognition tasks [79]. Explainable 
AI was later developed to help end-users comprehend complex AI models [23, 60, 75]. 
However, as described in Sect. 1.2, existing feature-based XAI methods performed poorly 
in terms of providing explanations that end users could understand and satisfy their needs. 
According to a growing body of research, existing XAI systems are frequently developed 
without a thorough understanding of the end-users’ requirements and characteristics [71, 
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80, 81]. Numerous XAI techniques, for example, developed to address explainability 
requirements during model development may encounter difficulties when applied to end-
users with diverse needs [71, 82]. In other words, a human as an end-user willing to assess 
the success of XAI methods based on their own reasoning [76]. End-users frequently want 
to know ’why’ a specific type of input made that prediction [23, 71, 83]. Existing feature-
based XAI, on the other hand, focuses on ’what’ image attributes or regions are more 
important to model decision function [71]. As a result, it is critical to use human-centred 
approaches in understanding the rational aspect of AI explanation users. Human reasoning 
can simply explain what an object such as a ’apple’ is by listing its higher-level properties 
such as ’Colour’: red, ’Shape’: round, whereas DNN, despite its significant performance, 
cannot explain its learned knowledge in a human-comprehensible manner [23].

As a result, current feature-based explanation methods are still incapable of fully 
explaining the reason for model decision at a human-understandable level. They also do 
not correspond to high-level features such as concepts, which correspond to human think-
ing and reasoning. As a result, there is a need to provide human-readable interpretation 
methods that end-users, whether experts or decision-makers, can understand. In this way, 
we can ensure that we provide a trustworthy explanation that adheres to the primary model 
prediction function. Figure 4 depicts the general workflow of concept-supported XAI.

1.4  Contribution

Several surveys on feature-based explaining ML and DL models have been conducted [9, 
41, 45, 49, 53, 84, 85]. In contrast, the work in [69] recently proposed the first attempt at 
concept-supported interpretation methods for computer vision-related tasks with a review 
paper [86] that focused on this area. Presently, a significant interest in these methods is 
shown by many researchers and leading publishers like NeurIPS, ICLR, ICML, AAAI, and 
IEEE, underlining the necessity to explore the recent intriguing advancements in this field. 
Therefore, this work aims to review concept-supported interpretation methods which align 
more with human understanding and reasoning, to furnish a solid grasp of the existing 
works as well as to spotlight the open questions and unresolved issues within this domain. 
To deepen our understanding and pinpoint the gaps in concept-supported interpretation 
methodologies, we have formulated the following research inquiries:

o Are there any strategies for incorporating human reasoning, denoted as ’Concept,’ into 
Convolutional Neural Network (CNN) models?

Fig. 4  General workflow of Concept-supported XAI methods. It takes an input image X , use trained CNN 
to predict pre-defined concepts C , and then use concepts C to provide the final prediction output Y  . (source: 
Authors’ own elaboration)
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o Which visual ’Concept’ attribute datasets are currently available for concept learning 
tasks?

o How can sufficiency metrics for concept-supported interpretation methodologies be 
defined and quantified?

o What factors have a significant impact on the efficiency of concept-supported interpreta-
tions?

o What are the main challenges and future research opportunities in the field of concept-
supported interpretation?

1.5  Paper organisation

Figure 5 depicts a visual summary of the key points discussed in the literature. Section 2 
offers a detailed examination of current methodologies, outlining their respective pros 
and cons, alongside a thorough comparison to highlight the strengths and weaknesses of 
existing methods. Section 3 delivers an extensive overview of available concept datasets, 
describing their unique features. Section 4 delves into sufficiency metrics, enriched with 
pertinent examples for better understanding. Section  5 explores the six crucial factors 
affecting the efficacy of concept-supported interpretation, along with the associated chal-
lenges and potential areas for future research. The importance and robustness of concept-
supported interpretation methods are discussed in Sect. 6. Section 7 highlights several open 
research areas with the potential to drive various technological advancements. A summary 
of key findings is presented in Sect. 8. In the concluding sections of the paper, we encap-
sulate our insights and suggest areas for future research endeavours. A list of acronyms for 
methods and relevant contexts used in the literature provided in Table 2.

Fig. 5  Scope and organization of this comprehensive literature (source: Authors’ own elaboration)
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Table 2  List of acronyms used in the literature

Abbreviation Definition

AAAI Association for the Advancement of Artificial Intelligence
ACDTE Automated Concept-based Decision Tree Explanations
ACE Automatic Concept-based Explanations
AI Artificial Intelligence
AUC Additional Unsupervised Concepts
BBSD black-box shift detection
BDD Berkeley DeepDrive
BN BottleNeck
BRODEN Broadly and Densely Labelled Dataset
CAR Concept Activation Region
CAV Concept Activation Vectors
CB Concept Bottleneck
CBM Concept Bottleneck Model
CBNM Concept Bottleneck-based Models
CBSD Concept Bottleneck Shift Detection
CLIP Contrastive Language-Image Pre-Training
CME Concept-based Model Extraction
CNN Convolutional Neural Network
COCO Common Objects in Context
CNN2DT Convolutional Neural Network to Decision Tree
CSS Concept Shift Score
CUB Caltech-UCSD Birds-200–2011
CVF Computer Vision Foundation
DeepLIFT Deep Learning Important FeaTures
DISSECT Disentangled Simultaneous Explanations Via Concept Traversals
DL Deep Leaning
DNN Deep Neural Networks
DR dimensionality reduction
DT Decision Tree
DTD Describable Textures Dataset
ECCV European conference on computer vision
ECML European Conference on Machine Learning
EDBT Extending Database Technology
FCN Fully Convolutional Network
GDPR General Data Protection Regulation
Grad-CAM Gradient-weighted Class Activation Mapping
ICE Invertible Concept-based Explanations
ICLR International Conference on Learning Representations
ICML International Conference on Machine Learning
IEEE Institute of Electrical and Electronics Engineers
IML Interpretable Machine Learning
IN Intrinsic
ISIC International Skin Imaging Collaboration
LIME Local Interpretable Model-Agnostic Explanations
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2  Overview of existing concept‑supported interpretation approaches

2.1  Bottleneck‑based learning methods

Concept Bottleneck-based Models (CBNMs) have received a lot of attention in recent years 
as a way to develop interpretable Deep Neural Networks (DNNs) in the field of computer 
vision [87–93]. CBNMs’ primary goal is to bridge the gap between raw input data (e.g., 
pixels) and high-level attributes, also known as ’concepts.’ These concepts are then applied 

Table 2  (continued)

Abbreviation Definition

LRP Layer-Wise Relevance Propagation
MACE Model Agnostic Concept Extractor,
MCD Multi-dimensional Concept Discovery
ML Machine Learning
MLP Multi-Layer Perceptron
MMD Maximum Mean Discrepancy
NCAV Non-negative Concepts Activation Vectors
NMF Non-Negative Factorization Matrix
NN Neural Network
OAI Osteoarthritis Initiative
OIA Object Induced Actions
PACE Post-Hoc Architecture-Agnostic Concept Extractor
PASCAL Pattern Analysis, Statistical Modelling and Computational Learning
PCA Principal Component Analysis
PCBM Post-hoc Concept Bottleneck models
PH Post-Hoc
RCNN Region-based Convolutional Neural Network
RGB Red, Green and Blue
ROAR RemOve And Retrain
SBN Semantic Bottleneck Networks
SEAL SEgmentation-Aware Loss
SENN Self-Explaining Neural Network
SHAP SHapley Additive exPlanations
SIIM Society for Imaging Informatics in Medicine
SLIC Simple Linear Iterative Clustering
SMS Semi-supervised
SRP Sparse Random Projection
SSN Superpixel Sampling Networks
SVM Support Vector Machine
TCAR Testing with Concept Activation Region
TCAV Testing with Concept Activation Vectors
UNS Unsupervised
VAE Variational AutoEncoder
XAI Explainable Artificial Intelligence
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to specific tasks. The underlying assumption of these methods is the hypothesis that inter-
pretability can be achieved by incorporating a function that maps human-understandable 
concepts to input features, which then predict output labels. There are numerous variations 
of CBNMs that have recently been developed that merit a thorough examination. These 
variations are discussed in the following sections, and a summary is provided in Table 3.

2.1.1  Concept Bottleneck Models (CBM)

Authors in [87] made an early attempt to develop a supervised CBNM by embedding 
human-interpretive labels such as ’joint space narrowing’ or ’undertail colour’ into a 
supervised ResNet model. The goal of [87] was to address the shortcomings of the prelimi-
nary versions of CBM [94, 95] which demonstrated a trade-off between model accuracy 
and interpretability. The fundamental concept of the bottleneck (BN) architecture was first 
proposed by [1] as a strategy for shrinking the dimensions of the input and output layers, 
resulting in an efficient and pragmatic model. Work in [96] aptly demonstrated the use of 
the bottleneck-based architecture for language recognition tasks, as shown in Fig. 6. The 
BN layer is strategically positioned at the centre of the DNN in this architecture, serving as 
the point where concepts are integrated into the training process.

