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Abstract
Lung cancer constitutes the most severe cause of cancer-related mortality. Recent evidence
supports that early detection by means of computed tomography (CT) scans significantly
reduces mortality rates. Given the remarkable progress of Vision Transformers (ViTs) in
the field of computer vision, we have delved into comparing the performance of ViTs ver-
sus Convolutional Neural Networks (CNNs) for the automatic identification of lung cancer
based on a dataset of 212 medical images. Importantly, neither ViTs nor CNNs require lung
nodule annotations to predict the occurrence of cancer. To address the dataset limitations,
we have trained both ViTs and CNNs with three advanced techniques: transfer learning,
self-supervised learning, and sharpness-aware minimizer. Remarkably, we have found that
CNNs achieve highly accurate prediction of a patient’s cancer status, with an outstanding
recall (93.4%) and area under the Receiver Operating Characteristic curve (AUC) of 98.1%,
when trainedwith self-supervised learning. Our study demonstrates that both CNNs andViTs
exhibit substantial potential with the three strategies. However, CNNs are more effective than
ViTs with the insufficient quantities of dataset.
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1 Introduction

Lung cancer stands as the foremost cause of cancer-related fatalities worldwide, with over 1.6
million newly diagnosed cases per year [1]. Computed tomography (CT) has been proposed
as a valuable early screening tool for lung cancer. Typically, lung cancer appears as a nodule
on a CT scan. Early differentiation between non-cancerous (benign) and cancerous (malig-
nant) nodules holds paramount importance for clinical treatment. Computed-aided diagnosis
(CAD) systems [2] are widely employed for nodule detection. However, nodule classification
remains a challenging task for CAD systems.

Current clinical classification algorithms require hundreds of images per patient, making
it extremely challenging for a radiologist to perform precise and thorough analysis of all the
images. To assist with disease diagnosis, radiomics [3] have gained popularity in extracting
features from medical images, thanks to the advancements in computer systems [4, 5]. This
identification scheme typically comprises four stages: preprocessing, segmentation, feature
extraction, and classification. However, accurately segmenting lung lesion annotations for
feature extraction in radiomics can be costly for doctors. Given the significant advancements
in deep learning in recent years,we have investigated two deep learning approaches to identify
lung cancer in this study. One of the key benefits of using deep learning methods is that the
deep neural network considers context information from consecutive slices of a patient’s
lungs, eliminating the need for manual segmentation of lung lesions, which is time-saving
and convenient. As illustrated in Fig. 1, the three crucial stages in this study involve data
preprocessing, feature extraction, and classification.

One of the approaches employed in this study involves the utilization of three-dimensional
convolutional neural networks (3-D CNNs), which are considered the leading deep learning
approach in automatic medical diagnosis [6–9]. The other approach utilizes vision transform-
ers (ViTs) [10], which have been extensively utilized in natural language processing (NLP)
and have emerged as a viable alternative to CNNs in computer vision, yielding comparable
performance levels to those achieved by CNNs.

However, medical images are significantly different from natural images. For example,
natural images are two-dimensional (2-D) RGB (Red, Green, Blue) images, while medical
images are three-dimensional (3-D) grayscale images. Dosovitskiy et al. [10] trained and
tested ViTs with 2-D natural images such as ImageNet [11]. Their results showed that ViTs
could only outperformCNNsonvery large-scale datasets. For instance,ViTs performedbetter
after pre-training on JFT-300M, a 300 million-record proprietary dataset from Google. Thus,
investigating the classification performance of ViTs on medical images is an urgent issue
that needs to be addressed. Our research tackles the challenge of a relatively modest medical
dataset consisting of 212 cases. This is a departure from the large-scale datasets traditionally
used in ViTs experiments. The exploration of ViTs’ performance on a smaller dataset is a
notable contribution, as it reflects real-world scenarios where medical data availability is
often limited. To bridge the performance gap caused by limited data, we trained ViTs and
CNNs using various methodologies to enhance their performance, as detailed in Section 2.2.

In essence, our research ventures into uncharted territory by evaluating the suitability of
ViTs for medical image classification, acknowledging the data-specific challenges and offer-
ing various strategies to address them. It underscores the importance of adapting cutting-edge
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Fig. 1 The main stages of lung cancer identification involve taking 3-D CT scans as input, preprocessing the
data, and comparing two deep learning approaches based onCNNs andViTs to generate a prediction indicating
the patient’s lung cancer probability

deep learning techniques for medical applications, ultimately contributing to the broader field
of lung cancer identification.

