Skip to main content
Log in

Robust watermarking method based on the Analytical Clifford Fourier Mellin Transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we intend to introduce a semi-blind watermarking algorithm for colour images according to the RGB standard, which takes into account the interdependence of the three planes. In this context, it is often desirable that these algorithms verify certain independency with respect to the pose difference and a robustness with respect to the attacks caused by the compression. On the other hand, the inversion properties and the compressive power of the algorithms are also required criteria. The approach based on the Analytical Fourier Mellin Transform (AFMT) confirms all these recommendations. However, its scalar character can only result in a separate watermark within the meaning of RGB planes. In a recent work, we were able to show that the Fourier transform defined on the Clifford algebra is suitable for joint watermarking of colour images. However, its numerical approximations presents a problem of convergence in neighbour the origin. This results in digital instability in the frame of the image data. Inspired by the work carried out on the Mellin Analytical Fourier transform (AFMT), we propose here the construction of an analytical extension of the Clifford transform which we propose to call the Analytical Mellin Clifford Transform (ACMT). An approximation is given guaranteeing its convergent and its numerical stability in the context of watermarking of images. Furthermore, the properties of invariance with respect to rigid geometric transformations and its robustness with respect to certain compression algorithm are proven by simulations. Thus, its good performances in terms of imperceptibility and robustness against JPEG compression and geometric attacks are demonstrated on the BSD300 and USC-SIPI databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Algorithm 1
Algorithm 2
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

All analyzed data during this study are available on request.

Notes

  1. the set of equivalence classes of unitary irreducible representations of G

  2. Quadratically integrable function in \(\mathbb {R}^{2}\) with values in \(\mathbb {R}^{1}_{4,0}\)

  3. Clifford algebra of \(\mathbb {R}^{4}\)

References

  1. Affes M, Meziou MS, Ghorbel F (2016) Robust color watermarking method based on clifford transform. In: Advanced Concepts for Intelligent Vision Systems - 17th International Conference, ACIVS 2016, Lecce, Italy, October 24-27, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10016. p 453–464. https://doi.org/10.1007/978-3-319-48680-2_40

  2. Bamatraf A, Ibrahim R, Salleh MNBM (2010) Digital watermarking algorithm using lsb. In: 2010 International Conference on Computer Applications and Industrial Electronics. p 155–159 https://doi.org/10.1109/ICCAIE.2010.5735066

  3. Bas P, Roue B, Chassery J-M Tatouage d’images couleur additif:vers la sélection d’un espace d’insertion optimal

  4. Burgett S, Koch E, Zhao J (1998) Copyright labeling of digitized image data. IEEE Communications Magazine 36(3):94–100

    Article  Google Scholar 

  5. Chen B, Coatrieux G, Chen G, Coatrieux J-L, Shu H (2014) Full 4- D quaternion discrete Fourier transform based watermarking for color images. Digit. Signal Process 28:106–119. https://doi.org/10.1016/j.dsp.2014.02.010

    Article  Google Scholar 

  6. Chou C-H, Liu K-C (2010) A perceptually tuned watermarking scheme for color images. IEEE Trans Image Process 19:2966–2982

  7. Chou C-H, Liu K-C (2010) A perceptually tuned watermarking scheme for color images. IEEE Trans Image Process 19:2966–2982

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  8. Das C, Panigrahi S, Sharma VK, Mahapatra KK (2014) A novel blind robust image watermarking in dct domain using inter-block coefficient correlation. AEU - Int J Electron Commun 68(3):244–253. https://doi.org/10.1016/j.aeue.2013.08.018

    Article  Google Scholar 

  9. Das C, Panigrahi S, Sharma VK, Mahapatra KK (2014) A novel blind robust image watermarking in dct domain using inter-block coefficient correlation. AEU - Int J Electron Commun 68(3):244–253. https://doi.org/10.1016/j.aeue.2013.08.018

  10. Dhaked DK (2021) Combined dct-dwt color image digital watermarking technique. In: Emerging Trends in Data Driven Computing and Communications. Springer, p 169–177

  11. Ghorbel F (1994) A complete invariant description for gray-level images by the harmonic analysis approach. Pattern Recognit Lett 15(10):1043–1051. https://doi.org/10.1016/0167-8655(94)90037-X

  12. Ghorbel F (1994) A complete invariant description for gray-level images by the harmonic analysis approach. Pattern Recognit Lett 15(10):1043–1051. https://doi.org/10.1016/0167-8655(94)90037-X

    Article  ADS  Google Scholar 

  13. Ghorbel F (1998) Towards a unitary formulation for invariant image description: application to image coding. Ann. des Telecommun 53(5):242. https://doi.org/10.1007/BF02997680

    Article  Google Scholar 

  14. Gohil J, Patel J, Shah M (2021) Content watermarking and data hiding in multimedia security. Adv Sec Solut Multimedia 2053–2563

  15. Guo L-Q, Zhu M (2011) Quaternion fourier-mellin moments for color images. Pattern Recognit 44(2):187–195. https://doi.org/10.1016/j.patcog.2010.08.017