The Concept Bottleneck Model (CBM) proposed in [87] is based on the Bottleneck 
(BN) design and accepts input features such as pixels, denoted as ( x ). The intermediate 
layer of the DNN is then resized to match the number of labelled concepts, embedding the 
concept ( c ), which corresponds to the activation layer during training. Finally, the con-
cept ( c ) is employed in order to forecast the output ( y ). During the training procedure, the 
CBM can be represented as x → c → y while during the testing procedure, it takes input 
( x ), predicts conceptĉ = g(x) , and then predicts ŷ = f (g(x)) from BN ĉ . [87] proposed 
three approaches to learning CBM(̂f , ĝ) : In jointly learning, the input is first trained to con-
ceptc → y , and then the concept is trained to outputĉ → y ; in independent learning, the 
true ( c ) or ground-truth concepts are used to map concept to output ( c → y ); and in sequen-
tial learning, the predicted concepts ( ̂c ) are used to map concept to output ( ̂c → y).

Authors in [87] attempted to meet three concept interpretation criteria in their work: 
interpretability (identifying the critical concepts for output y), predictability (predicting the 
output solely from concept ( c)), and intervenability (altering the predicted concept with 
true concepts c or ground-truth concepts). However, subsequent research by [97] revealed 
that both independent and collaborative CBM learning approaches fail to meet these three 
criteria. They used a saliency map as a post-hoc explanation method that does not interfere 
with training and attempts to visualise neural network output and understand CBM per-
formance. They investigate whether defined concepts used during training correctly corre-
late with input data. A model trained to recognise the concept ’wing pattern’, for example, 
should logically focus on the wing patterns, but instead on the entire bird. Based on [97], 
as the joint BN model learns the output before the concept, independent BN learning may 
be the specific approach capable of meeting the three interpretation criteria.

CBM demonstrated impressive performance and provides numerous benefits, such as 
assisting in identifying incorrect predictions due to incorrect concept predictions by track-
ing weights in the model [88]. It supports interventions on concepts, which allow the user 
to modify the prediction functions by instantly changing the value of the concept [87]. 
They are more at ease with expert rational thinking because they used concept knowledge 
during the decision-making process [98]. For unseen datasets, it can mitigate dataset and 
covariate shift issues that are common in DNN models [87]. It can also provide causal 
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relationships between x → c → y and they are adaptable and do not require c to cause y . As 
a result, it is useful for models where determining the causal c → y graph is difficult [87]. 
If large concept labels are available, a smaller training dataset may be required [87]. How-
ever, variant studies such as [98] pointed out that CBM models do not provide adequate 
information about which concept(s) are good enough and important to solve an assigned 
problem. The authors of [87, 88, 98] confirmed that they require a very large prepared 
concept annotation dataset to be used during the learning process to train the BN, whereas 
[89] revealed that proposing a high performance model with a small class of concepts is 
extremely difficult. The number of concept labels is limited by the DNN layer dimension. 
The authors of [88] observed that these types of models must complete all training tasks 
for all training datasets using concept-label datasets, which is a significant limitation. The 
work in [89] demonstrated that CBM is limited to supervised concepts and does not sup-
port unsupervised concepts, whereas the authors of [88] argued that they are incapable 
of meeting the precision of unrestricted NN models, reducing the motivation to deploy in 
real-world applications. Furthermore, it is unclear how to improve the model when appro-
priate concepts are unavailable. Researchers in [97] suggested that expecting access to con-
cepts alone to fully capture the relationships between input data points and output labels is 
unrealistic.

2.1.2  CBM‑AUC—Concept Bottleneck Model with Additional Unsupervised Concepts

The work in [89] presented a novel methodology for overcoming the performance limi-
tations of CBM [87] when only a small set of concept-labeled datasets is available. The 
dimensions of the DNN’s intermediate layer (the bottleneck), as shown in Fig. 6 must be 
reduced to the number of concept labels. When the number of concept labels is limited, 
this frequently results in suboptimal performance. The authors of [89] proposed a high-
performance model using a combination of Self-Explaining Neural Network (SENN) as 
an auxiliary unsupervised concept and supervised CBM, as shown in Fig.  7. SENN is 
an unsupervised learning approach that uses a linear model to learn concepts automati-
cally [29]. The target task of SENN is computed as Eq. 1, where �(x) is the calculation of 
weights for each concept label and  cim(.) is the encoder layer for the unsupervised concept.

To understand how factors affect concept model performance, Yoshihide and Keigo [99] 
used the Inception-v3 network pretrained with ImageNet and the Faster RCNN network 
[100] pretrained with the COCO [101] dataset. They tested both network architectures by 

(1)f (x) = �(x)Tcim(x)

Fig. 6  Illustration of bottleneck-
based architecture proposed by 
[96]
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replacing the intermediate layer of Faster RCNN with Inception-v3 and using the CUB 
[102] and BDD-OIA [103] datasets for concept learning. The experiments revealed that 
Inception-related networks are not a good choice for the BDD-OIA dataset, and that Faster 
RCNN performs better. They also compared a proposed concept-based model to multi-task 
models under three conditions: global feature [103], local feature [104] and global + local 
features [103]. Experiments revealed that the proposed CBM-AUC performs better for con-
cept learning. The multi-task model with local features, on the other hand, outperforms 
the target task. Furthermore, by comparing the results, they discovered a low correlation 
between supervised and unsupervised concepts. As a result, they believe that unsupervised 
learning can aid in providing consistent correlations. Furthermore, they discovered a con-
dition in which the concept output appears to be correct but does not provide a specific 
concept used during training.

As a result, the authors of [89] identified three key findings from the experimental 
results that merit further investigation: 1) The network architecture and number of inter-
mediate layers used have a significant impact on the performance of concept-supported 
models. 2) Using a CBM completely unsupervised can improve model performance. 3) 
With a small concept annotation dataset, it is difficult to generate accurate output concepts, 
necessitating the creation of additional concept labels.

2.1.3  PCBM—Post‑hoc Concept Bottleneck Models

The gripping post-hoc CBM proposed by [88] addressed three key limitations of the 
CBM built earlier by [87]. First, CBMs require concept classes during the training 
phase, which means that the training dataset must map to available concept classes. 
This is impractical for real-world problems because existing training datasets rarely 
have concept labels. Second, in the absence of appropriate concepts, it is unknown 
how to improve the model while maintaining the original network efficiency and model 
interpretability interest. Third, CBM allows only local intervention for a single input 
data set to improve model performance. However, it is unclear how to improve the 
overall model performance with human associations. Authors in [88] proposed a mul-
timodal CBM to create concept representations using a text encoder and natural lan-
guage form of concept descriptors in order to eliminate the concept annotation pro-
cedure. Furthermore, when efficient concept labels are unavailable and interpretation 

Fig. 7  CBM-AUC network overview proposed by [89]
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performance is poor, they embed a residual module to restore the initial DNN model 
performance, which is referred to as the PCBM-h hybrid model. They also added 
global intervention capability to the proposed model in order to improve it through 
human evaluation and changing the model prediction score.

The PCBM [88] approach starts with learning concepts using CAV (Concept Acti-
vation Vectors) [69] to link input features and activation layer into the set of concepts. 
In this case, the concept dictionary can be created manually, as in the ConceptSHAP 
method [105], or automatically, as in the ACE method [106]. The linear SVM classi-
fier was then trained with 50 positive and negative concept samples for each concept, 
as described in [69]. They then modified a multimodal CLIP (Contrastive Language-
Image Pre-Training) model proposed by [107] to train concept vectors using both 
image and text encoders. They used ConceptNet [108] to generate relevant concepts 
for each class as subclasses with a few types of relations such as hasA (for example, 
Cat hasA ’sharp claws’). Following that, the interpretation component connects con-
cept subclasses to the prediction, which can be described asNc → y.

The authors performed a thorough evaluation of the Post-hoc Concept Bottleneck 
Model (PCBM) using a variety of network architectures and datasets, demonstrat-
ing the robustness of the proposed methods. The authors used the Multimodal CLIP-
ResNet50 network [107] trained on the CIFAR10 and CIFAR100 datasets [109] in the 
first experiment. The Concept Bottleneck (CB) model was trained for concept learning 
using 170 concept classes derived from the BRODEN visual dataset [110], as used in 
[111]. Following that, a similar network and concept annotation dataset were used in 
the second experiment, but with the addition of the COCO-Stuff dataset [112], which 
includes 20 classes of objects [113]. In the third experiment, the authors used the same 
methodology as in [87] to train the ResNet18 network [1]with 112 concept labels from 
the CUB concept dataset [102]. The fourth experiment used an existing Inception net-
work trained on the HAM10000 dataset [114], as proposed by [115]. The HAM10000 
dataset contains dermoscopic images of skin lesions that are used to determine whether 
they are benign or malignant. Eight concepts from the Derm7pt dataset [116] were 
used for malignancy identification in the concept learning task. Finally, in the fifth 
experiment, the previously mentioned Inception model trained with HAM10000 was 
tested under real-world conditions for Melanoma Classification using the SIIM-ISIC 
dataset [117].