2 Materials andmethods

2.1 Model architecture

With the rapid development of deep learning in recent years, CNNs have been the controlling
approach in the domain of computer vision,with applications ranging from classification [12–
16], segmentation [17–19] and object detection [20–23]. In recent years, many deep neural
network architectures have demonstrated outstanding performance in image classification
tasks, such asVGG [24], GoogLeNet [25], ResNet [26], and EfficientNet [27].When contem-
plating the implementation of a lung cancer identification system, EfficientNet3D emerges
as a commendable option for processing 3-D medical images. This choice is supported by its
comparable parameter count to ViT, along with its outstanding performance on the ImageNet
dataset, establishing it as a state-of-the-art deep learning method.

2.1.1 EfficientNet

The inference accuracy and speed of a CNN-based model are greatly affected by CNN’s
depth, width and resolution. Tan and Le [27] propose a new scaling method that uniformly
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Fig. 2 The EfficientNet3D-b0 architecture

scales all dimentions of depth/width/resolution using a simple yet highly effective compound
coefficient. The scaling method equation can be described as:

depth : d = αφ

width : w = βφ

resolution : r = γ φ

s.t. α · β2 · γ 2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(1)

where α, β, and γ indicate how to assign these additional resources to the width, depth, and
resolution of the network, and φ is a user-specified coefficient that governs how many more
resources are available for the model scaling.

Figure 2 shows the architecture of EfficientNet3D-b0 which we used in this work. Effi-
cientNet3D consists of a baseline network model that is expanded by adding more layers,
widening the network, and increasing the input image resolution. Compared to other popular
architectures, this mixed-dimension scaling method allows EfficientNet3D to achieve higher
accuracy with fewer parameters and lower computational costs. EfficientNet has achieved
state-of-the-art results on multiple image classification tasks, including ImageNet, CIFAR-
10, and CIFAR-100, and has been widely adopted in many computer vision applications.
Overall, it is appropriate for the deployment of lung cancer identification system.

2.1.2 Vision transformers

ViTs have recently garnered significant interest in the realm of natural image processing,
serving as a compelling alternative to CNNs. The transformer architecture, a fundamental
deep neural network for processing sequential input data, has found widespread use in NLP.
The transformer encoder framework can be characterized as a series of similar layers, as
exemplified in Fig. 3. Each of these layers is comprised of two sub-layers: a multi-head
self-attention mechanism and a simple multi-layer perceptron (MLP) of fully-connected
feed-forward networks. In addition to these sub-layers, a residual connection [26] surrounds
each one, culminating in layer normalization [28].

Attention function As shown in Fig. 3, the query and key-value pairs can be translated into
an output by the general attention function, where the query, key, value, and output are all
vectors. The input of each layer in the encoder includes queries and keys with dimention
dk , and values with dimention dv . It computes the dot products of the query with all keys,
divided each by

√
dk , and computes the value’s dot products with the associated weights to

get the output after applying a softmax function to get the weights on the value. In practice,
a set of queries are packed together into a matrix Q as well as keys and values with matrices
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Fig. 3 The transformer encoder
architecture

K and V respectively. The output of attention can be represented like:

Q = WQ � Xq

K = WK � Xk

V = WV � Xv (2)

Attention(Q, K , V ) = so f tmax(
QKT

√
dk

)V

where Xq , Xk, Xv are the inputs of transformer encoder, � denotes matrix dot product and
WQ,WK ,WV are the parameter matrices for linear projection. If the Q, K and V are
computed from the same input X , it is known as self-attention. Specifically, the multi-head
self-attention can be described as:

Multi Head(Q, K , V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , VWV
i ) (3)

where the linear projections are parameter matrices WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk ,
WV

i ∈ R
dmodel×dv and WO

i ∈ R
hdv×dmodel . For example, Deit-S [29] takes h = 6 heads and

for each head dk = dv = dmodel/h = 64.
TheViTsmodel has gained popularity in natural image processing alongsideCNNs, owing

to its ability to simultaneously examine data frommultiple representation subspaces at various
locations through multi-head attention. Furthermore, it provides an integrated saliency map
that identifies areas of focus by the model, which is difficult to achieve with CNNs [30].
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Fig. 4 The vision transformer architecture. We take 16X16X16 size of tokens in the patch embedding and
flatten them into 1X4096 size of vector as we use 3-D CT scans for the lung cancer identification

Additionally, the parallel attention heads structure allow for training on large-scale datasets
and reduce training time.

