
Multimedia Tools and Applications (2024) 83:41349–41374
https://doi.org/10.1007/s11042-023-16535-y

Forensic discrimination between traditional and compressive
imaging by blurring kernel investigation

Ali Taimori1 · Hadi Zayyani2 · Farokh Marvasti1

Received: 14 September 2022 / Revised: 24 April 2023 / Accepted: 8 August 2023 /
Published online: 12 October 2023
© Crown 2023

Abstract
Image forensics encompasses a set of scientific tests to investigation of a suspected event via
intrinsic clues of imaging pipeline. Traditional image sensing at the Nyquist-Shannon rate
as well as the new modality of compressive imaging below the rate are two main types of
sensing in photography and imaging applications. Hence, for forensic investigators, it would
importantly necessitate the ability to discriminate among images captured by them. However,
due to the complex nonlinear nature of imaging processes, investigating imagers’ traces is
a difficult task. To this intent, we first systematically model the imaging pipelines as an
encoder-decoder pair. For exploring distinguishable traces, we mathematically simplify and
linearize the pair for compressive imaging and two main forms of traditional image sensing
with or without compression. Our theoretical analyses on the approximate linear models
reveal blurring kernels of different imagers have discriminability. To validate it in real-world
scenarios, we considered the whole imaging process as an inverse problem and estimated
the blurring kernel based on a deconvolution approach, where the discriminability is also
justified by information visualization. Then, we designed a pipeline classification system,
where a deep convolutional neural network is trained by the estimated blurring kernels to be
able to classify the three imaging systems. Our results in compressive imaging identification
show an accuracy improvement about 3.7% in comparison to the best result among compared
methods. Implementation codes are available for research and development.
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1 Introduction

Image forensics encompasses a set of scientific tests to investigation of a suspected
event/crime via left image clues. The science enables governments, the police, and courts to
discover the origin of events/crimes [18, 29, 39, 49]. To do the task, forensic experts require to
know imaging pipelines which lead to the acquisition of digital images, from scene sensing to
storage/transmission. This realizes by understanding of sorts of imaging and their differences.
Two general types of image sensing exist: (1) traditional image acquisition, and (2) Com-
pressive Sensing (CS)-based imaging. Conventional imagers such as surveillance cameras
and those on portable devices first acquire an image at the Nyquist-Shannon rate, and then, if
required for storage or transmission purposes, discard redundant data by compression like the
widely used JPEG-family compression. However, the technology of Compressive Sensing
(CS) which operats below the Nyquist-Shannon rate, has recently led a new generation of
image acquisitionmodality, called compressive imaging [43]. This, as a type of computational
imaging, provides advantages in comparison to conventional devices such as considerable
reduction in hardware components, power consumption optimization, and fast image acquisi-
tion time. In a compressive imaging device, the sampling and compression processes are done
simultaneously in one step [50]. In other words, the compression can be directly performed
during sensing. Random sampling-based imagers such as single-pixel camera [16], imag-
ing beyond the visible spectrum like hyperspectral and infrared cameras [10], dynamic [21]
and intelligent CS-based sensing systems [50], radar imaging [2], wireless CS networks [56],
constrainedmedical imaging systems such as CS-equippedmagnetic resonance imaging [57]
and lens-less imagers [46, 54], and scientific imaging devices [41] are paradigms of imaging
based on the CS technology.

1.1 Literature review

In the conventional imaging, forensic analyses developed in the literature are categorized into
two general categories, including: 1) approaches that classify the source of a questionable
image by assigning the image to a device make and model [33, 55], and 2) methods that
detect or localize forged regions in digital images [3, 4, 51]. In both categories, discovering
intrinsic signatures left from recorded images plays a key role for forensic investigators.
The forensic footprints themselves can be extracted by three general techniques [53]. We
call them as: (a) feature engineering-based methods, in which forensic examiners extract
handcrafted features for classification [3, 52]; (b) deep learning-based methods which try to
extract forensic features directly from data in an automatic manner [4, 6]; and, (c) forensics-
informed methods which represent hybridized variants of methods of (a) and (b). This paper
falls into the category of forensics-informed methods, where we combine forensic clues with
deep learning for incorporating the knowledge of forensic examiner in machine learning
processes.

Although the above-mentioned valuable studies have been carried out in the context of
traditional image forensics, a lack of theoretical and applied researches is seen for a deep
understanding of parts and functions of the compressive imaging systems from the forensic
perspective. This issue causes another important problem about the forensic cognition of
differences between the kinds of imaging. For example, consider the case in which the task
of a forensic examiner is identifying whether the source of a query image is from a traditional
or a compressive imaging manner. Solving this problem necessitates extracting signatures
that can discriminate well among the diverse systems.
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Let us state that an image with an uncompressed file format such as Bitmap (BMP) be
under an investigation. The image may come from a CS imaging or not. If the digital photo
has been acquired from a conventional imager, it may have been already compressed via a
source coder such as thewell-known JPEG2000 (JP2) compression standard or acquired in an
uncompressed file format, i.e., raw imaging. Hence, in the considered scenario, three main
types of imaging systems are introduced to be identified, including compressive imaging,
conventional sensing plus compression, and conventional raw imaging. It is notable that both
JP2 andmost of compressive sensing algorithms employ DiscreteWavelet Transform (DWT)
[45, 47]. This points out the fact that the confusion between these types of imaging systems is
more probable. Therefore, the main complexity is on JPEG2000 standard among other image
compression techniques. In [11, 12], Chu et al. found empirical probability mass functions
of wavelet coefficients for different imaging systems follow Laplace-like distributions with
different parameters of location and diversity. Based on the observation, they employed
a 2-step thresholding-based decision making process to separate traditional sensing from
compressive one. Its first step contains a distribution detector based on maximum likelihood
estimator to discriminate uncompressed images from JP2 and compressively sensed images.
The second distribution-based detector gains Expectation Maximization (EM) algorithm to
classify the remainder, namely traditionally sensed JP2 images from compressively sensed
ones.