With the exception of the CLIP-ResNet50 architecture trained with CIFAR100, the 
results from these five disparate settings encompassing various networks and datasets 
demonstrated the exceptional performance of the proposed PCBM. This accomplish-
ment attests to PCBM’s successful proposition of an interpretative methodology for 
black-box models while retaining the original model’s performance. The findings also 
highlighted the importance of the concept learning dataset as a critical component in 
concept-based models, revealing that an inappropriate concept dataset can introduce 
biases [118]. Nonetheless, this study leaves some unanswered questions, particularly 
regarding the embedding of human-defined concept bottleneck models for large train-
ing datasets like ImageNet. The generation of concept subclasses using an unsuper-
vised approach is still an open challenge that merits further investigation in order to 
improve the capabilities of concept bottleneck models. Furthermore, while the authors 
mention the possibility of incorporating human input in multimodal models, the meth-
odology for effectively utilising expert commentary to improve concept bottleneck 
models is unknown.
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2.1.4  Hierarchical concept bottleneck models

One of the limitations of Concept Bottleneck (CB) models, as previously stated, is the 
requirement for critical changes to the network architecture in order to reduce the dimen-
sions of the Bottleneck (BN) layer to match the number of concept labels. This requirement 
may have an adverse effect on model precision by requiring a large number of concept 
annotations to improve model precision or by causing the omission of some input infor-
mation. In light of this, authors in [90] attempted to build a Concept Bottleneck model 
that strikes a balanced correlation between model performance, the effort involved in data 
annotation, and the explanation task. The authors aimed to use a Concept Bottleneck-based 
model to improve multi-label and fine-grained image classification, with the goal of reduc-
ing mismatches. Furthermore, based on the mean Average Precision (mAP) formula, this 
study introduced new evaluation metrics specifically tailored for supervised Concept Bot-
tleneck explanation models. Finally, the Concept Bottleneck model’s attributes were used 
to facilitate an object tracking approach via the explanation task.

The first step in creating the proposed Hierarchical Concept Bottleneck model was to 
perform a multi-label classification task with hierarchically defined concepts that included 
both lower-level concepts (e.g., fruit, colour, shape) and higher-level concepts (e.g., apple). 
This hierarchical approach is associated with improved predictions and is capable of cap-
turing valuable information, particularly when confronted with novel data distributions. 
For semantic segmentation and classification, a mask R-CNN network [119] is used. 
Lower-level concepts are used as input for the concept BN [87], which provides higher-
level concepts. The basis loss function has been modified in this work as Eq. 2 to be appli-
cable in concept explanation models, where K and N denote the number of training exam-
ples and high-level concept classes, respectively, and Ci denotes the number of subclasses 
in each concept class. The different objects in the image and colour attributes are extracted 
as a lower-level input concept for the MLP (Multi-Layer Perceptron) classifier to provide 
a higher-level concept or logical category during fine classification. Then, for each pair of 
higher level concepts i and j, a new offered concept evaluation metric mAP is modified as 
Eq. 3 to calculate the median of normalised Euclidean distance i and j . Here, Ok

i,f
 denotes 

the one-time encoding of the lower-level concepts for item k in class i, and dimension F . 
Finally, the model feeds the Concept Bottleneck the lower-level attributes as well as colour 
information from specific regions in a pair of images. The probability associated with each 
pair of images is then calculated in order to determine the similarities between the objects 
they contain.

The researchers chose the Resnet50 network [1], which was pre-trained on the Ima-
geNet dataset, as the supervised deep learning model in the study, along with the con-
cept BN model proposed by [87]. The authors used a proprietary smart fridges dataset for 
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the Hierarchical Concept annotation dataset, which contains images with various items, 
angles of view, and conditions. The annotations are divided into two categories: higher-
level attributes and lower-level attributes. The dataset was created with five categories in 
mind for the lower-level concept attributes: ’Logical groups’ (e.g. fruit, vegetable, Dairy), 
’Consistency’ (e.g. hard, soft, liquid), ’Shapes’ (e.g. round, oval, cylinder), ’3D Shapes’ 
(e.g. cup, flat, tube), and ’Colour histogram’ in L*a*b colour space. The fridge dataset was 
annotated based on human-understandable categories called ’Logical categories’ such as 
apple, fish, meet, and so on for higher-level concept annotations.

To better understand the factors influencing the concept-supported interpretation task, 
the proposed Hierarchical Concept Bottleneck model was tested in two different scenarios. 
The lower-level concept attributes were used as input for the Concept Bottleneck model 
generated by the Mask R-CNN model in the first scenario. In the second scenario, the Con-
cept Bottleneck model made use of ground-truth data. The authors discovered that when 
fed ground-truth annotations, the Concept Bottleneck model performed significantly better, 
whereas using features from the Mask R-CNN model resulted in lower performance due 
to misclassification of hierarchical labels. This comparison demonstrated the importance 
of accurate feature identification methods in concept-supported interpretation tasks. The 
research found that the Concept Bottleneck model could compete with Mask R-CNN mod-
els in classification tasks while avoiding confusion and generalising for unseen samples 
from similar data distributions. The performance of the Hierarchical Concept Bottleneck 
model for completely unknown datasets with new data distributions, on the other hand, 
remains unknown.

2.1.5  CBSD—Concept Bottleneck Shift Detection

The issue of dataset shift is one of the most significant barriers to achieving the best per-
formance from DL models [120–122]. It primarily refers to unexpected results in a new 
dataset that are not seen by the model during the learning process and have different data 
distributions. This limitation can be problematic for real-world prediction models [14, 
123]. To address this limitation, [92] proposed the CBSD (Concept Bottleneck Shift Detec-
tion) model, which uses concept-supported interpretation to identify and analyse concept 
attributes influenced by data shift in vision tasks. In comparison to common shift detection 
methods such as BBSD (black-box shift detection) [124, 125], the proposed idea is signifi-
cantly useful for detecting the major cause of shift in a new dataset and improving the sys-
tem, particularly in a human-readable format. Furthermore, a new statistical concept-based 
assessment metric called CSS (concept shift score) was introduced to recognise whether 
the model is suffering from shift problem, as shown in Eq. 4, to compute CSS for concept 
( t ) of the i th concept (higher CSS specify higher shifts).

CBSD [92] is based on the decomposition idea of core CBM [87] and [98] to reduce 
the dimension of the intermediate layer. In which a pretrained network classifier decom-
poses input data to the concept g ∶ X → C and concept attributes to the target h ∶ C → Y  . 
A trained network architecture with three convolutional layers, two connected layers 
using RELUs, and a Softmax generated layer was deployed for the BBSD and DR com-
ponents in both decomposed tasks. A sequential multi-task concept BN model was used 
for the CBSD component, with BBSD architecture used for the input-to-concept task and 

(4)CSS(t, i) =
ti∑k

l=1
tl
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logistic regression used for the output-to-concept task. In this study, dSprites [126, 127] 
and 3D-Shapes [128, 129] were used as concept datasets, with concepts such as ’Shape’, 
’Scale’, and ’Rotation’ used to detect a shift degree of CBSD in each concept. The input 
data was used to reduce the representation dimension, as shown in Fig. 8. The statistical 
scores are then used to detect shifts. The concept explanation concludes with the use of 
introduced CSS to demonstrate the degree of shift in each learned concept (i.e., among all 
concepts, ’Shape’ achieved the highest CSS, indicating that it is highly affected by the shift 
problem and should be considered to improve the proposed DL model).

The authors of [92] used common techniques to generate artificial shifts such as image, 
knockout, Gaussian, and adversarial shifts. The dimensionality reduction component of the 
CBSD has been tested and compared to other DR techniques such as PCA (principal com-
ponent analysis), SRP (sparse random projection), BBSDs that use softmax results, and 
BBSDh that use hard-thresholded results. The authors used MMD (maximum mean dis-
crepancy) [130], KS (Kolmogorov–Smirnov) test and Bonferroni correction [131] to evalu-
ate multi-dimensional representations such as proposed CBSDs, BBSDs, PCA, and SRP, 
and the Chi-squared test to assess CBSDh and BBSDh. The experiment demonstrated that 
CBSD outperformed common BBSD in detecting shift issue triggers. Furthermore, CBSD 
successfully detected shifts where BBSD, PCA, and SRP methods failed completely. How-
ever, it is unclear how expert comments can be incorporated into the CBSD model to mod-
ify concept learning and prediction functions.

2.1.6  Debiased concept bottleneck model

One of the major threats to DL model accuracy is confounding attributes. According to 
various studies, confounding attributes can cause a variety of problems, including creating 
unreliable training datasets [21], being a major cause of failed model generalisation tasks 
[14], being a significant degrade factor in Causal-based models [132, 133], and providing 
falsely accurate models [134]. Authors in [93] proposed a novel generative debiased con-
cept BN Model to eliminate confounding attributes and biases and improve interpretation 
model to address the problem of confounding attributes. The authors’ goal in this study 
is to find a correlation between concepts and confounding attributes in input data points 
using a novel causal prior graph shown in Eq. 5, where d denotes unconfounded concepts, 
u denotes a confounding attribute between concept c and input data x , and f1, f2, f3 , denotes 
identifying functions. Proposed debiased CBM can then be presented as y → d → x which 
begins with label-to-concept and then moves to concept-to-input.

Fig. 8  Diagram pipeline of CBSD model proposed by [92]
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The proposed generative model’s hierarchy progresses from nodes with more general 
information, such as labels, to nodes with more specific information, such as pixel values. 
The ideal graph begins with target label y (first node), then proceeds to concept c (second 
node) and finally to features x (final node). In another setting, more realistic graph defined 
where both feature x and concept c are influenced by unknown confounding attributesu . 
Another graph setting for model completeness was provided, with the confounding connec-
tion of u → c removed. The Two-Stage Regression used in this work for CBM was inspired 
by [135] where the first stage regress input feature x in terms of Causal variable z to gener-
atex̂ ,, and the second stage regress label y in terms of x̂ (i.e.z → x → y).