An overview of the ViTs architecture is illustrated in Fig. 4. The first two layers are patch
embedding and position embedding. In our methodology, we initially divided the CT images
into patches of size 16X16X16, following the resampling process, which transformed the
images into dimensions of 224X224X64. Subsequently, these patches were flattened into
a single 1x4096-sized vector through patch embedding. The representation of the patch
embedding is illustrated as follows:

pi = Flatten(xi )

qi = F(pi )
(4)

where xi is the i th patch, Flatten(·) denotes flattening the patch into 1X4096 size and F(·)
denotes projecting the vector into 1X384 size.

Position embedding In images, the spatial arrangement of pixels is crucial for understand-
ing the content. Unlike text data, where the order of words is explicitly represented by their
positions in the sequence, images inherently lack this positional information. Position embed-
ding provides ViTs with a way to incorporate spatial relationships between pixels or patches
in the image. It is typically added to the patch embedding and help the model understand the
relative positions of different image elements. To learn the positional information between
tokens, we add 1-D positional embedding for all the tokens which can be described as:

Zout = concat(qclass; q1; q2; · · ·; qN ) + Epos (5)
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whereqclass is class token,qi is patch token and Epos is a learnablematricewhich is initialized
with zero.

Class token The class token is a unique token added to the patch embedding that serves as
a global representation of the entire image. In NLP tasks, the transformer model typically
uses a special token(e.g., [CLS]) to represent the entire sequence or document. Similarly, as
shown in Fig. 4, the class token represents the overall content of the image. It provides a
high-level context and is crucial for image classification tasks where the goal is to assign a
single label to the entire image.

In image processing tasks, ViTs have several advantages compared to traditional CNNs:

1. ViTs provide contextual features by utilizing self-attention mechanisms on input seri-
alized data, which helps capture relationships between different positions in the input,
leading to more accurate image processing.

2. ViTs’ parallelized network architecture allows them to be trained on larger datasets and
significantly reduces training time. This enables ViTs to efficiently handle large-scale
image datasets.

3. ViTs comewith built-in attentionmaps, which provide insights into the regions of interest
that the model focuses on when making decisions. This enhances interpretability and
helps understand how the model operates.

Applying ViTs to computer vision has potential advantages as it allows the use of the same
deep neural network model for both computer vision and natural language processing tasks,
facilitating developments in the multimodal field. Therefore, exploring the classification
performance of ViTs on medical images is of great significance, as it is expected to offer
improved performance and interpretability, thereby enhancing the analysis and diagnosis of
medical images.

2.2 Training strategies

ViTs have been widely used in the field of natural image processing, but their utility in
the field of medical images is limited since the medical datasets typically have insufficient
quantities and frequently come with less trustworthy labels. Therefore, in order to enhance
the performance of CNNs and ViTs, we additionally investigate three training methodologies
include transfer learning, self-supervised learning and sharpness-aware minimizer.

The first approach is transfer learning, which entails utilizing pre-existing weights that
have undergone training on ImageNet and fine-tuning for optimal performance on the own
dataset. According to Raghu et al. [31], transfer learning has been demonstrated to increase
the overall efficacy of the model, as well as to significantly reduce the duration of the training
process. However, the scarcity of ample datasets for 3-Dmedical images imposes constraints
on the application of transfer learning for 3-D CNNs, because ImageNet is of 2-D natural
images. As an alternative, we can adopt the use of ViTs, where only the patch embedding and
position embedding are initialized from scratch, while the remaining layers are initialized
with pre-trained weights from ImageNet.

