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Abstract
Deep learning models have been widely used in hyperspectral images classification. How-
ever, the classification results are not satisfactory when the number of training samples is 
small. Focused on above-mentioned problem, a novel Two-stage Multi-dimensional Con-
volutional Stacked Autoencoder (TMC-SAE) model is proposed for hyperspectral images 
classification. The proposed model is composed of two sub-models SAE-1 and SAE-2. The 
SAE-1 is a 1D autoencoder with asymmetric structre based on full connection layers and 
1D convolution layers to reduce spectral dimensionality. The SAE-2 is a hybrid autoen-
coder composed of 2D and 3D convolution operations to extract spectral-spatial features 
from the reduced dimensionality data by SAE-1. The SAE-1 is trained with raw data by 
unsupervised learning and the encoder of SAE-1 is employed to reduce spectral dimen-
sionality of raw data. The data after dimension reduction is used to train the SAE-2 by 
unsupervised learning. The fine-tuning of SAE-2 encoder and the training of classifier are 
implemented simultaneously with small number of samples by supervised learning. Com-
parative experiments are performed on three widely used hyperspectral remote sensing 
data. The extensive comparative experiments demonstrate that the proposed architecture 
can effectively extract deep features and maintain high classification accuracy with small 
number of training samples.

Keywords Hyperspectral image classification · Deep learning · Stacked autoencoder · 
Multi-dimensional convolutional neural networks

 * Xiyan Sun 
 sxy@guet.edu.cn

1 School of Information and Communication, Guilin University of Electronic Technology, Guilin, 
China

2 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University 
of Electronic Technology, Guilin, China

3 National & Local Joint Engineering Research Center of Satellite Navigation and Location Service, 
Guilin University of Electronic Technology, Guilin, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16456-w&domain=pdf


23490 Multimedia Tools and Applications (2024) 83:23489–23508

1 3

1 Introduction

Hyperspectral images (HSIs), which are comprised of hundreds of spectral bands and pro-
vide rich spectral and spatial information, are widely used in agriculture [24], environmen-
tal monitoring [32], mineral exploration [27], military and security [31], astronomy [13], 
medicine [25], chemistry [34], urban planning [38], etc. For these applications, the HSIs 
classification, which is to specify specific class for each pixel, is an important basic task. 
Because the effectiveness of all applications is directly affected by the classification accu-
racy. Unfortunately, the unbalance between the high dimensionality of spectral bands and 
the limited number of labeled samples make it very difficult to improve classification accu-
racy. On the one hand, the explosion of dimensionality not only provides abundant spectral 
information, but also contains enormous redundant information and noise, which makes 
the classification accuracy not increase but also decrease. This phenomenon is known as 
curse of dimensionality. On the other hand, the high cost of labeling samples results in a 
small number of labeld samples for training model. Therefore, how to extract deep dis-
criminative features from a small number of training samples become a key step of HSI 
classification tasks [21, 35].

The traditional feature extraction(FE) methods consists of band selection(BS) and dimen-
sionality reduction(DR). The purpose of BS is to select a subset from all spectral bands, 
which contains not only smaller dimensions, but also enough features representing the raw 
data for classification [11, 30, 37]. The purpose of DR is to find a lower dimensional rep-
resentation of raw high dimensional data according to some mapping algrorithms, such as 
principal component analysis(PCA) [9, 18, 22, 41, 45], linear discriminant analysis(LDA) 
[7, 16, 19, 28, 43], morphological attribute profiles(MAPs) [2, 8, 10, 23, 40], etc. In the 
various BS algorithms, only the features of the subset bands are used for classification, that 
is, the features of other bands are discarded, so it will cause the waste of valuable feature 
information. The DR algorithms are mainly based on handcrafted features, so only shallow 
features can be obtained. Due to the inability to obtain deep features, it is difficult for tradi-
tional classification methods to further improve the classification accuracy.

In recent years, deep learning(DL) has shown amazing ability in deep feature extraction 
and achieved great successs in machine vision. So researchers are inspired to introduce the 
DL models into HSI classification. The DL models for HSI classification mainly include 
deep belief network(DBN), convolutional neural network(CNN) and autoencoder(AE), etc. 
Chen [5] proposed a novel deep model architecture for HSI classification, which combined 
the PCA for dimensionality reduction, the DBN model for spectral feature extraction and 
logistic regression as a classifier. Ghassemi [12] proposed a HSI classification framework 
in which the DBN was applied to extract spectral-spatial features. Because the DBN is 
a one-dimensional(1D) model, it is necessary to expand the two-dimensional(2D) spatial 
data into 1D vectors before extracting spatial features. The above-mentioned flatten pro-
cessing of spatial features will cause the loss of spatial features and limits the improvement 
of classification accuracy.