1.2 Our approach and contributions

Due to the complex and nonlinear nature of imaging processes, investigating imagers’ traces
is a difficult task. To address this issue, we first systematically model an imaging pipeline
as an encoder-decoder pair to bring more insight into analytical investigations. To be able
to explore distinguishable traces, we mathematically simplify and linearize the compressive
imaging as well as the two main forms of traditional image sensing. Our theoretical analyses
on the approximate linear models revealed imaging blurring kernels make discriminability,
where we followed them for further analysis. Here, the discriminability means the degree to
which an intelligent machine can separate an imaging source from another. To validate the
discriminability of the proposed footprints in real-world nonlinear scenarios, we considered
the whole imaging process as an inverse problem and estimated the blurring kernel numer-
ically based on a deconvolution approach [30], where the discriminability is also justified
by information visualization. Then, we schematized a deep learning based pipeline to auto-
matically classify blurring kernels from diverse imaging sources. To this end, we trained a
Convolutional Neural Network (CNN) by the estimated blurring kernels from an image set
including images of the three imaging systems and evaluated the effectiveness of blurring
kernel signatures. Main advantages of the proposed method over the approaches in cate-
gories of (a) and (b) are higher performance, due to incorporating the knowledge of forensic
analyzer, and simpler deep-network architecture, because of learning from blurring kernel
images which are very small in size and sparse in comparison to the images (See Table 1.).
The novelties of this paper are:

– modeling compressive and conventional imagers and approximating them by linear mod-
els for simplifying forensic investigations,

– revealing blurring kernel clues left by different imaging systems as discriminative features
and proving their dicsriminability both theoretically and statistically,

– proposing a deep learning framework for the application of imaging source identification
based on the engineered blurring kernel features.
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The rest of this paper is organized as follows. In Section 2, we derive three general models
for the imaging systems. Section 3 proposes a CNN classifier for identifying the source of
imaging based on learning from blurring kernels. Section 4 designs a series of experiments to
show the effectiveness of the proposed approach in different situations. Finally, we conclude
the paper in Section 5.

2 Modeling and linearization

2.1 Encoder-decoder modeling of compressive imaging

Different setups may be considered for designing application-specific compressive imagers,
which share similar behaviors [16, 50]. For instance, in single-pixel camera [16], the scene
image X ∈ R

h×w is first concentrated by a primary lens on a light modulator such as Digital
Micro-mirror Device (DMD) consisting of a configurable array of mirrors, LCD, and coded
modulation. The dimensions h and w represent the height and the width of the image X,
respectively. For each measurement cycle from a total of m measurements, a fraction of the
analogy imageprojectedontoDMDis selectedby apredefined randompattern,modeled as the
column vector ai ∈ R

n , in which n = h×w. Then, the randomly sampled image is collected
on a single photo-diode sensor by another secondary lens. The sensor signal corresponding to
the modulated light is converted to a single discrete measurement yi ∈ R,∀i = 1, 2, ,m.
The cycle is repeated m times, which result in the measurement vector y � Ax + n, where
y ∈ R

m , A ∈ R
m×n represents a wide sensing matrix arranged by A = [aT1 , aT2 , , aTm]T,

and n ∈ R
m models the additive noise of measurements. There is usually m � n. The

sampling rate or compressive ratio is defined as:

Rs � m

n
. (1)

The vector x represents a vectorized version of the input compressible imageX. The sensing
matrix may be defined as A � MF, in which the matrices F and M denote the sparsifying
transform and sampler, respectively. Therefore, rewriting the measurement vector y in terms
of the sparse-signal vector s yields:

y = A
︸︷︷︸

�MF

x + n = M Fx
︸︷︷︸

�s

+n = Ms + n. (2)

In practice, the light modulator requires calibration one or more times during the image
acquisition process. A decoder algorithm gets both the measurement vector y and the sensing
matrix A, and then reconstructs the image scene. Single-pixel camera recovers the sparse
signal ŝ using the �1-norm convex minimization algorithm, also called Basis Pursuit (BP) in
the literature [15]. This optimizer estimates ŝ in a search space as:

ŝ = mins ‖s‖�1 s.t. ‖y − Ms‖2�2 ≤ ε, (3)

where ‖n‖2�2 = ‖y − Ms‖2�2 denotes the energy of measurements noise. It is set to be less than
or equal to the small value ε in sparse recovery algorithms. The symbol ‖ · ‖�p

represents
the �p-norm. Finally, the original vectorized signal is recovered by:

x̂ = F−1̂s. (4)

Generally, the process of imaging and representation of a digital image in the CS technique
can be modeled by two basic blocks, including: the encoder G and the decoder G−1. Figure 1
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Channel

Raster scan Sensing Quantization Binary coding

Inverse raster scan Inverse sparsifying Recovery Dequantization Binary decoding

Encoding

Decoding

2-D scene

Imaged scene

Fig. 1 Modeling a compressive imaging system by an encoder-decoder pair for imaging a 2-D scene, which
includes the linear and nonlinear mathematical operators

shows the processes of encoding and decoding in a compressive imaging system. The encod-
ing process is usually performed inside a compressive imager. The decoding process may be
accomplished by using computers or servers with powerful hardware resources. The need to
powerful hardware is due to the computational complexity of nonlinear decoding algorithms.
Because compressive sensing performs a many-to-one transform in the encoding phase, the
decoder is not exactly the inverse system of the encoder, i.e., the function G is not invertible
and G−1{G(X)} �= X. Therefore, we define ̂X � G−1{G(X)} and probe the information loss
as intrinsic artifacts for compressive imaging forensics.

In the encoding phase shown in Fig. 1, the operatorsR,A,Q, and C represent the parallel
raster scanner, sensing operator, quantizer, and coder, respectively. In the decoding phase,
the blocksR−1, F−1,M−1,Q−1, and C−1 denote the inverse parallel raster scanner, inverse
of the sparsifying transform (F), reconstructor, dequantizer, and decoder, respectively. The
task of the block R is to scan parallel-wise in the vertical direction of signal samples. This
block converts a matrix to a vector, i.e., x = R{X}, and its inverse system, R−1, is exactly
available, i.e., ̂X = R−1{̂x}. This also forensically means the scan operation is loss-less and
does not has any traces. The operator F maps the signal onto a transform domain in which
the signal is sparse. For instance, the transformations of Fourier, discrete cosine transform,
wavelet, and Haar have such a property. The inverse of these transformations are exactly at
hand without information loss. The sampling operator A can be modeled by the matrix A.
To do this, two general CS approaches exist. One is using random Gaussian matrices, where
each measurement may be consisted of a weighted linear combination of all signal samples
[14]. Another is random sampling techniques [8], in which each measurement consists of
a combination of some random samples of the signal. The latter mechanism, also used in
single-pixel camera, exhibits simpler structure and yet higher performance in comparison to
random Gaussian matrices for a wide range of applications [1, 17, 50, 58]. In the block A,
the information loss exists due to the many-to-one conversion. This means the operatorM−1

recovers the signal by an approximate nonlinear method. The reconstruction of the signal
is performed by convex optimization or iterative procedures [50], such as the algorithms of
BP [15], IBA [59], IMAT [36], IMATI [58], ISTA [24], IHT [5], ADMM [7], BCS [27],
and ISP [44]. The quantizer Q is a lossy system and leaves quantization errors in practice.
The coder C is generally a loss-less operation such as Huffman or arithmetic codes and the
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related inverse system is completely available. Here, we assume the communication channel
or storage space is ideal, i.e., error-, noise-, and distortion-less. The recovered image from a
scene in compressive imaging can be formulated as:

̂X = R−1 {

F−1 [

M−1 (

Q−1 (

C−1 (C (Q (A (R (X)))))
))]}

. (5)

The above equation describes both the graphically shown steps of scene encoding and decod-
ing in Fig. 1.