Recent advances in self-supervised learning (SSL) have improved the deep neural net-
work’s ability to express unlabeled data. For instance, BYOL [32] utilizes two neural
networks, namely the online and target networks, which interact and learn from each other,
and achieves a state-of-the-art performance on ImageNet using a standard ResNet-50 [33].
Hua et al. [34] propose a progressive hierarchical feature alignment method to solve the
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imbalance problems of data and classes.Michieli et al. [35] propose anUnsupervisedDomain
Adaptation strategy to learn on labeled synthetic data and unlabeled real data. Their results
prove the effectiveness of the proposed strategy in adapting a segmentation network trained
on synthetic datasets to real world datasets. The difference between ssl and them is that
we do unsupervised training on a real world dataset and then use the learned knowledge
in supervised learning tasks. DINO [36] uses self-distillation to encourage a student and
teacher network to produce similar representations given inputs of different augmentations,
and achieves the highest performance on ImageNet and other standard benchmarks with
ViTs. Therefore, we also employ SSL to train all models and assess whether it benefits the
identification of lung cancer.

Furthermore, it should be noted that the training of ViTs is sensitive to initialization
and hyperparameter selection, as pointed out by Touvron et al. [29], which may result in
low training error but high generalization error during evaluation [37, 38]. To address this
issue, Chen et al. [39] propose the use of the Sharpness-Aware Minimizer (SAM) optimiza-
tion technique to achieve smoother loss landscapes for each network component and higher
weight norms in ViTs. Additionally, ViTs trained from scratch on ImageNet, with limited
pre-training and data augmentation, have demonstrated superior performance compared to
similarly sized ResNets, aligning with the characteristics of 3-D medical image datasets.
Thus, we also incorporate the SAM optimization method to improve the accuracy of lung
cancer identification.

2.3 Dataset

As outlined in Table 1, our dataset was meticulously collected from the Shandong Provin-
cial Hospital, affiliated with Shandong First Medical University, spanning the period from
September 2018 to December 2020. This comprehensive dataset comprises a total of 212
cases, consisting of 130 malignant and 82 benign tumor cases. Figure 5 provides a visual
representation of the lesions pertaining to each lung cancer category. Within this figure, the
red circle is employed to denote the largest lesion in the dataset, based on its diameter.

Table 1 Detail information about
the lung cancer dataset

Category Malignant cases Benign cases

AIS 27 −
MIA 36 −
IAC 67 −
Hamartoma − 21

Inflammatory pseudotumor − 11

Atypical hyperplasia − 9

Granuloma − 5

Benign tumor − 10

Pneumonia − 26

Total 130 82

Adenocarcinoma In Situ (AIS), Minimally Invasive Adenocarcinoma
(MIA), Infiltrative Adenocarcinoma (IAC) are considered of malignant
tumor with total 130 cases. Hamartoma, Inflammatory pseudotumor,
Atypical hyperplasia, Granuloma, Benign tumor, Pneumonia are con-
sidered of benign tumor with total 82 cases
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Fig. 5 The imaging shows of each lung cancer categories. (a)AIS: a ground-glass nodule in the lateral segment
of the right middle lung lobe. (b) MIA: a ground-glass density foci in the posterior segment of the left upper
lung lobe. (c) IAC: a ground-glass nodule in the apical segment of the right upper lung lobe. (d)Hamartoma: a
round high-density nodule in the dorsal segment of the right lower lung lobe. (e) Inflammatory pseudotumor:
a nodule in the dorsal segment of the left lower lung lobe. (f) Atypical hyperplasia: a ground-glass density
nodule in the anterior medial basal segment of the left lower lung lobe. (g) Granuloma: an anterior segment
nodule in the apical segment of the right upper lung lobe. (h) Benign tumor: a lobular nodule in the basal
segment of the right lower lung lobe. (i) Pneumonia: a soft tissue nodule in the lateral segment of the right
middle lung lobe

Each entry in our dataset corresponds to aCT scanwith dimensions of 512×512×z, where
z represents the number of slices acquired for each scan. It’s important to note that all the
cases included in our dataset exhibited imaging findings indicative of lung cancer, warranting
the necessity for surgical resection. The lesions observed in these cases exhibited a range in
terms of their longest diameter, spanning from 0.6 cm to 3 cm. Moreover, it is imperative
to highlight that each of these lesions underwent surgical removal and was subsequently
confirmed through pathological examination.

With regard to the classification of lung tumors in our dataset, they can be categorized as
follows:

• Malignant. If the tumor is malignant, it is an uncontrollable level of cancer tumor and
is no cure in this category.