CNN models, which is the most widely used DL model for HSIs classification, 
mainly contains three categories: 1D-CNN, 2D-CNN and 3D-CNN [1]. Hu [39] pro-
posed a 1D-CNN model, which consisted of a convolutional layer, a max pooling layer 
and a full connection layer, for HSI classification with spectral features only. Li [20] 
proposed a pixel-pair 1D-CNN method combining the spectral and spatial informa-
tion as the input of model to imrpove the classification accuracy. Yue [44] presented a 
framework, which consisted of PCA for dimensionality reduction, a deep 2D-CNN for 
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spectral-spatial feature extraction and a logistic regression classifier. Yu [42] introduced 
a deconvolution layer into a deep 2D-CNN model to enhance the extracted features from 
raw data. Haque [14] proposed a multi-scale 2D-CNN model named PCA-MS-CNN for 
HSIs classification. Li [21] proposed a lighter 3D-CNN framwork, which consisted of 
3D convolution layers and full connection layers. Roy [29] proposed a hybrid CNN con-
sisting of a spectral-spatial 3D-CNN followed by a spatial 2D-CNN. Zhang [46] pro-
posed a Attention-Dense-HybridSN network based on 3D-CNN and 2D-CNN. In the 
network, a 3D-Dense block was used for extracting spectral-spatial features, and the 
channel and spatial attention were introduced to refine the extracted features. Because 
the 1D-CNN and 2D-CNN models cannot extract the spectral-spatial joint features of 
HSI data, the HSI classification methods based on 1D-CNN and 2D-CNN will lead to 
the loss of effective information. The 3D convolution kernel structrually matches the 
3D cube data, so it can be used to extract spatial-spectral joint features. In addition, all 
above-mentioned CNNs are supervised learning models and the satisfactory classifica-
tion accuracy(CA) can be obtained with sufficient labeled training samples, but the CA 
will decline rapidly when the training samples is few.

In recent years, AE as a unsupervised learning model has gained much attention. 
Chen [4] proposed three 1D-SAE models which were used for HSIs classification with 
spectral information, spatial information and spectral-spatial features respecively. Palma 
[17] proposed a hybrid unsupervised model based on 1D stacked AE(SAE) by intro-
ducding CNN in the training process of encoder and decoder. Mei [26] proposed a 3D 
convolutional autoncoder(3D-CAE), which consisted of a encoder with 3D convolu-
tional operations only to maximally explore spatial-spectral information and a decoder 
to reconstruct the raw data. Sun [33] proposed a multi-scale 3D-CAE model composed 
of 3D convolutional layers and deconvolutional layers. The AE is composed of an 
encoder which can learns a representation for input data without labeled samples and a 
decoder which is used to resconstruct the input data.

Targeting the problem that the classification accuracy of models declines sig-
nificantly with the decrease of the number of training samples, a novel deep 
learning framwork named Two-stage Multi-dimensional Convolutional Stacked 
Autoencoder(TMC-SAE) for HSI classification is proposed in this paper. The main 
contributions of this paper are summarized as follows.

(1) The TMC-SAE model was proposed for classification of hyperspectral remote sensing 
images. The highest classification accuracy was achieved with small number of training 
samples compared to other state-of-the-art models.

(2) The TMC-SAE consists of two independent stacked autoencoders SAE-1 and SAE-2. 
They are trainded independently by unsupervised learning. This architecture not only 
makes that the depth of SAE-1 and SAE-2 is not too large, but also ensures that TMC-
SAE can extract depth features from HSIs.

(3) The SAE-1 is designed to be a 1D asymmetric SAE for spectral dimentionality reduc-
tion. The encoder of SAE-1 with 5 layers contains more trainable parameters than the 
decoder with 3 layers. This makes the feature extraction ability of the encoder obtain 
more attention during training.