2.2 Simplification of compressive and conventional imagers

2.2.1 Linearized model of compressive imaging

As seen in (5), the model of a compressive imaging system is complex and nonlinear. This
hardens its forensic investigations. For simplicity, we concentrate our focus on the measure-
ment block M and ignore other negligible sources of errors such as the quantization noise.
This consideration is due to the fact that the processes of quantization and binary coding
shown in Fig. 1 may be arbitrary for a compressive imager. For instance, in single-pixel cam-
era, the measurement vector y is directly used in the decoding phase to restore an image from
its unquantized measurements. However, the measurement process is always present, and
because of combining data (i.e., the dimensionality reduction), introduces more significant
traces than the quantizer. As mentioned earlier, in the decoding phase, the operatorM−1 for
signal reconstruction uses convex optimization methods such as the �1-norm [15] or nonlin-
ear iterative algorithms [5, 7, 24, 27, 36, 44, 50, 58, 59]. Applying such an operation may
leave some artifacts such as blurring and high frequency oscillations. We will linearize the
CS decoder to reveal artifacts as forensic footprints for compressive imaging identification
purposes. The simplified model of compressive imaging is considered as:

̂X = R−1 {

F−1 [

M−1 (A (R (X)))
]}

. (6)

For simplicity, we rewrite (6) in the following vector form:

x̂ = F−1 {

M−1 [A (x)]
}

. (7)

The details of all simplified imaging models including the above compressive sensing is
summarized in Table 1. The input signal x is sampled by using the measurement operator
M.

Example 1 (Random sampling as a case of CS) In [8], Candès et al. have used random
sampling as a special case of CS for Fourier matrices. Here, for simplicity of the theoretical
studies, we utilize this efficient mechanism in sampler. Consider a random sampling mask
represented by the vectorm = [m1,m2, ,m7]T = [

0 1 0 1 0 0 1
]T
. In this model, each

row of the measurement matrix M consists of only a single 1 and all of the other entries are
0, so that:

M =
⎛

⎝

0 m2 0 0 0 0 0
0 0 0 m4 0 0 0
0 0 0 0 0 0 m7

⎞

⎠ . (8)

Lemma 1 (Blurring kernel for compressive imager) Consider the compressive sensing model
in Table 1, where the recovered signal x̂C is determined by:

x̂C = G−1
C GC (x) . (9)
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The encoder of compressive sensing, GC , is modeled as a linear under-determined system of
equations. However, its decoder, G−1

C , is a nonlinear system, because the signal is generally
recovered by nonlinear iterative algorithms. Figure 2 models the decoder. To be able to
analyze the system behavior, wemodel the decoding function by an approximate linear system
around the operating point. Appendix A provides details of the derivation of the linear model
of compressive imaging decoder. In such a situation, the reconstructed signal x̂C (n) can
be modeled by the convolution of the signal x(n) with the unknown blurring kernel hC (n),
i.e., x̂C (n) = hC (n) ∗ x(n). Based on Toeplitz and circulant matrices [23], the convolution
operation can be rewritten in an algebraic vector-matrix form as:

x̂C ≈ HCx, (10)

where the matrix HC represents the blurring kernel of compressive imaging system. If the
matrix ̂M−1 is the linearized approximate model of the system M−1, then:

HC ≈
(

̂MF
)−1

(MF) . (11)

By defining the matrix ̂A � ̂MF, we have:

HC ≈ ̂A−1A. (12)

2.2.2 Linearized model of conventional imaging without compression

In cameras which deliver raw images, pixels are directly measured from CCD or CMOS
sensorswithout anypost-processingor compressionon the sensedpixels. This typeof imaging
is usually utilized for professional digital photography. To formulate the problem in this case,
we extend the simplified CS model shown in Table 1 to this type of conventional imaging.
In the CS representation, the matrix M may be considered as a diagonal matrix, where only
a given percent of its main diagonal elements with randomly distributed locations, are 1 and
in other entries are 0. The ratio of the number of main diagonal elements with the value 1

to the length of signal gives the sampling rate as Rs = ‖diag(M)‖�0
n × 100 in percent. The

function diag(M) gets diagonal entries of the matrixM. By this interpretation, a conventional
sensing model can be interpreted as a complete measurement of the vector containing the
signal x. Table 1 shows the imaging system with uncompressed file format (hereafter RAW
for simplicity). In this scheme, the measurement matrix is equal to the identity matrix, i.e.,
I=I. In the decoding phase, just the main signal is usable.

Linear filtering Thresholding

Fig. 2 Closed-loop modeling of general iterative sparse recovery approaches
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Example 2 (Sampling matrix for RAW imaging) As mentioned above, the measurement
matrix (8) can be rewritten in an equivalent form as:

M = diag(m). (13)

The function diag(m) creates the square diagonal matrixMwith the elements of vectorm on
its main diagonal. In this case, the sampling rate is Rs = 42.86%. However, for conventional
sensing, the matrix shown in (13) converts to an identity matrix, namely M = I7×7 with
Rs = 100%.

Lemma 2 (Blurring kernel for RAW imager) Consider the traditional imaging model in
Table 1 with raw image format. The recovered signal x̂U is determined by:

x̂U = G−1
U GU (x) , (14)

which the operators GU and G−1
U denote conventional encoder and decoder, respectively.

Based on the vector-matrix representation, the raw imaging model can be described as:

x̂U = HUx, (15)

where the matrix HU = I−1I represents the blurring kernel of the raw imaging system. This
results in:

HU = I, (16)

which also means the identity matrix I is the blurring kernel of raw imaging. Based on this
model, the original signal is perfectly reconstructible in the decoder. Therefore, there exists
x̂U = x.