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Hosny KM, Darwish MM (2019) Resilient color image watermarking using accurate quaternion radial substituted chebyshev moments. ACM Trans. Multimed Comput Commun Appl 15(2):1–25

    Article  Google Scholar 

  17. Hwang J, Kim J, Choi J (2006) A reversible watermarking based on histogram shifting. In: Shi YQ, Jeon B (eds) Digital Watermarking. Springer, Berlin, Heidelberg, pp 348–361

    Chapter  Google Scholar 

  18. Hwang J, Kim J, Choi J (2006) A reversible watermarking based on histogram shifting. In: Shi YQ, Jeon B (eds) Digital Watermarking. Springer, Berlin, Heidelberg, pp 348–361

  19. Ketipearachchi T, Wickramasinghe M (2020) Invisible colour image watermarking technique for colour images using dwt and svd. International J Adv ICT Emerg Regions 13(2):2

    Google Scholar 

  20. Ketipearachchi T, Wickramasinghe M (2020) Invisible colour image watermarking technique for colour images using dwt and svd. International J Adv ICT Emerg Regions 13(2):2

  21. Kumar A, Santhi V (2011) A review on geometric invariant digital image watermarking techniques. Int J Comput Appl 12:31–36

    Google Scholar 

  22. Kutter M, Jordan FD, Bossen F (1998) Digital watermarking of color images using amplitude modulation. J Electron Imaging 7(2):326–332. https://doi.org/10.1117/1.482648

    Article  ADS  Google Scholar 

  23. Lang J, Zhang Z-G (2014) Blind digital watermarking method in the fractional fourier transform domain. Opt Lasers Eng 53:112–121. https://doi.org/10.1016/j.optlaseng.2013.08.021

    Article  Google Scholar 

  24. Lang J, Zhang Z-G (2014) Blind digital watermarking method in the fractional fourier transform domain. Opt Lasers Eng 53:112–121. https://doi.org/10.1016/j.optlaseng.2013.08.021

  25. Liu J, Huang J, Luo Y, Cao L, Yang S, Wei D, Zhou R (2019) An optimized image watermarking method based on hd and svd in dwt domain. IEEE Access 7:80849–80860. https://doi.org/10.1109/ACCESS.2019.2915596

    Article  Google Scholar 

  26. Liu J, Huang J, Luo Y, Cao L, Yang S, Wei D, Zhou R (2019) An optimized image watermarking method based on hd and svd in dwt domain. IEEE Access 7:80849–80860. https://doi.org/10.1109/ACCESS.2019.2915596

  27. Lusson F, Bailey K, Leeney M, Curran K (2013) A novel approach to digital watermarking, exploiting colour spaces. Signal Process 93:1268–1294. https://doi.org/10.1016/j.sigpro.2012.10.018

    Article  Google Scholar 

  28. Maweheb S, Malek S, Faouzi G (2016) Geometric invariance in digital imaging for the preservation of cultural heritage in tunisia. Digit. Appl. Archaeol. Cult. Herit 3(4):99–107. https://doi.org/10.1016/j.daach.2016.10.001

    Article  Google Scholar 

  29. Maweheb S, Malek S, Faouzi G (2016) Geometric invariance in digital imaging for the preservation of cultural heritage in tunisia. Digit. Appl. Archaeol. Cult. Herit 3(4):99–107. https://doi.org/10.1016/j.daach.2016.10.001

  30. Mennesson J, Saint-Jean C, Mascarilla L (2014) Color Fourier-Mellin Descriptors for Image Recognition. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2013.12.014

    Article  Google Scholar 

  31. Mennesson J, Saint-Jean C, Mascarilla L (2014) Color Fourier-Mellin Descriptors for Image Recognition. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2013.12.014

  32. Mezghich MA, Sellami M, M’Hiri S, Ghorbel F (2013) Shape prior for an edge-based active contours using phase correlation. In: 21st European Signal Processing Conference (EUSIPCO 2013). p 1–5

  33. M’hiri S, Mezghich MA, Sellami M (2012) Contours actifs avec a priori de forme basé sur la transformée de fourier-mellin analytique. Trait du Signal 29(1–2):123–142. https://doi.org/10.3166/ts.29.123-142

    Article  Google Scholar 

  34. Nagaraju G, Ramarju D, Kumar VP, Krishna NG, Ambika M, Lavanya C (2019) Image security using bit-xor encryption and histogram shifting watermarking. Int J Innov Eng Manag Res 118–124

  35. Niu P-P, Wang P, Liu Y-N, Yang H-Y, Wang X-Y (2016) Invariant color image watermarking approach using quaternion radial harmonic fourier moments. Multimedia Tools Appl 75(13):7655–7679. https://doi.org/10.1007/s11042-015-2687-1

  36. Niu P-P, Wang X, Yang Y-P, Lu M (2011) A novel color image watermarking scheme in nonsampled contourlet-domain. Expert Syst Appl 38:2081–2098