• Benign. If the tumor is benign, it is starting level of cancer tumor and is easy to cure in
this category.
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Fig. 6 Preprocessing CT lung images processing. (a) Original image. (b) Image after undergoing Hounsfield
scale change, normalization, and zero centering

3 Experiments

3.1 Preprocessing

The preprocessing of lung CT scans is undertaken with the aim of improving the quality of
the scans, thus achieving superior outcomes in the diagnosis of lung cancer. As depicted in
Fig. 6, the Hounsfield scale (HU) of the CT scans was adjusted to fall between -1000 and
1000, after which normalization was carried out to maintain image values within the range of
0 to 255. Subsequently, all CT scans were resized to size of 224X224X64, following which
zero centering was applied to each slice of the scans. The zero centering is described as (6):

x = x − μ

σ
(6)

where μ is the mean intensity of one slice and σ is the standard deviation intensity of one
slice. A 7 : 3 random split was made for the training and validation. We also used Rando-
mAnisotropy, randomVerticalFlip, randomHorizontalFlip, RandomBlur and RandomAffine
as the medical data augmentations [40] before training the models.

3.2 Training settings

We have opted DeiT-S [29] as the transformer-based model which is identical to the ViTs but
has been implemented in Pytorch [41]. In addition, we have chosen EfficientNet3D-b0 [27]
as the 3-D CNN-based model, as Deit-S and EfficientNet3D-b0 have similar efficiency and
parameter counts. The hyperparameters for training are presented in Table 2. Previous stud-
ies have demonstrated the advantages of using “LinearWarmup” [42] to train transformers.
Hence, we have utilized “LinearWarmup” of 10 epochswith an initial learning rate of 1X10−8

and “CosineAnnealingLR” [43] with a final learning rate of 1X10−6 as the learning rate
schedulers. Each experiment was conducted on a single host equipped with two TITAN RTX
GPUs (24GB memory).
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Table 2 Hyperparameters for training

Methods Models Epochs Base LR Batch size Weight decay Optimizer

Random EfficientNet3D 300 1X 10−3 16 1X 10−6 Adam

DeiT-S 300 1X 10−4 16 1X 10−6 Adam

Transfer learning EfficientNet3D 300 1X 10−3 16 1X 10−6 Adam

DeiT-S 300 1X 10−4 16 1X 10−6 Adam

SSL EfficientNet3D 500 1X 10−3 8 1X 10−6 Adam

DeiT-S 500 1X 10−4 8 1X 10−6 Adam

SAM EfficientNet3D 500 1X 10−3 8 1X 10−5 AdamW

DeiT-S 500 1X 10−4 8 1X 10−5 AdamW

3.3 Evaluationmetrics

In order to evaluate the different models against each other, we choose accuracy, precision,
recall, F1 score and AUC as the metrics for the lung cancer identification. Accuracy is the
percentage of correct predictions out of all cases evaluated, which is described as:

Accuracy = (T P + T N )/(T P + T N + FP + FN ) (7)

where T P , T N , FP and FN are true positive, true negative, false positive and false negative
of the confusion matrix [44]. Precision is described as

Precision = (T P)/(T P + FP) (8)

and it refers to the proportion of truely positive among the number of positive predictions.
Recall is described as

Recall = (T P)/(T P + FN ) (9)

and it describes the proportion of the correctly classified among the actual positive cases.
The F1 score, which ranges from 0 to 1, represents the harmonic mean of recall and precision
and is described as follows:

F1 = 2 ∗ precision ∗ recall

precision + recall
(10)

The area under the receiver operating characteristic curve, or AUC [45], demonstrates
how well the probabilities from the positive classes are separated from the negative classes.
The ROC curve is plotted by false positive rate (FPR) and true positive rate (TPR) with
various threshold values, where FPR is simply the percentage of erroneous detections that
the algorithm is catching and can be calculated as (1 - specificity). It can be described as:

1 − Speci f ici t y = FPR = FP/(T N + FP) (11)

TPR is just the percentage of trues that the algorithm is catching and is also known as
sensitivity or recall, which can be described as:

Sensi tivi t y = T PR = Recall = T P/(T P + FN ) (12)
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Table 3 ViT and CNNs comparisons using various training methods for the validation measures