2.2.3 Linearized model of conventional imaging with compression

Most of ordinary cameras such as those embedded in today smart cell phones, at first, grab an
image and then compress its content. Similar to uncompressed raw imaging, the total number
of pixels are first measured. Then, after some optional post-processing operations, the 2-D
signal is coded using a built-in source coder such as JP2 in order to reduce the bit rate. In
Table 1, we have planned this kind of imaging, where the total compression operation has
modeled by the operator T. In JP2 compression standard, the main encoding steps include
the transform to wavelet domain, quantization, and binary coding, which are performed
sequentially (See Fig. 3 for details.). The compression ratio in the quantizer controls the
required bit rate, defined as:

Rc � The input image size

The output compressed size
. (17)

This parameter is a real number more than or equal to 1. In the decoder T−1, the reverse
corresponding operations are applied, i.e., the binary decoding, dequantization, and inverse
wavelet transform, respectively. Based on this model, the only intrinsic fingerprint of JP2 is
the nonlinear quantizer system in the encoder and other operations are linear and losslessly
decodable. For simplicity of analytical studies, the quantizer may be approximated by a linear
model such as the linearized model of Σ-Δ modulator [35, 42] for describing noise shaping
phenomenon.
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Code

streams

FDWT Quantization Binary coding

Fig. 3 Basic building blocks of JPEG2000 compressor

Lemma 3 (Blurring kernel for imaging with compression) Consider the traditional imaging
with compression shown in Table 1. The recovered signal x̂J is determined by:

x̂J = G−1
J GJ (x) , (18)

inwhich the operatorsGJ andG−1
J denote the encoder and the decoder of conventional imager

with JP2 compression, respectively. To find an approximate blurring kernel, we linearinze
the model of JP2 compressor in Fig. 3. A derivation of the linearization of JP2 quantizer is
provided in Appendix B. In this case, the reconstructed signal in the form of vector-matrix
representation can be formulated as:

x̂J ≈ HJx. (19)

The matrix HJ ≈ (TI)−1 (

̂TI
)

represents the blurring kernel of conventional imaging with
compression, in which the matrices ̂T and T−1 denote the linearized approximate model of
the compressor T and the linear decompressor T−1, respectively. The final blurring matrix is
simplified as:

HJ ≈ T−1
̂T. (20)

3 Imaging identification

In Section 2, we provided a rough estimate of the blurring kernel status for different imaging
systems. Due to the differences among blurring matrices, they can potentially be exploited
as features for the identification of imaging history. Here, we consider the whole imaging
process as an inverse problem and calculate the blurring kernel matrix more accurately from
each individual input image of a provided dataset based on a blind deconvolution approach.
By leveraging Lemmas 1, 2, and 3, we justify the discriminability of matrices for different
imagers theoretically; and, at the same time, we verify the discriminabilijty of the estimated
kernels from real data statistically.At the end,weprovide a learning and evaluation framework
for the task of imaging source identification based on our proposed blurring kernel features.
Figure 4 shows the architecture of our proposed imaging classification scheme, where its
parts are introduced below.

3.1 Dataset preparation

Designing any classifier requires an appropriate dataset of training and test. To prepare our
experimental data, we employed standard databases of raw images, which are widely used in
image processing and forensics tasks [51].Weused the images set ofNever-compressedColor
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Fig. 4 A pipeline for the forensic identification of traditional and compressive imaging based on our proposed
blurring kernel signatures, including the two phases of learning and testing

Image Database (NCID) [32], including 5150 raw images with the dimensions 256×256 and
BMP file format. To manage hardware resources, we provided our experimental images set
as follows. We first divided NCID images into w × h = 128× 128 non-overlapping blocks.
Then, we randomly selected a subset of them, including Nr = 655 raw image patches. This
yields the initial data set DI = {xi }Nr

i=1.
We performed experiments under different settings of imaging systems. The sampling

rate in compressive sensing technology is usually set at the rates less than 50% of the
signal length [12]. To this intent, we drew the experimental sampling rates from the set
S = {25%, 40%, 50%, 67%} to generate different compressively sensed images based on the
encoder/decoder designed in single-pixel camera [16]. This means that we used Gaussian
measurements and BP algorithm for CS sampling and recovery, respectively. According to
the above sampling rates, the total number of CS images is Nr · |S| = 2620, where CS dataset

is defined as DC � {̂xiC }Nr ·|S|
i=1 . The symbol | · | denotes the cardinality of a set.

To create JP2 dataset, we adjusted the parameter of compression ratio, Rc, in MAT-
LAB JPEG2000 coder similar to the mechanism utilized in [12]. In this case, for a fair
comparison, we set the compression ratio of JPEG2000 coder in a manner that Peak Sig-
nal to Noise Ratio (PSNR) of conventional imager with compression is equal to PSNR of
the compressive imaging system. Assume the elements of the set {C, J ,U } refer the com-
pressive imager, conventional imaging with JP2 compression, and conventional imaging
system with uncompressed file format, respectively. The expectation in the regime satisfies
E{PSNR|J } ≈ E{PSNR|C},∀Rs ∈ S. For each Rs , there exists:

E{PSNR|k} � 10

Nr

Nr
∑

i=1

log10(
M2

1
n ‖xi − x̂ik‖2�2

),∀k ∈ {C, J }. (21)

The parameter M is the maximum value of a pixel, which is 255 for an 8-bit unsigned integer
image. In our experiments, the resultant set of compression ratio corresponding to the set S is
equal toP = {107.7899, 72, 54, 33.8}. This process results in Nr · |P| = 2620 JP2 images of

different compression ratios, where JP2 dataset is defined as DJ � {̂xiJ }Nr ·|P|
i=1 . The wavelet

basis employed for creating both CS and JP2 images was biorthogonal 4.4 with 4 levels of
decomposition.
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To prepare a balanced uncompressed images set DU , in addition to the database DI , we
randomly chose other 1965 images from the 128× 128 patches without replacement, placed

in the setDO . Then, we collected all of them into the balanced databaseDU � {xi }|DI |+|DO |
i=1 ,

including |DI | + |DO | = 2620 images. In this case, the number of data for each class in
the set {C, J ,U } is the same. The reason behind this is that learning from balanced classes
generally leads to an appropriate performance [26].

Our final database consists of the union of all the above datasets as:

D �
⋃

i∈{C,J ,U }
Di , (22)

inwhich the total number of images is |D| = 7860.We exploited the hold-out cross validation
mechanism [20]. So, the first 75% of data of each sub-class selected as the learning set and the

remainder for testing, where their sizes are respectively equal to DL = 
0.75Nr �·|D|
Nr

= 5892
and DT = 1968 images. The symbol 
·� denotes the nearest integer function. Our data
separation strategy guarantees to avoid any information leakage of images with the same
scene/content from the learning phase to the test phase. For providing more training data, we
have also used McGill CCID dataset [38]. We selected the central 128 × 128 region from
each of the 1096 TIFF images available in it [51].