(4) The SAE-2 is designed to be a hybrid network with 3D convolution and 2D convolution 
operations. The deep spatial-spectral-joint features extracted by SAE-2 make sure that 
the classification accuracy remains high when the number of training samples is small.
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The remaining part of this paper is organized as follows. The related theoretical basis is 
described in Section 2. The framework details of TMC-SAE is presented in Sections 3 and 
4. The experimental results over three benchmark hyperspectral datasets are shown in Sec-
tion 5. Finally, conclusion are drawn in Section 6.

2  Related works

2.1  Stacked autoencoder

Figure  1 shows the general architecture of the autoencoder(AE), which consists of an 
encoder and a decoder. The function of the encoder is to extract the features of the input 
data and reduce the dimensionality of the data. The purpose of the decoder is to recon-
structes the original data from the features extracted by the encoder.

During training, the encoder maps the input X ∈ Rh to low dimensional representa-
tions Y ∈ Ri through some algorithm and the decoder recovers X̃ ∈ Rh from Y ∈ Ri through 
inverse transformation. The purpose of training is to minimize the error between X and X̃ . 
This stage can be formulated mathematically as

where We , be and f (⋅) denote the weights, bias and activation function of encoder 
respectively, Wd , bd and g(⋅) denote the weights, bias and activation function of decoder 
respectively.

During testing, only the encoder is adopted for feature extraction, and the features 
extracted by encoder are fed into the classifier for classification as shown in Fig. 2. The 
decoder is only used to obtain reconstructed data during training phase. The reconstructed 
data is closer to the input data, it is considered that the features are more representative.

(1)
Y = f (WeX + be)

X̃ = g(WdY + bd)

arg min[loss(X, X̃)]

encoder decoder

autoencoder

input 
data

features reconstructed 
data

Fig. 1  The architecture of autoencoder

encoder classifierinput 
data

features

Fig. 2  Testing process of the autoencoder
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An AE which encoder and decoder contain more than one layer neural network is called 
a stacked autoencoder(SAE). In general, the number of operation layers in encoder and 
decoder are equal and the operations of decoder and encoder are inverse. In other words, 
the encoder and decoder are structurally symmetrical. The symmetrical structure makes 
SAE easy to be constructed. However, it is difficult to increase the depth of SAE because 
when the encoder is added one layer, the decoder must be added one layer, which makes 
the number of SAE layers be increased by 2. In order to improve the depth of encoder, an 
asymmetric structure of SAE is proposed, where the number of layers in decoder is smaller 
than that in encoder. This makes that there are more layers and trainable parameters in 
encoder to extract deep features for classification.

2.2  2D and 3D convolution

The 2D convolution and 3D convolution, which principle is shown in Fig.  3, are basic 
operations for extracting features in convolutional neural networks.

In the 2D convolution operation, input data is convolved with 2D kernels. The output 
data yx,y

i,j
 at spatial position (x, y) in the jth feature map of the ith layer is denoted as

where m is the index of the feature maps in the (i − 1) th layer, wp,q

i,j,m
 is the weight of posi-

tion (p, q) connected to the mth feature map, W1 and W2 are the width and height of the ker-
nel, bi,j is the bias for the jth feature map in the ith layer and f (⋅) is the activation function. 
Through 2D convolution operations, deep spatial features of input data can be extracted 
into output data.

In the 3D convolution operation, input data is convolved with 3D kernels. The output 
data yx,y,z

i,j
 at position position (x, y, z) of the jth feature map in the ith layer is given by

where wx,y,z

i,j,m
 is the weight of position (p, q, r) connected to the mth feature map in the ith 

layer, W3 is the size of kernel along toward spectral dimension, and other parameters are the 
same as the Eq. (2). The structure of 3D kernel is consistent with that of HSI data cube, so 
3D convolution operations can extract spatial and spectral features simultaneously.

(2)y
x,y

i,j
= f

(

∑

m

W1−1
∑

p=0

W2−1
∑

q=0

w
p,q

i,j,m
v
(x+p)(y+q)

(i−1),m
+ bi,j

)

(3)y
x,y,z

i,j
= f

(

∑

m

W1−1
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)
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output 
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(a) (b)

Fig. 3  a 2D convlution operation; b 3D convolution operation
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3  Proposed TMC‑SAE

3.1  Framework of the proposed TMC‑SAE

In this paper, the TMC-SAE is proposed for HSI classification. As shown in Fig. 4, the 
TMC-SAE is composed of two stacked autoencoders(SAE) SAE-1 and SAE-2 respectively 
and a classifier. Both SAE-1 and SAE-2 contain a encoder and a decoder. The function of 
encoders and decoders are to extract features and reconstruct input data respectively. The 
decoders are designed only for training the encoders and not for classification. The network 
for classification is composed of the SAE-1 encoder, SAE-2 encoder, and classifier. The 
structures and training details of SAE-1, SAE-2 and classifier will be described in below.