Methods Models Accuracy Precision Recall F1 AUC

Random EfficientNet3D 0.891 0.895 0.874 0.882 0.952

DeiT-S 0.812 0.805 0.817 0.808 0.892

Transfer learning EfficientNet3D − − − − −
DeiT-S 0.875 0.874 0.862 0.867 0.953

SSL EfficientNet3D 0.938 0.934 0.934 0.934 0.981

DeiT-S 0.875 0.867 0.876 0.870 0.957

SAM EfficientNet3D 0.953 0.954 0.947 0.950 0.974

DeiT-S 0.859 0.885 0.827 0.842 0.965

Notably, as ImageNet only contains 2-D natural images and 3-D CNNs checkpoints are not yet available, we
do not include EfficientNet3D with weights pre-trained on ImageNet

4 Results

In Table 3, we compare Deit-S against EfficientNet3D using different training strategies.
Initially, the AUC (95.2%) of EfficientNet3D greatly exceeded that of Deit-S (89.2%) when
trained with randomly initialized weights (Kaiming initialization [46]). However, in medical
imaging recognition tasks, random initialization is no longer the standard practice. Instead,
the standard procedure is transfer learning. As shown in Table 3, transfer learning increased
the AUC of Deit-S from 89.2% to 95.3%. This suggests that Deit-S benefited significantly
from transfer learning for lung cancer identification, and achieved similar performance to
EfficientNet3D.

We also compared Deit-S against EfficientNet3D with SSL and SAM in Table 3. Results
showed that pre-training EfficientNet3D with SSL increased its AUC from 95.2% to 98.1%,
and Deit-S from 89.2% to 95.7%. Additionally, SAM improved the AUC of EfficientNet3D
from 95.2% to 97.4% and Deit-S from 89.2% to 96.5%. These findings suggest that both
SSL and SAM can successfully enhance the capabilities of ViTs and CNNs for lung cancer
identification, with ViTs exhibiting more improvement than CNNs under these settings.

Moreover, Fig. 7 revealed that EfficientNet3D achieved the highest score of AUC (98.1%)
when pre-trained with SSL, and the highest recall score (94.7%) when trained with SAM.
However, ViTs could not achieve the same level of performance as CNNs, even when trained
with SSL or SAM.

5 Discussion

The results presented in Table 3 highlight the significant impact of different training strategies
on the performance of Deit-S and EfficientNet3D in the task of lung cancer identification.
Initially, when both models were trained with randomly initialized weights, EfficientNet3D
outperformed Deit-S. However, when Deit-S was fine-tuned using transfer learning with
pre-trained weights from ImageNet, its AUC improved substantially, reaching 95.3%. This
suggests that Deit-S can benefit significantly from transfer learning in the context of lung
cancer identification and achieve performance comparable to EfficientNet3D.
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Fig. 7 The confusion matrix with the evaluation results of EfficientNet3D

The comparison between Deit-S and EfficientNet3D with SSL and SAM further illu-
minates the impact of advanced training techniques. Pre-training both models with SSL
resulted in substantial improvements in AUC. Additionally, the incorporation of SAM led
to enhanced AUC scores for both models, with EfficientNet3D achieving 97.4% and Deit-
S reaching 96.5%. These findings indicate that SSL and SAM can effectively enhance the
capabilities of both ViTs and CNNs for lung cancer identification. Notably, ViTs exhibited a
more significant improvement in performance compared to CNNs under these settings.

Figure 7 provides additional insights into themodels’ performance, particularly in terms of
confusion matrix. EfficientNet3D pre-trained with SSL achieved the highest AUC of 98.1%,
demonstrating its potential when leveraged with SSL techniques. On the other hand, when
trained with SAM, EfficientNet3D exhibited the highest recall score of 94.7%, indicating
its superior ability to detect lung cancer cases. However, it is essential to highlight that
ViTs, including Deit-S, did not achieve the same level of performance as CNNs, even when
trained with SSL or SAM. This discrepancy in performance could be attributed to the limited
availability of training data. It aligns with the theory that ViTs, lacking inherent “inductive
bias”, may struggle to generalize effectively when trained with a restricted dataset.

In summary, the results and discussions presented herein underscore the importance of
training strategies in the performance of deep learningmodels for lung cancer identification in
medical imaging. Transfer learning, SSL, and SAM have been demonstrated to be valuable
tools for enhancing the capabilities of both ViTs and CNNs, though the training of ViTs
is sensitive to initialization and hyperparameter selection. While ViTs show promise, their
performance may be limited by data availability, highlighting the need for further research
into mitigating this limitation and harnessing the full potential of ViTs in medical image
analysis.