For examining further the generalization capability, in addition to the 1968 test images,
we provided two different test sets including 48 images chosen from Microsoft Research
Cambridge Object Recognition Image Database and well-known image processing test-set
images such as Baboon, Cameraman, Lena, etc. We utilized 27 randomly selected, cropped,
and resized images fromMicrosoft database. Also, 21 images were chosen from well-known
test images of the size 128 × 128 [50].

3.2 Blurring kernel estimation

We model an imaging system as an inverse problem to be able to numerically estimate the
blurring kernel matrixHi ∈ R

a×b,∀i ∈ {C, J ,U } by deconvolution. We are given an image
from an imaging system, the problem is to reconstruct the blurring kernel of the original
scene. Deconvolution is known as a paradigm of inverse problems [40]. Various direct and
indirect deconvolution methods are available in order to estimate a degradation kernel and
a deblurred version of an image such as Wiener filter and Richardson-Lucy algorithm [31,
48]. One of the best algorithms is the modified maximum-a-posterior-based deconvolution
algorithm proposed in [30], which has used here. By using EM optimization, this algorithm
iterates alternatively between two steps: one for solving a latent sharp image, and another
for finding a blurring kernel. In order to blindly deconvolve the blurring kernel, it should be
taken into consideration that the kernel dimensions are generally much less than the image
dimensions [3]. Also, the shape of the degradation kernel is usually considered as a square
with the length a. Table 1 illustrates the estimated blurring kernels of the length a = 9
pertaining to Baboon image with the size 128× 128 for the three different imaging systems.
In this example, the simulated compressive imager is based on Gaussian measurements and
BP recovery algorithm with the sampling rate Rs ≈ 34%. The difference among blurring
kernels can be clearly seen with the naked eye.

Theorem 1 (Blurring kernels discriminability of imagers) Let different imaging systems be
modeled by x̂i ≈ Hix,∀i ∈ {C, J ,U }, in which the vectors x and x̂i , and the matrixHi denote
the latent original sharp signal, the output signal of the i th imaging system, and the blurring
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kernel of the i th imager, respectively. The elements of the set {C, J ,U } represent compressive
imager, conventional imager with JPEG2000 compression, and conventional imaging system
with uncompressed file format, respectively. Then, the blurring kernels of compressive HC ,
conventional with uncompressed formatHU , and conventional with compressionHJ imaging
systems are discriminable.

Proof Distinct Lemmas 1, 2, and 3 demonstrate that the blurring kernels of compres-
sive imager, conventional imager with uncompressed format, and conventional imager
with compression are determined by inconsistent matrices HC ≈ ̂A−1A, HU = I, and
HJ ≈ T−1

̂T, respectively, where the matrix I is an identity matrix and the approximate
kernels HC and HJ are derived from affine models with different slope and y-intercept
parameters. Accordingly, the blurring kernels of various imaging models are discriminable,
i.e., Hi �= H j ,∀i, j ∈ {C, J ,U }, i �= j , except for the following two worst cases:

– Case I: If the compressive ratio Rs → 100%, then CS imaging tends to conventional
sensing. To demonstrate this, substituting M = I in (11) gives HC = (IF)−1 (IF) ⇒
HC = F-1 I-1I

︸︷︷︸

=I

F, where results in HC = F−1F, and ultimately HC = I. This situa-

tion means the lack of discriminability between CS imager and RAW imaging as the
compressive ratio approaches the maximum rate 100%.

– Case II: If the compression ratio Rc → 1, then ̂T = T = I, which yields HJ = I. This
means that as the compression ratio approaches the minimum rate 1, the conventional
imagingwith compression tends to RAW imaging. This leads to the lack of discriminabil-
ity between conventional imaging systems with compression and without compression.

Also, to statistically validate the discriminability of the proposed signatures on real data as
supportive evidence of our proof, we visualized the situation of estimated blurring kernels in a
two-dimensional cluster representation by using the information visualization tool presented
in [52]. This visualizer is a bi-level dimensionality reduction technique. At the first level, the
kernel features are sparsely coded via the technology of compressive sensing and group least
absolute shrinkage and selection operator algorithm. Using the unsupervised non-parametric
t-SNE dimensionality reduction algorithm [34], sparse vectors are mapped onto a 2-D space
with the components v1 and v2 at the second level of the visualizer. For visualization, we
randomly selected with replacement 50% of the dataset D for training and remainder for
evaluation. In the visualizer, we adjusted the parameters of the number of measurements as
d = 10 and the regularizer as λ = 0.5. Figure 5 illustrates the 2-D visualized results at
two random runs. It is noticeable that due to the stochastic nature of the visualization algo-
rithm [52], clustering results at various random runs are naturally different. The visualization
results also justify the blurring kernels discriminability of imagers. Specifically, visualized
information reveals that:

– point clouds pertaining to the cluster JP2 are separated well,
– special groups of CS and RAW samples have overlap, and
– distinct islands convey species information belonging to individual classes. These species
may be generated by different ratios of coders and other latent variables of imaging
systems (In experiments, we have analyzed the behavior of these sub-classes in Section
4.2.2.).

��
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Fig. 5 2-D visualization of the discriminability of blurring kernel features for various imaging systems at two
different random runs (a) and (b)

3.3 Convolutional neural network for classification of imaging systems

CNN is one of the well-known models in deep machine learning, which is originally used for
detection and identification of objects in images and videos [22]. Unlike feature engineering
methods such as SVM which features are manually extracted by domain-specific experts,
CNN determines characteristics in an automatic manner directly from image pixels. The
structure of a CNN consists of two main building blocks. The first block contains feature
detection layers and the second block includes classification layers. In the feature detection
block, useful features are extracted by filtering, thresholding, and nonlinear down-sampling.
These operations are applied by using a successive set of processing steps on the input image
pixels including convolution, rectified linear unit (ReLU), and pooling, respectively. Convo-
lution parameters can be obtained through training. In the classification stage, a vectorized
version of the features obtained from the first block are fed to a Fully Connected (FC) net-
work such as multi layer perceptron in order to train weights and biases of the network from
learning data. CNN employs softmax activation function to predict output probabilities of
classes.