The SAE-1 is a 1D SAE with asymmetric structure as shown in Fig. 5, in which the 
encoder and decoder are based on full connection(FC) layers and 1D convolutional layers 
respectively. The purpose of this asymmetric structre is to make the encoder contains more 
trainable parameters than decoder to improve its ability of feature extraction.

The encoder of SAE-1 consists of five FC layers which contain k1, k2, k3, k4, k5 
neurons respectively and each FC layer is followed by a batch normalization(BN) layer, 

encoder 
of SAE-1

spectral dimension

decoder 
of SAE-1

encoder 
of SAE-2

decoder 
of SAE-2

classifier

SAE-1

SAE-2

classifier 
results

the flow of training
the flow of predicting

Fig. 4  Framework of TMC-SAE

Encoder Decoder

tupnI Ou
tp

ut

Fig. 5  Structure of SAE-1



23495Multimedia Tools and Applications (2024) 83:23489–23508 

1 3

activation layer with ReLU activation function and dropout layer(rate = 0.5). The decoder 
of SAE-1 is composed of three 1D deconvolution(DC) layers and each DC layer is fol-
lowed by a BN layer and activation layer.

It is assumed that the raw HSI data is represented by X ∈ ℝ
M×N×B , where M and N are 

the height and width of the image and B is the number of spectral bands. After the dimen-
sion reduction of spectral by encoder, the pixel data vector x ∈ ℝ

B is mapped to the feature 
vecotr h with k5 dimensionality. The trained encoder will be used to reduce the dimension 
of raw HSI data and the output of encoder with size of M × N × k5 will be taken as the 
input of ASE-2. The encoder of SAE-1 reduces the number of spectral bands from B to k5 
while maintaining the same spatial dimensions.

A hybrid network SAE-2 is proposed to further extract spectral-spatial features from the 
data after dimension reduction by encoder of SAE-1. The framework of SAE-2 is shown 
in Fig. 6. It consists of a encoder, which stacks three 3D convolution layers and three 2D 
convolution layers to extract spatial-spectral features simultaneously, and a companion 
decoder, which is composed of three 3D deconvolution layers and three 2D deconvolution 
layers to reconstruct the input data from the features extracted by the encoder.

The SAE-1 encoder output X ∈ ℝ
M×N×k5 is divided into the 3-D neighboring patches 

P ∈ ℝ
S×S×k5 , which is taken as the input of SAE-2. Each patch Px,y ∈ P centered at the spa-

tial location (x, y) pixel is generated by covering the S × S window and all spectral bands. 
The function of reshape layer is to combine the spectral dimension and channel dimension 
of the feature maps to make it suitable for next 2D convolution layer. There is none train-
able parameter in the reshape layer. The backpropagate method is used to train the SAE-2 
with a MSE loss function. In both the encoder and decoder, the ReLU activation function 
is adopted for every convolution and deconvolution layer to improve network fitting ability.

After the ASE-2 is trained, the encoder of ASE-2 is used independently to provide 
extracted spatial-spectral features for classifier. The classifier consists of a flatten layer, 
which expands the extracted features by ASE-2 encoder to 1D vectors, and three FC 
layers. The first two FC layers with ReLU activation function are designed to extract 
features further and followed by a dropout layer to prevent overfitting. The last FC layer 
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3D Conv-2

3D Conv-3

Reshape

2D Conv-1

2D Conv-2

2D Conv-3

Flatten

FC-Dropout-1
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softmax
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oC

eD
D3

-3

3D DeConv-2

3D DeConv-1

Reshape

2D DeConv-3

2D DeConv-2
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decoder of SAE-2

encoder of SAE-2 classifier

Fig. 6  Structure of SAE-2 and classifier
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with the same number of neurons as the number of classes of pixels uses softmax acti-
vation function to implement the classifier.