6 Interpretability of transformer

The Transformer-based model presents a unique advantage in its inherent interpretability, a
feature of paramount significance for comprehending its inner workings and the rationale
behind its predictions. This interpretability is chiefly facilitated through the generation of
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Fig. 8 Slice of original data and saliency maps of multi-head attention. As we use ViT-S, there are 6 heads in
multi-head attention block

saliency maps of attention, which effectively highlight the pivotal regions within the input
image that contribute significantly to the model’s decision-making process. These saliency
maps are created by computing the self-attention weight scores associated with a transformer
encoder layer, where these weight scores essentially quantify the degree of emphasis placed
on each individual image patch in relation to its counterparts.

To delve into the specifics of the saliencymap generation process, we specifically extracted
the attentionweights from thefinal self-attention block of the transformer encoder, as depicted
in Fig. 4. These attention weights serve as a testament to the model’s attentional focus and
are instrumental in crafting the saliency maps. By computing the weighted sum of the feature
maps corresponding to each image patch, we effectively obtain a two-dimensional saliency
map with dimensions mirroring those of the input image patches.

As illustrated in Fig. 8, the resultant saliency maps generated for ViTs when trained with
SSL reveal some intriguing insights. Notably, each attention head exhibits subtle variations
in the patches it prioritizes during the decision-making process. However, it is evident that, in
the broader context, ViTs tend to concentrate their attention predominantly on the lung region
when making predictions. This phenomenon aligns seamlessly with the distribution of tumor
regions, which tend to be densely clustered within the lungs. Such nuanced attention maps,
showcasing distinct areas of focus across different heads and yet an overarching emphasis
on medically relevant regions, present a remarkable aspect of interpretability unique to ViTs.
This level of interpretability is challenging to attain when employing CNNs-based models.

This facet of interpretability assumes paramount importance in the context of employ-
ing artificial intelligence for medical diagnosis. It not only assists in demystifying the
model’s decision-making process but also empowers researchers and medical practitioners
with invaluable insights into the reasoning and justifications underlying the AI model’s pre-
dictions. This enhanced transparency aids in validating the model’s accuracy and facilitates
fine-tuning and optimization for more robust and reliable medical applications.
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7 Conclusions

In the present study, we undertook the task of developing an automated system for early lung
cancer identification, employing two prominent deep learning approaches: Deit-S and Effi-
cientNet3D. Moreover, we delved into the utilization of critical training strategies, including
transfer learning, self-supervised learning, and sharpness-aware minimizer, to enhance the
performance of both ViTs and CNNs. Our research outcomes underscore the efficacy of
these techniques in elevating the predictive power of these models, with CNNs achieving the
highest AUC of 98.1% when trained with SSL. This achievement highlights the potential of
CNNs in identifying lung cancer with exceptional accuracy.

Nonetheless, it is crucial to acknowledge that our study also reveals certain limitations
in the current state of ViTs for medical imaging tasks. Despite their promise, ViTs did not
match the performance levels of CNNs in our experiments. This discrepancy emphasizes
the need for further research and development in leveraging ViTs effectively for medical
image analysis. It suggests that ViTs might require more substantial data resources or novel
architectural adaptations to fully exploit their capabilities in this domain. Looking ahead,
future research efforts should concentrate on training ViTs and CNNs on larger-scale lung
cancer datasets and other CNN models. The expectation is that, as the dataset size increases,
ViTs will progressively bridge the performance gap with CNNs and potentially surpass them
in accuracy and robustness. This evolution promises to bring significant benefits to medical
practitioners by enabling more precise and early diagnosis of lung cancer, ultimately saving
lives through earlier interventions.

In conclusion, our study has shed light on the immense potential of deep neural networks,
particularly CNNs, for the task of lung cancer identification based onmedical CT images.We
have demonstrated the impact of advanced training strategies and highlighted the ongoing
challenges faced by ViTs in this context. The journey towards harnessing the full potential of
ViTs in medical imaging is an exciting frontier that holds the promise of even more accurate
and accessible healthcare solutions in the future.
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