Different from the conventional usage of deep CNNs, here we train a network in a
hybridizedmanner aware from the discriminability of blurring kernels. The scheme leads to a
forensics-informed CNN for the application of source identification of the imaging systems.
To do this, we convert the estimated 2-D blurring kernels H to corresponding gray-level
images ˜H via a pre-processing step, and then feed them to a CNN as seen in Fig. 4. In the
pre-processing of CNN learning/testing, we first normalize kernel values in the range [0, 1].
Then, the normalized values are converted into 8-bit unsigned integers in the range [0, 255].
We examined different topologies for learning CNN and finally selected the structure having
maximum training accuracy. Based on our experiments on different architectures, a CNN
network with a small number of convolutional and fully-connected layers is sufficient to
learn the small, informative gray-level blurring kernel features. The employed optimal archi-
tecture consists of an a × b = 9 × 9 input blurring kernel image (Section 4.1 explains how
we selected this optimal size.), a convolutional layer including 20 filters of the dimensions
5 × 5, a ReLU layer, a non-overlapping max pooling layer with the pool size 2 × 2, a fully-
connected layer with 3 neurons, and an output layer with softmax activation function which
generates the probabilities of classes C1 to C3. In the 3-class classification problem, we have
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defined the classes C1, C2, and C3 as the representatives of CS, JP2, and RAW, respectively.
The optimization procedure used for training was stochastic gradient descent algorithm with
momentum. The settings of the maximum number of epochs and the initial learning rate
equal to 30 and 0.0003, respectively.

4 Experiments

In this section, we design a series of numerical experiments to show the effectiveness of the
proposed footprints as well support our theoretical findings. We have compared the proposed
forensics-informed CNN approach to techniques of k-Nearest Neighbor (k-NN) [13], Multi-
Layer Perceptron (MLP) neural network [25], SVM [9, 25], conventional CNN [22], and
the method in [12]. We have performed two different experiments: 1) using only the BP
algorithm [15], and 2) investigating the generalization capability under various unseen CS
algorithms including BCS [27], IMAT [36], IMATI [58], and ISP [44]. It is important to note
that the IMAT and IMATI algorithms utilize random sampling in sensing, and BCS and ISP
approaches employ Gaussian measurements of all samples of signal.

4.1 Evaluation on different dimensions of blurring kernel

The dimensions of estimated blurring kernel are the parameters that may affect a restoration
process. Here, the goal is to evaluate the accuracy (See (25).) of our proposed pipeline
identification system vs the blurring kernel length a, ranging from 3 to 13. Among the
compared approaches, the classifiers based on k-NN, MLP, and SVM are trained by our
blurring kernel features for a fair comparison. Hence, we also sought their optimal sizes.
Figure 6 depicts the accuracy vs blurring kernel dimensions. A growth-decline pattern is
seen among methods. There is almost a congruency of the best accuracy on the size 9 × 9.
This size notifies that features information is enough for an appropriate classification without
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Fig. 6 The performance under variations of blurring kernel dimensions for thosemethods that use our proposed
blurring kernel traces as forensic features
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needing to redundancies due to increasing dimensions. Therefore, for next experiments of
the paper, we set a∗ = 9 for all the methods.

4.2 Results and comparison

4.2.1 Implementation information of compared approaches

Simulations have done in MATLAB and run on an Intel Core i7 2.2GHz machine. In the
k-NN classifier, we used the number of nearest neighbors k = 3. The architecture of MLP
includes: 81 input features, 2 hidden layers with 70 and 3 neurons respectively at the first and
second layers, 3 neurons in the output layer with softmax activation function. The maximum
number of epochs and the initial learning rate are the same with our method.

For the SVM, we utilized an one vs one division strategy with linear kernel. Its pre-
processing step includes normalization of features in the range [0, 1]. To do this, we
first considered an individual Gaussian distribution for each feature, in such a way that
N(μi , σi ),∀i ∈ [1, a × b]. Then, we obtained the sample mean and standard deviation
parameters for each feature from the training data. At the end, the normalization for a train-
ing/testing sample is performed as:

˜h = (h − μ) σ , (23)

where the vectors h and˜h represent vectorized versions of matrices H and ˜H, respectively.
So, we have μ = [μ1, μ2, , μa×b]T and σ = [σ1, σ2, , σa×b]T. The symbol
denotes the entry-by-entry division. For implementing the SVM classifier, we used LIBSVM
toolbox [9].

For the conventional CNN, the images of learning dataset are directly utilized to auto-
matically extract features. In its training phase, we used an optimal structure including an
input gray-level image set of the size w × h = 128× 128, 30 filters of the dimensions 3× 3,
the pool size 2 × 2 without overlapping, and a fully-connected network with 3 outputs. The
maximum number of epochs and the initial learning rate were 30 and 0.0001, respectively.

We reproduced the method [12] and approximated the thresholding parameters τ1 and τ2
of the first and second detectors from the learning set DL . In a grid search, we varied the
threshold τ1 from 0.001 to 0.002 and the threshold τ2 from 0.002 to 0.003, and found the
optimal τ ∗

1 = 0.0015 and τ ∗
2 = 0.002 values, so that the accuracy constraint on the learning

data is maximized. In this method, we also utilized 5 levels of wavelet decomposition which
lead to the best performance and set the number of iterations in EM algorithm equal to 100.

4.2.2 Performance under various compressive and compression ratios

It is important to obtain the performance of classification for sub-classes of each sensing
system. The compressive ratio of compressive imaging in (1) and the compression ratio
of JPEG2000 encoder in (17) are main parameters for controlling the required bandwidth.
Settings of these ratios directly affect the quality of images in their decoding phase. Hence, the
estimated kernels vary based on the amount of compressive/compression ratios. Figure 7(a)
and (b) compare the accuracy of different methods for detecting CS and JP2 classes under
various compressive and compression ratios, respectively.

As seen from Fig. 7(a), by increasing the compressive ratio, the accuracy for detecting the
class CS decreases. It is due to the fact that the higher compressive ratio results in the lower
compressive sensing artifacts. This increases the probability of error for misclassification of
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Fig. 7 (a) The performance comparison of identifying compressive sensing under various compressive ratios,
and (b) the performance comparison of detecting JPEG2000 under various compression ratios. The values in
parentheses in the legend of figures show averaging on their own x-axis values

the class CS as the class RAW and vice versa, that justifies Case I from Theorem 1 (See also
Table 2 for more details.). Inversely, the performance of detecting the class JP2 decreases
by reducing the compression ratio, as seen in Fig. 7(b). The lower compression ratio leads
to the lower compression artifacts, which increases the error probability of misclassification
between the JP2 and RAW classes. This also justifies Case II from Theorem 1. The values in
parentheses in the legend of Fig. 7(a) and (b) show the average accuracy on all correspond-
ing ratios. The proposed approach has the first accuracy rank among different competing
methods. The method in [12] exhibits almost the same accuracy for various ratios. However,
its performance is unbalanced among the three classes and lower than other methods, espe-
cially for detecting the class CS depicted in Fig. 7(a). The overall performance for detecting
the class JP2 is better than the class CS, as justified by the discriminability visualization in
Section 3.2.