3.2  Details of training

The training of TMC-SAE is a three-phase process: (1) the training of SAE-1 based 
on unsupervised learning. In this step, the encoder of SAE-1 automatically extracts 
features form raw spectral data and the decoder reconstructs the raw data from the 
output of encoder. The training dataset is composed of all pixel vectors. The trained 
encoder of SAE-1 realizes dimension reduction from the raw HSI data X ∈ ℝ

M×N×B to 
Y ∈ ℝ

M×N×k5 only in spectral dimension. (2) the training of SAE-2 based on unsuper-
vised learning. This process is as same as step (1) except that the training data is the 
extracted features of trained SAE-1 encoder. In this phase, the 3D neighboring pathces 
dataset Z ∈ ℝ

P×P×k5 , which contains the information of all labeled pixels and is gener-
ated from Y ∈ ℝ

M×N×k5 , is taken as the training dataset. The parameters P represents the 
patch window size of the training sample. (3) the training of classifier and fine-tuning 
of SAE-2 based on supervised learning with small labeled smaples. In this phase, the 
dataset Z ∈ ℝ

P×P×k5 is divided into training and testing groups, respectively. The classi-
fier training and SAE-2 encoder fine-tuning are performed simultaneously based on the 
training group. After the above process, the classification performance of TMC-SAE is 
verifed based on the testing group. It can be seen from the above details that the features 
of all pixels can be used for the ASE-1 and ASE-2 training. This allows the encoders 
of ASE-1 and ASE-2 make maximum use of the information in the dataset instead of 
relying on only a small number of labeled samples. Thanks to the deep features extrac-
tion ability of SAE-1 and SAE-2 encoders, the high classification accuracy can still be 
obtained based on a small samples training group. The detailed flowchart of TMC-SAE 
training and testing is shown in Fig. 7.

4  Details of experimental

4.1  Data description

In this paper, three benchmark hyperspectral datasets with different environmental settings 
are adopted to validate our proposed network. The first dataset was gathered by the Air-
borne Visible Infrared Imaging Spectrometer(AVIRIS) instrument over a mixed vegetation 
site in northwestern Indiana (Indian Pines, IP). It contains 145 × 145 pixels with 220 spec-
tral channels covering the range from 0.4 to 2.5 �m . The second dataset was acquired over 
Kennedy Space Center(KSC), Florida. It consists of 512 × 614 pixels with 176 spectral 
bands. There are 13 different land-cover classes in the raw dataset. The third dataset was 
gathered over SalinasValley(SV), California. It contains 512 × 217 pixels and 224 bands in 
the range of 0.4–2.5 �m . There are 204 bands in the corrected data after 20 water absorp-
tion bands are removed. The land-cover classes and the labeled pixel numbers of each class 
for all datasets are listed in Table 1. The ground truth images of all datasets are shown in 
Fig. 8. All experiments are conducted on a computer with Intel(R) Core i7- CPU, Nvidia 
Geforce GTX 3090 GPU and 64 Gb RAM.
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Fig. 7  Flowchart of training and 
testing for TMC-SAE training of SAE-1 

feature extrac�on 
using encoder of SAE-1

training of SAE-2 using features 
extracted by encoder of SAE-1

feature extrac�on using 
encoder of SAE-2

training of classifier using features 
extracted by encoder of SAE-2 

tes�ng of TMC-SAE

Table 1  The Class labels and number of training and testing samples

No IP KSC SV

Class Number Class Number Class Number

1 Alfalfa 46 Scrub 761 Brocoli green weeds 1 2009
2 Corn-notil 1428 Willow swamp 243 Brocoli green weeds 2 3726
3 Corn-min 830 CP hammock 256 Fallow 1976
4 Corn 237 CP/Oak 252 Fallow rough plow 1394
5 Grass-pasture 483 Slash pine 161 Fallow smooth 2678
6 Grass-trees 730 Oak/Broadleaf 229 Stubble 3959
7 Grass-mowed 28 Hardwood swamp 105 Celery 3579
8 Hay-windrowed 478 Graminoid marsh 431 Grapes untrained 11,271
9 Oats 20 Spartina marsh 520 Soil vinyard develop 6203
10 Soybean-notill 972 Cattail marsh 404 Corn senesced green weeds 3278
11 Soybean-mintill 2455 Salt marsh 419 Lettuce romaine 4wk 1068
12 Soybean 593 Mud flats 503 Lettuce romaine 5wk 1927
13 Wheat 205 Water 927 Lettuce romaine 6wk 916
14 Woods 1265 Lettuce romaine 7wk 1070
15 Buildings-Grass 386 Vinyard untrained 7268
16 Stone-Steel 93 Vinyard vertical trellis 1807
Total 10,249 5211 54,129
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4.2  Network construction

Because the numbers of bands in three datasets are different, the numbers of 
neuron(k1 ~ k5) in the FC layers of SAE-1 encoder are different. In general, the spectral 
band compression ratio of the SAE-1 encoder is about 1/8. The network structure of SAE-1 
is given in Table 2. It can be seen from Table 2 that the number of trainable parameters in 
encoder is much larger than those in the decoder. This asymmetric structure imporves the 
feature extraction ability of encoder.