Authors in [93] used CBM proposed by [87, 91] and the TCAV (Testing with Concept 
Activation Vectors) method [69] to create the concept BN explanation model. For the task 
at hand, they used the ResNet152 network [1]. To evaluate concept explanation perfor-
mance, the CUB dataset [102] with four different certainty scores (e.g., not visible, guess-
ing, probably, and definitely) and average concept annotation scores was used.

The authors used the ROAR (RemOve And Retrain) framework [136], to compare the 
regular model to the debiased one to demonstrate the accuracy of the proposed debiased 
Concept Bottleneck Model (CBM) interpretation. The results of the experiment demon-
strated robustness performance for both synthetic datasets (CUB) and real-world datasets. 
The concept is strongly associated with beneficial benefits such as improving high-level 
explanations, leveraging prediction task via human-understandable variables, increasing 
model generalisation task, and removing unwanted context during explanation task. How-
ever, how to fully achieve performance satisfaction in terms of completeness metric [105] 
of explanation models via debiased concept method remains a mystery. As a result, adding 
another two-stage regression method in future research may help to overcome this limita-
tion and provide a more accurate model.

2.1.7  SBN—Semantic Bottleneck Networks

In semantic and meaningful segmentation applications, the lack of human-understandable 
methods is clearly visible. We are primarily looking for human understandable areas in 
visual materials in the semantic segmentation task. However, the common DNN architec-
ture learns from data and produces representations as an output without involving human-
readable features in the loop. As a result, the concept BN interpretation approach can be 
extremely beneficial in semantic and meaningful segmentation. Authors in [91] proposed 
the SBN (Semantic Bottleneck Networks) model to use human reasoning as a higher-level 
feature and improve the semantic segmentation task. The authors reduced the lower-level 
feature dimensions from thousands to ten meaningful concepts by employing the concept 
of BN intermediate layer. The method is not only useful for analysing the source of errors, 
but it also contributes to a high-level testing approach through direct manipulation of the 
BN layer. The representations in the backbone network architecture’s intermediate layer 
(shown as the first traditional architecture) mapped to the added BN layer, and then the net-
work was finetuned with new changes (shown as the second traditional architecture). The 
confidence prediction score was used as an evaluation criterion in this study, which takes 
pixels from all test samples and predicts confidence by computing the difference value 
between the top two largest softmax activation layers.

(5)
d = f1(y) + ∈1,

c = d + h(u),

x = f2(u, d) + f3(y) + ∈2,
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PSPNet [137] was used as a network architecture, which was trained with the City-
scapes dataset [138]. Annotations in Cityscapes are coarse and fine-grained. For concept 
BN learning, the Broden + [139] dataset was used. The results of the experiments in this 
study demonstrated the obvious benefit of embedding concept BN into DNN architecture, 
which can surprisingly help to obtain meaningful partitioning in visual related tasks. How-
ever, the overall accuracy of concept-based output remains far from ideal. According to 
[91], only 75% of all samples could provide accurate results, which is insufficient for real-
world case studies. As a result, the open research question in this study is how to improve 
SBN-based model precision by embedding multiple BN layers in different representation 
layers.

2.2  Non‑bottleneck‑based concept uncovering methods

Most CBNM interpretation methods, as discussed in Sect.  2.1, required predefined con-
cept annotation datasets [87–93]. However, because concept labelling frequently requires 
experts for manual labelling and is impractical for real-world cases due to the high cost of 
creation [89, 98], the question of how to discover human-understandable concepts auto-
matically and develop interpretation models based on these discovered concepts arises. 
This section examines concept-supported interpretation methods that address this question, 
as shown in Table 4. The terms ’concept extraction’ and ’concept discovery’ are frequently 
used in this field of study to refer to the unsupervised automatic discovery of concepts from 
datasets.

The authors in [106] proposed an earlier work in concept uncovering models called 
ACE (Automatic Concept-based Explanations). With three major conceptual validation 
properties, it provides a method for extracting visual meaningful units that are important 
for neural networks and understandable to humans. It used SLIC [144] to locate the desired 
region of interest in order to satisfy the ’Concept Meaningfulness’ property, K-means Clus-
tering [145], and Euclidean Distance as a similarity metric in order to satisfy the ’Concept 
Coherency’ property, and finally the idea of linear measurable and TCAV [69] testing score 
in order to satisfy the ’Concept Importance’ property and extract the important concepts. 
ACE performed well in extracting conceptual features without concept annotations, but 
it has several drawbacks: Inconsistent learning of weights for different samples, which is 
a common problem in linear interpretation methods [146]; ACE uses TCAV, which only 
provides concepts relevant to the target class, and it is unclear how to measure whether 
the provided concepts are fully important for the prediction output [86, 146]; During the 
process of inverting the features back to their initial dimensions, a large amount of input 
information can be overlooked [147]; The conceptual outputs of ACE may not always 
be faithful to the input information and may have less fidelity due to the use of K-mean 
as a dimension reduction method rather than PCA [146, 147]; The segmentation method 
employed is independent and may fail to extract semantic concepts, resulting in low fidelity 
to the original model [146].

Authors in [146] proposed Invertible Concept-based Explanations (ICE) to address 
some significant shortcomings in ACE [106] and improve the performance of the con-
ceptual discovery model. It tries to provide: Consistent learning of feature weights; fidel-
ity estimation by using NMF (non-negative factorization matrix) as dimension reduction 
method to provide NCAVs (Non-negative Concepts Activation Vectors) instead of K-mean 
matrix factorization; Accurate TCAV measurement to determine whether the provided 
concepts are fully significant and faithful to the primary CNN model. Through human 
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interpretation experiments, ICE [146] demonstrated superior concept uncovering to ACE 
and PCA. ICE, on the other hand, only considers the concept weights of subspaces in a sin-
gle dimension and thus in a single decision manner. It provides interpretation using a linear 
function of estimation, which may not be fully applicable to complex real-world problems.

The work in [147] proposed an innovative model design called TreeICE to take advan-
tage of ICE outperformance while addressing its shortcomings using a Decision Tree (DT) 
classifier [148, 149]. Work in [150] proposed an earlier successful combination of CNN 
and DT model called CNN2DT to interpret model prediction in a human comprehensi-
ble way. However, CNN2DT required a labor-intensive pre-defined semantic label data-
set and was incompatible with datasets with variations [151]. Another recent attempt in 
this area is ACDTE (Automated Concept-based Decision Tree Explanations) [152] which 
extracts higher-level features and provides a counterfactual interpretation. However, this 
model is limited by linear-based model constraints. TreeICE uses ICE as a baseline and 
DT to provide accurate information about important concepts and their importance for pre-
diction output. It employs NMF rather than clustering to reduce the feature dimension, as 
demonstrated by [146], and then generates NCAV scores to provide accurate conceptual 
importance. The experiments were conducted using both human-experience and computa-
tional methods, with interpretation performance evaluated using five Satisfaction metrics 
proposed by [153]. The results revealed that decision tree interpretation outperformed lin-
ear ones, resulting in a significant improvement in fidelity over ICE. Furthermore, due to 
the tree-based meaningful structure, DT-based interpretation can strongly associate with 
expert understanding and can be used for complex CNN models. However, the proposed 
TreeICE framework as an automatic conceptual extraction model requires further develop-
ment in order to be fully countable for some real-world problems and difficult concepts 
such as medical.

Authors in [154] proposed the most recent attempt at automatic concept uncovering as 
an MCD (Multi-dimensional Concept Discovery). It is a linear conceptual model compa-
rable with [155] that does not require retraining and is very similar to ICE [146]. Unlike 
other methods such as ConceptSHAP [105], MACE [156], and PACE [157], which aim to 
learn concepts before mapping them to attribute space, MCD intends to shorten the con-
cept extraction procedure by obtaining importance scores directly from the primary model. 
MCD’s concept discovery method is similar to [158], but with the important advantage 
of using multiple directions of feature space, allowing for multi-dimensionality, whereas 
[158] is limited to a single orthogonal direction. In other words, MCD is an outstanding 
extension of previous works in terms of addressing important limitations and fully satisfy-
ing conceptual interpretation. ’Completeness’ is one of the essential interpretation proper-
ties that previous studies have not fully achieved [153, 159]. Whereas [154] aims to achieve 
not only a massive improvement in interpretation models but also a high level of concept 
completeness in terms of actual model reasoning comprehension. MCD’s main advantage 
over previous works such as ACE [106], ICE [146], CNN2DT [150], and ACDTE [152] 
is concept designation in multiple directions. The concepts are obtained from the hidden 
intermediate layer in various directions such as single, orthogonal, and arbitrary, resulting 
in the provision of a completeness correlate of conceptual contributions. This significant 
advancement in conceptual discovering attributes has the potential to be extremely benefi-
cial in complex domains such as natural expertise severity degree in cancer detection areas.

We reviewed several concept-supported interpretation methods in this section, including 
supervised, semi-supervised, and unsupervised approaches, as summarised in Tables 3 and 
4. Based on existing efforts, these methods can be compared from various perspectives, 
which we outline in Table 5 as comparison properties.
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2.3  Comparison of Existing Methods: Strengths and Weaknesses

Various model characteristics indicate their respective weaknesses and strengths, 
according to a diverse body of literature on current concept-supported interpretation 
methods. Table 6 summarises these elements, which can be divided into three catego-
ries: concept data, model performance, and model editing via human intervention.