4.2.3 Confusion matrix of imaging identification

Confusion matrix is a standard means of quantifying performance of a classifier in detail
[19]. In this paper, the confusion matrix C for an imaging classifier is defined as:

CS JP2 RAW

C =
CS
JP2
RAW

⎡

⎣

P(CS|CS) P(CS|JP2) P(CS|RAW)
P(JP2|CS) P(JP2|JP2) P(JP2|RAW)
P(RAW|CS) P(RAW|JP2) P(RAW|RAW)

⎤

⎦ .
(24)

The conditional probabilities in the main diagonal elements ofC represent the correct classi-
fication and the remainder off-diagonal entries show the misclassification probabilities. For
simplicity of comparison, we have collected confusion matrices of the compared approaches
in Table 2. Overall accuracy in terms of percent is calculated by:

Accuracy = 100

3
[P(CS|CS) + P(JP2|JP2) + P(RAW|RAW)]. (25)

From Table 2, the accuracy is 80.28, 77.13, 73.68, 75.51, 82.01, and 55.64 for our
purposed, k-NN, MLP, SVM, conventional deep CNN, and Chu et al. [12] approaches,
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respectively. This means that the methods of conventional CNN and our approach achieve
the first and second ranks in terms of the overall accuracy, respectively. The first position of
the conventional CNN is because of the performance difference in detecting the class C3.
However, the bold values in Table 2 reveal merits of our approach. Except for the class RAW,
our method is ranked number one for detecting the classes CS and JP2 among competing
approaches. The confusion matrices also show, for all compared methods, the misclassifi-
cation errors between the classes CS and RAW are more than the other errors. The correct
classification of the class JP2 is also more than the other imaging systems, because the blur-
ring kernels of JPEG2000 images are more discriminative. Therefore, the best accuracy is
obtained for predicting the class JP2 and the worst one for the class RAW. Specifically for
the class RAW, comparing our detection result to that of conventional CNN shows that the
automatically-extracted features by means of the convolution plus pooling represent better
discriminability than the blurring kernels estimated by the deconvolver. However, in terms
of the input image size, the speed of our scheme is more than the competing CNN with less
memory requirement.

4.3 Generalization under unseen CSmethods and datasets

This experiment examines the generalization capability of the pipeline identification system
under different unseen compressive sensing approaches as well as unseen data. To this intent,
we first trained our identification method on all 7860 data extracted from NCID database. It
is noticeable that the CS recovery algorithm used for generating images of the compressive
imaging class is BP algorithm. Then, for generalization test, we applied unseenCS algorithms
of BCS, IMAT, IMATI, ISP, and BP (as a baseline) on unseen databases from the Microsoft
and well-known test-set images. For a fair comparison, the sampling rate of all recovery
algorithms set about 32% for Microsoft Object Recognition Database and 34% for well-
known images test-set.

Figure 8 depicts the results of correct identification of the class CS, i.e., the probability
P(C1|C1) in %, for different CS algorithms on the databases of Microsoft and well-known
test-set images. The reported performance metrics are average values for 10 training-testing
runs. As shown in the chart, the identification system has promisingly predicted blurring
kernels labels for both the unseenCS approaches and the unseen data. The best performance is
belonging to the baseline BP, due to training onNCID kernels of the same recovery algorithm.
The worst identification result is for IMATI method, where its interpolation mechanism
during reconstructing iterations causes imaging artifacts to alleviate somewhat. Except for
themethodBP, the performance onMicrosoft dataset ismore thanwell-known images test-set
in other sparse recovery algorithms.

However, it seems that learning blurring kernels of various recovery algorithms in the
training phase can potentially improve the performance of compressive imaging identifica-
tion. For instance, in the worst performance for IMATI, we curiously trained our approach
with blurring kernels containing this type of CS to monitor how our model acts. For this
purpose, at first, our network was trained with the datasets of NCID and CCID. Then, we
evaluated its performance on the datasets of Microsoft and well-known images. Detailed
confusion matrix in % is presented as:

CS JP2 RAW

C =
CS
JP2
RAW

⎡

⎣

86.04 0 1.67
0 93.13 25

13.96 6.87 73.33

⎤

⎦ .
(26)
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Fig. 8 Correct identification of compressive imaging in % for different sparse recovery algorithms and two
test-set databases

The result P(C1|C1) = 86.04 % shows a considerable 22.86 % improvement in IMATI
CS identification than that one obtained in Fig. 8 with 63.18 %. Also, for the best result on
the baseline BP, the confusion matrix would be:

CS JP2 RAW

C =
CS
JP2
RAW

⎡

⎣

91.46 0 3.33
0 94.38 26.67

8.54 5.62 70

⎤

⎦ ,
(27)

which shows 2.41 % improvement in BP CS identification.

4.4 Effect of quantization noise on CS identification

In compressive imaging, CS measurements may be quantized by means of a quantizer. Such
quantized measurements introduce quantization noise in CS encoding phase. So, the aim
of this experiment is to investigate the effect of the quantization noise on the performance
of compressive imaging identification under various compressive ratios and compare the
obtained results with those of unquantized measurements. In case of quantized measure-
ments, the entries of the measurement vector y are rounded to the nearest integer values. For
evaluation, we employed a set of unseen data chosen from the well-known test-set images.
Figure 9 reports the performance of the pipeline compressive imaging identification system
vs compressive ratio for both scenarios of unquantized and quantized CSmeasurements. The
performancemetrics are average values for 10 training-testing runs. The results demonstrate a
perfect CS identification at the compressive rate 20% for both unquantizedly and quantizedly
measured data. This also means that for low compressive ratios, the quantization noise has
no any effect on the performance. Although the identification performance in case of noisy
quantized measurements is less than unquantized ones for the mid and high compressive
rates, the results of unquantized measurements reveal that the dominant fall in performance
is mainly related to the measurement process in CS encoding but not quantization.
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Fig. 9 The performance of compressive imaging identification vs compressive ratio for both unquantized and
quantized CS measurements

5 Conclusion

This paper modeled both compressive and traditional image sensing systems as an encoder-
decoder pair. To analyze behavior of the complex imaging systems for forensic investigation
purposes, simplification and linearization of the imagers were provided. Thanks to insights
into the modeling of different imagers, we found blurring kernels of imaging systems make a
discrimination capability for identifying the source imaging device that has been captured a
suspect image. Therefore, we considered the process of image acquisition as a blind deconvo-
lution problem and estimated the blurring kernel numerically. Theoretical and statistical tests
were performed for analyzing the discriminability of blurring kernels of different imaging
systems. We also fed our revealed traces to a pipeline deep learning-based system for the
application of imaging source identification. We reached a promising correct classification
of compressive imaging about 84% on 1968 test samples. To manage hardware resources in
simulations, we trained the network with a relatively small-scale training set including 5892
images for showing the concept of our method. As shown in experiments, the performance
of our forensics-informed deep network can improve by increasing training data.