    Article  Google Scholar 

  37. Niu P-P, Wang P, Liu Y-N, Yang H-Y, Wang X-Y (2016) Invariant color image watermarking approach using quaternion radial harmonic fourier moments. Multimedia Tools Appl 75(13):7655–7679. https://doi.org/10.1007/s11042-015-2687-1

    Article  Google Scholar 

  38. O Ruanaidh J, Dowling WJ, Boland F(1996) Phase watermarking of digital image, in, vol. 3. p 239–242. https://doi.org/10.1109/ICIP.1996.560428

  39. Pandey P, Kumar S, Singh SK (2014) A robust logo watermarking technique in divisive normalization transform domain. Multimed Tools Appl 72:2653–2677

    Article  Google Scholar 

  40. Pandey P, Kumar S, Singh SK (2014) Rightful ownership through image adaptive dwt-svd watermarking algorithm and perceptual tweaking. Multimed Tools Appl 72:723–748

    Article  Google Scholar 

  41. Parah SA, Sheikh JA, Loan NA, Bhat GM (2016) Robust and blind watermarking technique in dct domain using inter-block coefficient differencing. Digit Signal Process 53:11–24. https://doi.org/10.1016/j.dsp.2016.02.005

  42. Parah SA, Sheikh JA, Loan NA, Bhat GM (2016) Robust and blind watermarking technique in dct domain using inter-block coefficient differencing. Digit Signal Process 53:11–24. https://doi.org/10.1016/j.dsp.2016.02.005

    Article  Google Scholar 

  43. Piva A, Barni M, Bartolini F, Cappellini V (1999) Exploiting the crosscorrelation of rgb-channels for robust watermarking of color images. In: Proceedings of the 1999 International Conference on Image Processing, ICIP ’99, Kobe, Japan, October 24-28, 1999, pp. 306–310. IEEE, https://doi.org/10.1109/ICIP.1999.821619

  44. Sangwine SJ (1996) Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron Lett 32(21):1979–1980. https://doi.org/10.1049/el:19961331

    Article  ADS  Google Scholar 

  45. Sellami M, Ghorbel F (2012) An invariant similarity registration algorithm based on the analytical fourier-mellin transform. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). p 390–394

  46. Sellami M, Ghorbel F (2012) Phase correlation in fourier mellin space: Application to image mosaicing. In: 2012 16th IEEE Mediterranean Electrotechnical Conference. p 125–128 . https://doi.org/10.1109/MELCON.2012.6196395

  47. Shih FY, Zhong X (2016) High-capacity multiple regions of interest watermarking for medical images. Inf Sci 367–368:648–659. https://doi.org/10.1016/j.ins.2016.07.015

  48. Shih FY, Zhong X (2016) High-capacity multiple regions of interest watermarking for medical images. Inf Sci 367–368:648–659. https://doi.org/10.1016/j.ins.2016.07.015

    Article  Google Scholar 

  49. Singh S, Arya RK, Sharma H (2016) Region based undetectable multiple image watermarking. In: 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). p 141–144 https://doi.org/10.1109/ICCTICT.2016.7514568

  50. Taha DB, Taha TB, Al Dabagh NB, Ngadiran R, Ehkan P (2019) Digital image watermarking algorithm based on texture masking model. J Eng Sci Technol 14(6):3347–3360

    Google Scholar 

  51. Tsui TK, Zhang X-P, Androutsos D (2008) Color image watermarking using multidimensional fourier transforms. IEEE Trans Inf Forensics Secur 3(1):16–28. https://doi.org/10.1109/TIFS.2007.916275

    Article  Google Scholar 

  52. Wang X, Wang C-P, Yang H, Niu P-P (2013) A robust blind color image watermarking in quaternion fourier transform domain. J Syst Softw 86:255–277

    Article  CAS  Google Scholar 

  53. Yao Z, Liu Y, Zhang S, Yang J (2020) Effective quaternion radial harmonic fourier moments for color image representation. Signal Image Video Process 1–9

  54. Zhang L, Wei D (2020) Image watermarking based on matrix decomposition and gyrator transform in invariant integer wavelet domain. Signal Process 169:107421

    Article  Google Scholar 

  55. Zhang L, Wei D (2020) Robust and reliable image copyright protection scheme using downsampling and block transform in integer wavelet domain. Dig Signal Process 106:102805

    Article  Google Scholar 

  56. Zhang L, Wei D (2020) Robust and reliable image copyright protection scheme using downsampling and block transform in integer wavelet domain. Dig Signal Process 106:102805

  57. Zhao J, Koch E (1995) Embedding robust labels into images for copyright protection. In: Proceedings of the Conference on Intellectual Property Rights and New Technologies. KnowRight ’95, R. Oldenbourg Verlag GmbH, DEU, p 242–251

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallek Mziou Sallami.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maroua Affes Jemal and Mallek Mziou Sallami contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemal, M.A., Sallami, M.M. & Ghorbel, F. Robust watermarking method based on the Analytical Clifford Fourier Mellin Transform. Multimed Tools Appl 83, 25901–25922 (2024). https://doi.org/10.1007/s11042-023-16482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16482-8

Keywords

Navigation