Concept Data: Models with only pre-defined concept classes perform well within 
those classes but struggle when concept labels are missing. Authors in [163] pointed 
out that meaningful attributes cannot be extracted completely unsupervised. As a 
result, high-level interpretation models that rely on predefined human-constructed 
annotations, as well as automatic concept discovery, are regarded as strengths. Fur-
thermore, we found two studies that used innovative, data-efficient approaches to 
address the limitations of current conceptual data availability. PCBM [88] created 
a multimodal method for improving concept learning tasks by combining a text 
encoder and language structure with an image encoder. MCD [154] pioneered a novel 
multidimensional approach for extracting concepts directly from the primary model 
in multiple directions, a significant improvement over previous works such as ACE, 
ConceptSHAP, and ICE.

Table 5  Main comparison properties of existing concept-supported interpretation methods

Comparison Properties Description of Comparable Properties

Predefined concept dataset is required The concept annotated dataset is a key component of 
conceptual interpretation methods that aid in train-
ing CNN with human-readable attributes

Unsupervised concept generation The removal of the manual concept annotation task, 
which is extremely expensive and impractical for 
real-world problems, is highly associated

The cost–benefit analysis of model and interpreta-
tion precision

The preferred interpretation method preserves the 
original model performance while providing inter-
pretation to the end user

Interpretation can be either local or global The global interpretation contributes to the overall 
trained CNN learned, whereas the local inter-
pretation explains individual attributes that are 
frequently overlooked in the global interpreta-
tion. Thus, the method with both global and local 
interpretation has the advantage of allowing us to 
comprehend the entire structure

Interpretation based on intrinsic or post-hoc criteria Intrinsically-based methods rely on and are embed-
ded within CNN architecture and are used during 
the training phase. Post-hoc methods, on the other 
hand, use an independent model and are applied 
after the training process

Provide sufficient concept information Interpretation methods must provide sufficient infor-
mation about each concept(s) and whether or not 
they are important in explaining the assigned task

Intervention at the local or global level The intervention capability can be very useful in 
allowing experts to modify the prediction function 
via the human evaluation process and thus improve 
the proposed CNN model
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Model Performance: A variety of factors contribute to the development of concept 
interpretation methods that perform optimally. Desired approaches frequently include 
both local and global explanations. While global explanations provide a broad under-
standing of the model’s overall function, they are computationally expensive. Local 
explanations, on the other hand, focus on individual attributes, which can be compu-
tationally cheaper but may be overlooked in a global context. Due to their reliance on 
binarized concepts, concept bottleneck-based models generally require more compu-
tation [98]. Another critical factor is the trade-off between the primary convolutional 
model and the interpretation method; the ideal explanation method should provide 
insights while sacrificing prediction accuracy to a minimum. A method with a higher 
importance score provides more detailed information and more accurate interpretation.
Model Editing Through Human Intervention: Concept-supported interpretation 
methods that allow users to instantly change concept values and improve prediction 
functions provide significant benefits. Ideally, we want to use expert input to edit models 
in order to reduce computational complexity, simplify complex models, integrate expert 
feedback directly into the model, and optimise through active learning. Editing can be 
applied to individual instances or globally to improve overall model performance. As 
a result, we anticipate that both local and global human interventions will significantly 
strengthen the strengths of these models.

3  Visual concept attribute datasets

Based on the literature, there are several datasets used for concept-supported explanations, 
which are often referred to as probe datasets and are distinct from training datasets. Instead 
of meaningless features like pixels, probe datasets contain concept labels associated with 
higher-level or human-understandable features. In a bird identification task, for example, 
the concepts can be defined as ’Beak,’ which has attributes such as Shape, Colour, and 
Length that are equally meaningful to humans and black-box models. In contrast, training 
datasets contain only raw pixel input images. In this section, we look at available concept 
and training datasets that are relevant to the concept-supported research domain, as sum-
marised in Tables 7 and 8.

3.1  CUB—Caltech‑UCSD birds‑200–2011

The CUB dataset [102] contains 11,788 samples from 200 different bird species (e.g., 
Acadian Flycatcher, American Crow, Cardinal), as shown in Fig. 9. Each sample was anno-
tated with bird categories, 15 part location classes, 28 attribute-groupings, 312 concept 
attributes in binary format (Exists, Doesn’t Exist), certainty level (Not Visible, Guessing, 
Probably, Definitely), and a single bird bounding box. In concept-supported modelling, 
CUB is the most useful probe dataset. To achieve more accurate results, some studies, such 
as [87–89, 93, 98, 160, 164] used 112 concept labels that appear for equal or greater than 
ten classes.

Some examples of concept part location and attribute-groupings in CUB datasets: 
‘Beak’ has [billShape, billColor, BillLength], ‘Belly’ has [BellyPattern, BellyColor], 
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‘Throat’ has [ThroatColor], ‘Crown’ has [CrownColor], ‘Tail’ has [UpperTailColor, Under-
TailColor, TailPattern, TailShape].

3.2  BRODEN—Broadly and Densely Labelled Dataset

BRODEN [143]] is the second most commonly used dataset in concept-supported inter-
pretation research. BRODEN is made up of four distinct labelled and densely visual sam-
ple datasets: ADE20k [1, 165], PASCAL [166], OpenSurfaces [167], and DTD [168]. It 
contains 1376 concept labels and 62,000 image samples from various scene (468), object 
(584), material (32), object-part (234), texture (47), and colour (11) types. All concept 
classes are normalised and annotated with one of 11 colour concepts in [169]. Recent stud-
ies used the BRODEN dataset in part for higher-level model learning: [88] used 170 con-
cepts, [83] used 660 concept labels with 30 K samples, [110] used 682 concepts of scenes 
and texture, and [91] used 377 material and object part concept labels. Figure 10 shows an 
image sample from the BRODEN dataset.

3.3  CelebA—CelebFaces Attributes Dataset

CelebA [170] is a large celebrity image face sample with over 200 K samples, annotated 
with 10,177 identities, 40 labels face attributes (e.g. Bald, Bangs, Big_Lips, Big_Nose, 
Black_Hair), and 5 landmark locations (e.g. lefteye_x, lefteye_y, nose_x, nose_y). All 
image samples in Fig.  11 were resized to 128 * 128 pixels aligned in the image centre. 
Many concept learning methods use it, including CaCE [141], DISSECT [162], GlanceN-
ets [171], and [172].

Fig. 9  Examples of CUB datasets. The birds’ type from left to right: ‘Cardinal’, ‘Common Yellowthroat’, 
‘Gray Crowned Rosy Finch’, ‘Yellow Headed Blackbird’, ‘Winter Wren’, ‘Cedar Waxwing’, ‘Pine Warbler’, 
‘Indigo Bunting’, ‘Painted Bunting’

Fig. 10  Samples of BRODEN dataset. Each pair images from left to right: concept ‘Object’ (flower), con-
cept ‘Color’ (pink), concept ‘Object Part’ (headboard), concept ‘Scene’ (street), and concept ‘Texture’ 
(swirly)

Fig. 11  CelebA dataset concept samples. Each pair images from left to right: concept ‘Eyeglasses’, concept 
‘Bangs’, concept ‘Wavy Hair’, concept ‘Mustache’, concept ‘Smiling’
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3.4  dSprites dataset

The work in [127] proposed well-created 2D shape samples, which are frequently used in 
unsupervised approaches. It consists of six concept labels with their defined values: ‘Color’ 
[White], ‘Shape’ [square, ellipse, heart], ‘Scale’ [6 values linearly spaced in [0.5, 1]], ‘Ori-
entation’ [40 values in [0, 2 pi]], ‘Position X’ [32 values in [0, 1]], ‘Position Y’ [32 values 
in [0, 1]], which generate over 737 K image samples. Images samples in 64*64 pixel and 
black and white format, as shown in Fig. 12, are used in some recent conceptual explana-
tion efforts such as CBSD [92], CME [98], GlanceNets [171].

3.5  Other datasets

Other datasets that have been used in concept studies include: The 3D-Shapes dataset [128, 
129, 162] contains 480 K images of 3D shapes in 64*64 pixels and RGB format. It created 
based on six concepts and their values: ’Floor hue’ [10 values linearly spaced in [0, 1]], 
’Wall hue’ [10 values linearly spaced in [0, 1]], ’Object hue’ [10 values linearly spaced in 
[0, 1]], ’Scale’ [8 values linearly spaced in [0, 1]], ’Shape’ [4 values in [0, 1, 2, 3]], and 
’Orientation’ [15 values linearly spaced in [-30, 30]]. The OAI—Osteoarthritis Initiative 
dataset [173] contains knee X-ray samples from patients at risk of knee osteoarthritis that 
were used in CBM [87, 97, 174], Cause and Effect Conceptual Framework [175]. Authors 
in [162] created the SynthDerm dataset, which contains dermatology melanoma skin 
lesions samples developed from [176]. It includes over 2600 image samples labelled with 
skin colour, lesion shape, size, and location concepts. Another dermatology-related dataset 
used for concept explanation model of malignancy detection task [88, 177] is Derm7pt 
[116]. Figure 12 depicts sample images from the aforementioned datasets.

4  Sufficiency metrics in concept‑supported XAI

The primary goal of interpretation is to make complex AI/ML/DL systems transparent 
to decision-makers, allowing them to determine whether the proposed model is rational 
enough to use. However, critical questions about the interpretation methods remain:

o What is the status of the explanation?
o Is the user happy?
o How well can end users comprehend model performance?