As future studies, being aware of noise characteristics or sharpness properties of edges can
provide complementary footprints for imaging source identification purposes. Our modeling
also facilitates developmental approaches for forensic investigations in connection with the
next-generation, state-of-the-art compressive imaging systems. For instance, the forensic
identification among a set of compressive sensing-based imaging systems can reveal the
history of image acquisition such as make and model of the source compressive imaging
device that has been generated a questionable image as well as settings under which the
image has been captured.

Acknowledgements This research was jointly sponsored by Iran National Science Foundation and ACRI of
Sharif University of Technology under agreement numbers 95/SAD/47585 and 7000/6642, respectively. The
authors also thank Prof A. Amini and other researchers in Multimedia and Signal Processing Lab for their
valuable comments.

123



41370 Multimedia Tools and Applications (2024) 83:41349–41374

Data Availability All data generated or analyzed during this study, simulation codes, and their supplementary
information files are included in the published article as supplementary materials.

Declaration

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Derivation of the compressive decoder linear model

Consider the decoder of a compressive imaging system as:

x̂ = G−1(y) = F−1M−1(y), (28)

where the vector y � Ax contains measurements. Iterative algorithms are known as a general
class of approximate sparse decoding approaches to solve (28). They can be modeled by
successive linear filtering and point-wise thresholding [28], such as the algorithms of ISTA,
IHT, IMAT, and ADMM. In Fig. 2, we have modeled an iterative compressive imaging
decoder as a closed-loop system, in which the recovered signal x at the (k + 1)th iteration
with the initial guess x(0) is formulated as:

x(k+1) = f (Wx(k)), (29)
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Fig. 10 The function of soft-thresholding and its approximation
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which the matrix W represents an algorithm-dependent linear filter, the nonlinear operator
f (·) is a thresholding function, and x̂ � x(N ) after the last iteration N . One of the popular
thresholding functions utilized in sparse recovery is soft-thresholding as:

y = f (x) =
{

sgn(x)(|x| − Δ), |x| ≥ Δ

0, |x| < Δ
, (30)

where the parameter Δ is a threshold value. Based on Taylor series expansion [37], a linear
approximation of soft-thresholding function around the known point x0 can be represented
by:

y = f (x) ≈ f (x0) + f ′(x0)(x − x0), (31)

for which the derivative of the function f (x) can be rewritten by the unit step function u(x)
terms as:

f ′(x) = u(−x − Δ) + u(x − Δ). (32)

This function is one for |x | ≥ Δ and zero for |x | < Δ. Therefore, there exist y ≈ x − Δ and
y ≈ x + Δ for x ≥ Δ and x ≤ Δ, respectively. Figure 10 simulates both soft-thresholding
function and its linear approximation forΔ = 1 andΔx � x − x0 = 0.2, which shows small
errors. Without loss of generality for the linear approximation of an arbitrary thresholding
function, (28) can be rewritten as x̂ ≈ F−1

̂M−1y, in which the matrix ̂M−1 represents the
linearized approximate model of the systemM−1. By defining the matrix̂A � ̂MF, we have
x̂ ≈ ̂A−1Ax. ��

Appendix B: Derivation of the linearization of JPEG2000 quantizer

As shown in Fig. 3, the basic operations of JPEG2000 compressor are the forward DWT,
quantization, and arithmetic coding. Since the binary decoder C−1 is exactly the inverse
system of C, the forensic model of JPEG2000 compressor can be formulated by:

y = T(x) = f (Wx). (33)

Here, the vectors x and y, and the matrix W denote the input signal, quantized coefficients,
and the wavelet transform, respectively. The nonlinear quantization function f (·) for a given
wavelet coefficient in JPEG2000 standard is formulated as:

y = f (x) = sgn(x)
 |x |
Δb

�, (34)

where the function Δb determines the quantization step size. For small values of Δb, the
function in (34) approaches the line y ≈ 1

Δb
x . Hence, the quantizer can be linearized by

the first-order approximation y = f (x) ≈ f (x0) + f ′(x0)(x − x0). The derivative of the
function f (x) is as:

f ′(x) = 2δ(x)
 |x |
Δb

� + sgn(x)
d

dx

 |x |
Δb

�, (35)

which the function δ(x) denotes the unit impulse function. Using the change of variable
λ � |x |

Δb
, the derivative d

dx 
λ� is equal to:
d

dλ

dλ

dx

λ� = x

Δb|x | { + δ(λ + 1) + δ(λ) + δ(λ − 1) + }, (36)
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Fig. 11 The function of JPEG2000 quantizer and its approximation

where for λ ∈ R
+ yields:

d

dx

 |x |
Δb

� = 1

Δb
{ − δ(x + 2Δb) − δ(x + Δb) + δ(x − Δb) + δ(x − 2Δb) + }.

(37)

By inserting (37) into (35) and utilizing the sampling property of the impulse function as
g(x)δ(x − x0) = g(x0)δ(x − x0), we have ultimately:

f ′(x) = 1

Δb
{

∞
∑

n=−∞
[δ(x − nΔb)] − δ(x)}. (38)

The function f ′(x) is only non-zero for x = nΔb, ∀n = ±1,±2, . Therefore, for both
n < 0 and n > 0, we have y ≈ 1

Δb
x , which make sense. Figure 11 depicts JPEG2000

quantizer and its linear approximation for Δb = 1 and Δx � x − x0 = 0.2. The differences
are only seen for the discontinues points. For the above linearizedmodel, (33) is approximated
by y ≈ ̂Tx, where the matrix ̂T corresponds to the linearized model of the compressor
T. JPEG2000 decompressor T−1, as the inverse of the system presented in Fig. 3, can be
described by x̂ ≈ W−1δ � y � T−1

̂Tx, in which the matrices W−1 and T−1, the vector
δ, and the symbol � represent the inverse DWT, decompression matrix, quantization step
entries, and point-wise multiplication, respectively. ��
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