Fig. 12  Top-left set of images are the examples of dSprites dataset. Top-right set of images are the exam-
ples of 3D-Shapes dataset. Bottom-left set of images are the samples of SynthDerm dataset. Bottom-right 
set of images are the examples of Derm7p dataset
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o How reliable is the system?

This section examines key measurement scales of concept-supported interpretation 
methods used in various studies. As [159] points out, ’Fidelity’ is an important evalua-
tion metric that must be explicitly provided in post-hoc based models. However, when 
working on post-hoc based modelling, [88, 160] overlooked this sufficiency metric, but 
it was provided in some other studies [85, 146, 147, 152, 159]. Tables 9 and 10 show a 
summary of sufficiency metrics, their corresponding evaluation methods, and the equa-
tions that go with them.

4.1  Meaningfulness

Refers to each defined concept’s semantic meaning. It is frequently applicable when 
a collection of single features create meaningful conceptual attributes such as colour, 
object, and texture that have meaning for human grasp [186]. In other words, a single 
input feature must be meaningfully connected to defined concepts. In imaging systems, 
for example, input pixels ( Xi ) must be linked to conceptual features ( Ci ) in order to 
identify different objects or concepts in image samples [106]. In the case of clinical 
data, for example, there is a meaningful relationship between ’insulin’ and ’diabetes,’ 
but not between ’insulin’ and ’hypertension’ [38]. As a result, meaningfulness can be 
directly defined or assessed using human cognitive knowledge. Meaningfulness can 
refer to semantical segmentation methods such as SLIC [144, 187], LI-SLIC [188], 
SEAL [189], SSN [190], and FCN [191] from a functional standpoint.

4.2  Completeness

Explanation sufficiency or completeness indicate whether the proposed explanation is 
sufficient to fully interpret the model or whether additional efforts are required [25, 
105]. It collaborates to answer the following questions:

o Do end-users obtain a complete interpretation of the model?
o Is it possible to provide additional explanation?
o Have we defined or extracted enough conceptual features? [86, 159].

According to [192], the degree of interpretation completion can also be related to 
the lack of problem and target formalisation. Although the completeness metric was 
frequently overlooked in previous interpretation methods [25], some intriguing efforts 
have recently been made to measure it via concept completeness score [105, 154]. The 
quantification metric was proposed by ConceptSHAP [105] to identify the sufficiency 
and importance of high-level features. As a result, the low completeness score indicates 
the need for more concept-labels. ConceptSHAP calculates concept sufficiency based 
on final model prediction accuracy, whereas [154] calculates completeness based on 
inner parameters and concept weight vector. [154] proposed a multidimensional method 
for fully correlating concept features and addressing the sufficiency level of model 
reasoning.
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4.3  Importance

Denotes the level of contribution and significance of higher-level features for each model 
prediction class. The task of identifying important conceptual features is regarded as 
extremely difficult because ML models process lower-level features such as pixels while 
humans understand higher-level features such as objects. TCAV [69] was used in many 
studies [83, 106, 161] to convert an input lower-level feature and activation layer into 
human-understandable concept features and then quantify the sensitivity of concepts to 
model prediction. CAV, on the other hand, is subject to human bias due to the use of 
predefined concepts and a lack of fidelity to the original model. In other works, [146, 
147] used NCAV to automatically extract significant concepts and provide an impor-
tance score. Authors in [141] proposed VAE-CaCE to overcome TCAV’s limitations. 
TCAV has a significant difficulty distinguishing between confounding features such as 
’car’ and ’bicycle’ that are very similar. The causal effect of higher-level features is con-
sidered in VAE-CaCE to quantify the importance of concept for model decision. Work 
in [162] proposed DISSECT, a robust generative method for determining the importance 
score and efficiently distinguishing concepts with high similarities. The authors applied 
the Concept Traversals Sequences method to a challenging malignant and benign skin 
dataset. Work in [160] recently proposed CAR (Concept Activation Region) to extend 
the CAV [69] idea and propose an accurate explanation of confounding concepts. The 
linear approach of CAV allows the model to determine that ’Stripe’ is an important con-
cept for identifying ’Zebra,’ but what if we have other classes with ’Stripes,’ such as 
’Tiger, Lion’? CAR, try to generalise CAV to nonlinear decisions rather than linear ones 
and provide an accurate explanation.

4.4  Coherency

Indicates that samples from one class of concepts must be similar while being dissimilar to 
samples from another class of concepts. For example, in terms of bird species identification 
data [102], there is a concept of ’wing’ that contains various samples of wings that differ 
from the concept of ’leg’. Clustering methods such as K-Means [145], U-K-Means [193], 
Contrastive Clustering [194], and DeepClustering [195] can achieve coherency. In some 
studies [106, 186, 196], coherency was used to demonstrate the quality of extracted visual 
concepts. However, it frequently evaluates based on human experts’ comprehension rather 
than numerical scores [196].

4.5  Interpretability

Defined as the ability to provide explanation, preferably in the form of logical rules that are 
understandable by human knowledge [50]. The most difficult evaluation metric is interpret-
ability, and how it can be explicitly measured remains an open area of research [50, 85, 
197]. For decision trees models, the size (depth of tree structure) of model often used as 
measurement criteria [198]. The size (depth of tree structure) of the model is frequently 
used as a measurement criterion for decision tree models [198]. In some studies, the human 
experiment assessment was used to determine the degree of interpretability [147, 153, 
192].
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4.6  Fidelity

Indicates the level of precision with which the interpretation method can explain the black-
box model. It measures and approximates the level of faithfulness of proposed human 
understandable explanation for decision making function logic. To put it another way, 
how well it can mimic the primary model [85, 147, 159]. Due to the structure that embeds 
into primary model architecture, fidelity score may not require a thorough examination for 
intrinsic interpretation methods. However, it is required for post-hoc methods because their 
function of interpretation frequently differs from the primary model architecture [159]. 
Fidelity score is calculated by dividing the number of samples in the dataset by the ratio of 
correct explanation c of black-box b for the dataset c(x) = b(x), for (x, ŷ) ∈ Dtest . It can also 
be measured using common accuracy scores like F1-score and recall [85, 152].

5  Factors influencing the effectiveness of concept‑supported XAI

Based to the literature, conceptual interpretation methods can significantly contribute to 
closing the gap between advanced black-box models and human rational thinking. Cur-
rent methods, however, are still incapable of providing full interpretation matched to neural 
network approximation functions. Throughout our extensive research, we discovered six 
important factors that lead to efficient interpretation models, which we discussed in this 
section and summarised in Fig. 13. These factors provide useful guidance for current chal-
lenges and future research in this field.

5.1  Original neural network settings

The primary neural network model’s configuration has a significant impact on concept 
interpretation. As described in [110, 160], network depth is an important factor in improv-
ing concept interpretation accuracy, just as model prediction accuracy is explained in [199, 
200]. For example, [154] generated concept interpretation using three different networks 
and obtained very different results for nc = 5 (number of concepts): ResNet50 obtained 
a completeness score of 0.89, ResNet50(v2) obtained a completeness score of 0.49, and 
Swin-T obtained a completeness score of 0.84. In another case, [88] tested the explanation 

Fig. 13  Summarized factors influencing concept-supported interpretation efficiency (source: Authors’ own 
elaboration)
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model with CLIP-ResNet50, ResNet18, and Inception networks, as well as various pre-
training datasets, and found that the PCBM model performed well but had varying expla-
nation accuracy. In another study, [164] used three different interpretation methods: simple 
Baseline one [201], NetDissect [143], and TCAV [69] and discovered that model setting 
was more important than interpretation methods. Layer width or the number of nodes in 
each layer can be considered as another effective component that has received less attention 
than layer depth. As a result, it is critical to determine a maximum limit for layer depth and 
width, which will necessitate additional research.

5.2  Selection of target (Concept) layer

The task of concept learning is directly dependent on the choice of the target layer in a 
neural network. The feature learning structure of a neural network is hierarchical, which 
means that layers adjacent to the output (top layers) provide a higher-level feature rather 
than input layers (low layers) [6, 175, 202]. Many studies [146, 147, 161, 185] assumed 
that the final layer of a convolutional neural network is the best layer for feature mapping 
and concept learning. However, [98] pointed out that using a single layer causes a trade-off 
between lower and higher level conceptual attributes, and that multiple layers are required 
to address this problem. As a result, the target layer and the number of layers, whether sin-
gle or multiple, are significant factors on conceptual interpretation performance that must 
be discovered in the future [147].

5.3  Known and unknown confounding feature

According to [86, 93, 141, 160, 162], confounding attributes have a significant impact on 
interpretation accuracy. They frequently refer to an incorrect relationship between concept 
attributes and input data. According to [141], for example, the concepts ’car’ and ’bicycle’ 
have strong similar attributes and correlation in input information, which can confuse the 
interpretation task. To reduce the impact of known confounding factors, [141] proposed the 
VAE-CaCE score, which can accurately demonstrate the importance of a specific concept 
for its related label. Work in, [160] provided TCAR and performed a comparable analy-
sis between TCAR and TCAV in another work. They discovered that the TCAR extracted 
much better correct correlation between concepts and classes, demonstrating a strong con-
cept interpretation performance with strong corelation of concepts and labels. Authors 
in [93] proposed a method for debiasing and removing confounder vectors by employing 
a graph-based causality method to discover the relationship between an input feature, a 
concept, and a target class. Although interpretation methods can be used to identify con-
founded attributes [203, 204], it is unclear how unobserved confounded attributes can be 
detected [86].

5.4  Enhancing automatic concept generation methods

Recent interesting efforts for supervised concept interpretation tasks include Hierarchical 
CBM [90], PCBM [88], CBM-AUC [89], CBM [87], CAV [69], CBSD [92]. However, 
because of their reliance on predefined concept annotation datasets, these methods are 
impractical for real-world problems. Creating concept annotations is an extremely expen-
sive operation that frequently results in expert bias [89, 98]. While some efforts have been 
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made to automatically discover concepts, such as MCD [154], DISSECT [162], ConceptS-
HAP [105], CoCoX [161], TreeICE [147], ACDTE [152], ICE [146], ACE [106], they are 
still incapable of performing on large-scale systems with extensive data variations, such as 
ImageNet [88]. Although [163] argued that meaningful attributes cannot be extracted from 
fully unsupervised methods, semi-supervised methods can significantly reduce the cost of 
labelling predefined and human-constructed annotations. As a result, there is currently an 
active research line in concept discovering methods in an unsupervised manner that can 
have a significant impact on human-supported interpretation tasks.

5.5  The type of probe dataset

The effectiveness of conceptual interpretation is influenced not only by neural network set-
tings, but also by the type of probe dataset that is typically used for concept learning and 
differs from the training dataset. [164] highlighted this limitation by employing a simple 
classifier and interpreting a prediction task using two different probe datasets ADE20k [1, 
165] PASCAL [166], both of which contain scene concept labels. They discovered, how-
ever, that the interpretation performance varies greatly with different probe datasets. For 
example, when using the PASCAL dataset, the explanation provides the incorrect concept 
of ’dog’ for the classification of maize farm, whereas the ADE20k provided the correct 
concept interpretation. Due to insufficient concept labels, [88] raised the same issue and 
obtained varying interpretation performance using different datasets CIFAR10, CIFAR100 
[109], and COCO-Stuff [112]. They proposed using multimodal and textual concept 
descriptions to improve explanation with lower performance. There are currently only a 
few pre-defined probe datasets CUB [102], BRODEN [143], CelebA [170] that are limited 
to specific concepts but do not cover critical tasks such as complex cancer subtype detec-
tion or in general medical imaging that require a broad range of concepts to be understand-
able by experts and regulators. As a result, creating sufficient probe and concept datasets is 
an active research area that has a significant impact on interpretation effectiveness.

5.6  Standardized evaluation methodology

According to the literature, the evaluation methodology must be standardised in three 
major ways: 1) Sufficiency Metrics such as Meaningfulness [106, 186], Completeness [105, 
154], Importance [160–162]; 2) Experimental parameters such as neural network settings 
such as layer depth [110, 160], Layer width, and target layer [98, 146], and 3) test dataset 
selection [88, 164]. For example, as pointed out by [159], Fidelity scores are not always 
required for intrinsically based interpretation methods like MCD [154], Hierarchical CBM 
[90], CBM-AUC [89], but they are for post-hoc methods like PCBM [88], DISSECT [162], 
CAR [160]. Furthermore, the test samples should include both the best and worst cases to 
demonstrate the model’s performance in different scenarios, and they should not be cherry-
picked to include only the best samples [53]. However, current studies compared the pro-
posed methods to standard evaluation metrics using different efficiency criteria, so we 
don’t know how close or far they are. This standardisation greatly aids in understanding: 
a) the true current state of concept-supported methods, b) the areas that require improve-
ment in order to create fully adequate concept-supported interpretation models, and c) how 
far we are from meeting fully human understandable models for real-world systems and 
GDPR regulations.
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6  Evaluating the robustness of concept‑supported XAI methods

According to recent research, using concept-supported XAI improves vision-based com-
plex neural networks significantly. Using concept-supported interpretation techniques such 
as PCBM, CBSD, CAV, CBM, CAR, ICE, and MCD rather than traditional pixel-based 
methods such as Saliency Map, Grad-CAM, LIME, and SHAP provides significant ben-
efits for the next generation of vision-based deep and complex models. The following are 
key strengths of these concept-supported methods in addressing current CNN limitations, 
as illustrated in Fig. 14.

6.1  Addressing misgeneralization

Convolutional neural nets struggle with extrapolation and generalizing learned information 
to new conditions with previously unseen and unknown attributes [14, 205, 206]. However, 
due to conceptualization abilities, human reasoning can successfully generalize learned 
knowledge and apply it in new environments [207]. In contrast to traditional feature-based 
explainable methods, which rely on pixels and weights that are meaningless to humans, the 
new concept-supported approaches are highly aligned with human conceptualization think-
ing. As a result, these methods significantly associate with interpreting black-box mod-
els through higher-level attributes and human-understandable manners, which can signifi-
cantly aid in addressing the misgeneralization problem.

6.2  Simplification and reduced information overload

Deep convolutional nets, by definition, are trained with millions of parameters, resulting in 
simplification and reduced information overload. As an illustration, [208] proposed a com-
parison study for different CNN architectures with different number of layers and param-
eters, such as AlexNet: 60 M, VGGNet-16: 138 M, Inception-V1: 7 M, and ResNet-152: 
50 M (M refers to the number of parameters in Millions). Although deep models performed 
admirably in recent studies, the large number of trainable parameters in CNN models is 

Fig. 14  Significance and robustness of concept-supported Interpretation methods (source: Authors’ own 
elaboration)
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one of the key reasons for increasing complexity. However, the issue of model complex-
ity is a significant impediment to optimization and regularization tasks [209]. Princeton 
University scholars [164] recently conducted the core experiments to better understand the 
relationship between simplicity and correct recognition at the human level. They discov-
ered that humans perform better with simplicity and a smaller number of examples pro-
vided. In contrast, given more examples, the recognition result is inaccurate. As a result, 
using human-level approaches can help to simplify complex model behaviour. Concept-
supported interpretations aggregate information into more manageable and comprehensible 
chunks rather than providing explanations at the feature level.

6.3  Improved trustworthiness

The primary goal of XAI methods is to enable human experts to properly understand and 
trust machine learning systems [23]. Several studies [55, 67, 68]. have identified feature-
based interpretation methods as an untrustworthy approach. As a result of explaining 
black-box decisions in terms of concept-supported reasoning, experts or decision makers 
are more likely to trust the model’s predictions because the reasoning aligns with their 
domain knowledge and expectations.

6.4  Effective human‑AI communication

AI applications that mimic human cognition tasks such as learning and decision making to 
assist humans in the same way that team assistants do [79]. This type of interaction assists 
both parties in achieving common goals [71]. However, feature-based explanation meth-
ods do not correspond to human cognition and are difficult to communicate with domain 
experts. Concept-supported interpretations, on the other hand, facilitate efficient communica-
tion between human experts and complex models. These effective human-AI collaborations 
enable human intervention to provide appropriate and straightforward feedback to aid system 
enhancement at a higher level. As a result of concept-supported methods, we can achieve 
Active Learning [210], in which domain experts are actively involved in the learning process.

6.5  Strengthen ethical considerations

Ethical artificial intelligence is essential for deploying complex models in real-world 
applications [211, 212]. Concept-supported XAI methods, as opposed to feature-based 
approaches, perfectly align with decision makers’ ethical concerns by making it easier to 
identify and correct undesirable model behaviour. It paves the way for complex models to 
become more understandable and aligned with human values and expert judgements.

7  Unveiling research horizons in concept‑driven XAI

Recent efforts to incorporate human cognition into vision-based complex models have 
revealed a plethora of unexplored research areas. Exploring opportunities in concept-sup-
ported XAI opens the door to a variety of technical innovations in this field. In essence, the 
distinction between human cognition, which operates at a higher level of comprehension, 
and complex convolutional neural networks with lower-level learning processes represents 
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a watershed moment in the vision-based domain [213]. We consolidate the active research 
areas previously detailed in relevant sections and illustrated in Fig. 15.

7.1  Predefined concept dataset

One of the primary requirements in a human-understandable learning procedure is the crea-
tion of a predefined concept-supported dataset. Creating concept datasets, on the other hand, 
is currently one of the most significant challenges in the concept-supported interpretation 
task. This is because the significant progress made to date in generating large training data-
sets, such as ImageNet, CIFAR10, and MNIST, is based on pixel and lower-level learning 
procedures, rather than the human-understandable approach. Although there is still a lack of 
field-specific conceptual datasets, the main advantage of these datasets over lower-learning 
ones is that they require concept classes with fewer examples. For example, IBD [83] uses 
the BRODEN concept dataset with approximately 10 training samples for each class.

7.2  Concept discovery

As properly described in Sec 5.4, pre-defined concept annotation tasks are expensive 
operations; the automatic concept discovery task will strongly associate with unsupervised 
annotation, avoid human errors, and speed up dataset creation. Furthermore, in the com-
plex cancer detection domain, an unsupervised concept discovery approach is extremely 
useful for generating subclasses such as severity degree.

7.3  Systematic human intervention approach

The key critical advantage of concept-supported XAI methods over traditional methods is 
proper integration between human experts and complex AI models. As discussed in Sec 
6.4, the intervention capability is critical for incorporating human cognition into com-
plex models. Effective human-AI communication is not only important and applicable to 
improving the explainable AI domain, but it can also greatly improve another key domain. 
Another type of explanation in mathematical symbol formats is mathematical expression 
[214, 215]. However, meaningful and semantical recognition are heavily used in this area 
to represent the meaning of the expression in a way that captures its semantics or intended 
interpretation [216–219]. As another type of explanation task, concept-supported methods 
can help to go beyond syntactic parsing and capture the deeper meaning of mathematical 

Fig. 15  Opportunities for New Research in Concept-supported XAI (source: Authors’ own elaboration)
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expressions. However, the systematic approach with appropriate criteria requires additional 
research. For example, how experts can intervene during the training and testing phases, 
how many examples may be required to avoid human bias, and how the regulatory perspec-
tive of this active collaboration between experts and AI systems requires further investiga-
tion are all questions that need to be addressed.

7.4  Efficient model setting

This refers to both the primary neural network architecture and the concept or target layer. 
Layer depth and layer width in the primary model are critical components of model per-
formance, as described in Sects. 5.1, 5.2, and 2.3. Furthermore, the position of the concept 
layer, whether embedded in the middle of the CNN model or at the tail end, and the num-
ber of layers, whether single or multiple, are important active research areas that require 
further investigation. Another open question in this domain is the optimal number of con-
cept layers, whether single or multiple. We would also recommend appropriate considera-
tion for standardised model setting for high-stack and sensitive domains, such as complex 
cancer detection, as well as non-sensitive areas.

7.5  Addressing confounding attributes

Controlling the effect of confounding higher-level attributes is one of the current open chal-
lenges in concept-supported methods, as stated in Secs. 2.1.6 and 5.3. Few studies have pro-
posed a method for reducing the impact of known confounding conceptual attributes like 
VAE-CaCE, TCAR, and TCAV. However, eliminating the effect of unknown confounding 
factors remains an open research area. As a result, detecting unobserved higher-level con-
founded attributes that need to be discovered greatly aids in improving model performance.

7.6  Robust evaluation process

Another current challenge in the concept-supported domain is the development of an effec-
tive evaluation methodology. As detailed in Sect. 5.6 and Table 9, various studies proposed 
various evaluation metrics. Some evaluation metrics, such as meaningfulness, are strongly 
related to the human thinking approach, which may lead to biased assessment. The varia-
tion in evaluation metric and method used in the literature indicates the need for appropri-
ate evaluation design. The design can be divided at the highest level into qualitative human 
experiment approaches such as questionaries and quantitative computational approaches such 
as the TCAV score. The proper evaluation design, which corresponds to the specific type of 
concept-supported method, such as intrinsic or post-hoc, supervised or unsupervised, has a 
significant correlation with model enhancement and evaluation methodology standardisation.

8  Summary of key findings

In this comprehensive review, we combed through a vast amount of literature on Machine 
Learning (ML), Deep Learning (DL), and their applications in a variety of domains. This 
journey shed light on several novel methodologies and frameworks, demonstrating the 
immense potential as well as the inherent challenges of this thriving field of study. Among 
the most important findings:
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• Concept-based Explanations: The review goes into great detail about the emergence of 
concept-based explanations as crucial in improving model interpretability. Frameworks 
such as Concept Activation Regions and DISSECT are highlighted in papers for pro-
viding disentangled explanations. Overlooked factors that influence the effectiveness 
of concept-based explanations include dataset selection, concept salience, and human 
capability.

• Deep Learning in Object Recognition and Segmentation: A wide range of method-
ologies for object detection, segmentation, and recognition were investigated, with 
advances in real-time object detection frameworks such as Faster R-CNN and Mask 
R-CNN receiving special attention. The effectiveness of superpixel segmentation meth-
ods in image segmentation tasks was highlighted.

• Datasets and their Impact: Various datasets such as ADE20K, Pascal VOC, and 
COCO were discussed, demonstrating the wide range of real-world problems that ML 
and DL technologies can address. The paper emphasised how dataset selection influ-
ences concept-based explanations and model performance.

• Medical Applications of ML and DL: The review highlighted several applications, 
including early detection of diseases such as melanoma and image segmentation. It 
investigated deep learning for skin lesion classification, indicating a significant poten-
tial in medical imaging and diagnostics.

• Ethical Considerations in ML and DL: Ethical discussions centred on trust in medi-
cal AI, as well as the alignment problem, demonstrating the growing awareness of the 
societal implications of ML and AI technologies.

• Unsupervised Learning and Clustering: Progress in unsupervised learning and deep 
clustering for learning visual features was discussed, demonstrating progress in learn-
ing representations without labelled data.

• Model Complexity and Scalability: The trade-off between model depth and width, 
challenges in scaling ML models to larger datasets, and complex tasks were discussed, 
shedding light on model complexity nuances.

• Mathematical Expression Recognition Exploration: The review delves into machine 
learning models for mathematical symbol recognition, highlighting efforts in recognis-
ing handwritten mathematical expressions and symbols.

• Interactive Machine Learning: The discussion on human-in-the-loop machine learn-
ing and leveraging explanations in interactive ML revealed how human interaction can 
augment ML models.

• New Challenges and Future Directions: The review also alluded to several challenges 
and future directions, such as the need for more robust models, ethical frameworks for 
AI, and more research into unsupervised learning techniques.

This comprehensive review weaves a rich tapestry of the current state of ML and DL, 
shedding light on the numerous methodologies, applications, and challenges that character-
ise this dynamic field of study. The review illuminates the path forward through a meticu-
lous exploration of literature, beckoning the scholarly community to delve deeper into the 
realms of ML and DL, and to continue pushing the boundaries of what is possible with 
these transformative technologies.
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9  Conclusions

Concept-supported Explainable Artificial Intelligence (XAI) is a burgeoning field that 
seeks to bridge the gap between complex machine learning models and human interpret-
ability, a venture that is critical in crucial domains such as healthcare and autonomous 
systems. This comprehensive review has focused on concept-supported interpretation 
methods, which are useful in reducing the opacity of sophisticated deep learning models. 
By leveraging higher-level attributes or ’Concepts’, these methods elucidate the underly-
ing mechanisms of models, bringing a semblance of human reasoning into the realm of 
machine intelligence.

This review, one of the pioneering efforts, sheds light on the substantial potential and 
current challenges confronting concept-supported interpretation methods as graphically 
summarized in Fig. 16. It dissects the anatomy of these methods and investigates the land-
scape of factors that have a significant impact on their effectiveness. Among these are the 
original neural network settings, the prudent selection of target or concept layers, the pres-
ence of confounding attributes, the advent of automatic concept generation methods, the 
selection of concept or probe dataset, and the requirement for a standardised evaluation 
methodology.

The discussion presented here not only emphasises the promise of concept-supported 
interpretation methods in demystifying deep learning models, but also emphasises the 
importance of ongoing research and innovation in this domain. The review outlines the 
trajectory of progress thus far while also highlighting the remaining roadblocks.

The increasing integration of deep learning models in critical decision-making systems, 
where the stakes are high and the margin for error is small, emphasises the need for such 
methods. Concept-supported interpretation methods are poised to play a pivotal role in the 
broader adoption and responsible deployment of artificial intelligence technologies by fos-
tering a deeper understanding and engendering trust.

Fig. 16  Summary of concept-supported XAI challenges, innovations, and future directions discussed in this 
review (source: Authors’ own elaboration)
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In retrospect, the path to fully interpretable AI is fraught with difficulties, but it is a ven-
ture that has the potential to significantly improve the synergy between human intelligence 
and artificial cognition. As a result, this review not only adds to the academic discussion 
of XAI, but it also provides a vantage point from which practitioners and policymakers can 
navigate the complex terrain of machine interpretability.

10  Future work

When it comes to automatic concept generation methods, the horizon is brimming with 
opportunities and avenues for further research and development. The importance of lower-
ing both the financial and time costs of creating concept-labeled datasets cannot be over-
stated, and it necessitates a collaborative effort from the scholarly community. Similarly, 
the development of a solid and standardised evaluation methodology emerges as a critical 
endeavour for meticulously assessing the current state of existing methods and identifying 
areas ripe for refinement and innovation. The manuscript raises the issue of confounding 
attributes, a territory that, if explored, could reveal solutions to mitigate misleading out-
puts, thereby improving the reliability and trustworthiness of the interpretation methods.

Furthermore, a more in-depth investigation into the selection of the target or concept 
layer for assimilation of concept information has the potential to yield novel insights and 
methodologies, potentially leading to more accurate and interpretable models. The selec-
tion of concept or probe dataset, a critical determinant of the concepts that can be learned, 
beckons more research attention to ensure that the models can address a broad range of 
real-world problems. Similarly, the impact of the original neural network settings on the 
efficacy of concept-supported interpretation methods is ripe for further investigation, 
potentially leading to more optimised and effective interpretative models.

As the narrative shifts to discussing broader challenges and future directions, it opens 
up new avenues for the scholarly community to delve deeper into unsupervised learning 
techniques, ethical frameworks for AI, and model robustness. The manuscript foreshadows 
an exciting future in which machine learning models and human interpretability are refined 
to the point where complex models are more accessible, understandable, and trustworthy. 
The search for new and improved methods to provide meaningful insights into machine 
learning models’ decision-making processes is far from over. It is a continuous effort that 
promises to not only improve our understanding of these models but also significantly 
increase their transparency and trustworthiness, especially in high-stakes applications like 
medical diagnostics and safety–critical systems. The manuscript establishes a solid foun-
dation and points to a future in which the synergy between machine learning models and 
human interpretability is more than a pipe dream but a tangible reality.
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