The parameters of all layers in SAE-2 are the same for all datasets. The structure of 
SAE-2 and classifier is given in Table 3. In the SAE-2, the kernel sizes and strides of all 
layers are based on 3 and 1, respectively. The purpose of this design is to reduce the train-
able parameters and the loss of spatial-spectral information during training process. The 
activation function employed in network is ReLU except for the last layer of the classifier. 

Fig. 8  Ground truth image. a IP dataset. b KSC dataset. c SV dataset

Table 2  Network structures of 
SAE-1

Layer For IP For KSC

Encoder Dense-1 k1 = 160 k1 = 100
Dense-2 k2 = 120 k2 = 80
Dense-3 k3 = 90 k3 = 60
Dense-4 k4 = 50 k4 = 40
Dense-5 k5 = 25 k5 = 13

Decoder 1D DeConv-1 kernel = 16@3,strides = 2
1D DeConv-2 kernel = 64@3,strides = 2
1D DeConv-3 kernel = 1@3,strides = 2
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The learning rates of the ASE-1 and ASE-2 training are both 0.001, but the learning rate is 
0.0001 when the classifier is trained and the encoder of ASE-2 is fine-tuned.

5  Experimental results and analysis

5.1  Analysis of parameters

In the architecture of TMC-SAE, the depth of SAE-1 is an important parameter for the clas-
sification performance. A series of experiments were conducted to evaluate the impact of 
SAE-1 depth on classification results. In the experiment, the depth of SAE-1 encoder was 
set eight different values from 1 to 8 and the overall accuracy(OA) was used to evaluate the 
classification performance of TMC-SAE with different depth on three datasets repectively. 
The experimental results are shown in Fig.  9. It can be seen that the OA first increases 
and then decreases as the depth of SAE-1 increases. This indicates that deeper SAE-1 can 
extract representative and deep features but will encounter the overfitting. Based on the 
experimental results, the depth of SAE-1 encoder was determined to be 5.

The encoder of SAE-2 consists of 2D convolution layers and 3D convolution layers. The 
purpose of 3D convolution operations is to extract spatial-spectral joint features from data 
that have been dimensionally reduced by SAE-1. The function of 2D convolution opera-
tions is to extract deeper features for classification task. In order to evaluate the effective-
ness of 3D convolution and 2D convolution operations, the incomplete SAE without 3D 
convolution branch and that without 2D branch were used for classification experiments 
separately. The experimental results shown in Fig. 10 indicate that the SAE without 2D or 
3D operations slightly reduce classification accuracy.

The loss and classification accuracy convergence curves of training group are portrayed 
in Fig. 11. It can be seen that both curves of all datasets converge at about 200 epochs.

Table 3  Network structures of 
SAE-2 and classifier

*: The value of n is equal to the number of channels of the reshaped 
output of 3D Conv-3 layer

Layer kernel strides

Encoder 3D Conv-1 64@(3,3,3) (1,1,1)
3D Conv-2 32@(3,3,3) (1,1,1)
3D Conv-3 16@(3,3,3) (1,1,1)
2D Conv-1 256@(3,3) (1,1)
2D Conv-2 128@(3,3) (1,1)
2D Conv-3 64@(3,3) (1,1)

Decoder 2D DeConv-1 128@(3,3) (1,1)
2D DeConv-2 256@(3,3) (1,1)
2D DeConv-3 n*@(3,3) (1,1)
3D DeConv-1 16@(3,3,3) (1,1,1)
3D DeConv-2 8@(3,3,3) (1,1,1)
3D DeConv-3 1@(3,3,3) (1,1,1)

Classifier FC-1 units = 256,rate of dropout = 0.4
FC-2 units = 256,rate of dropout = 0.4
FC-3 units = the number of classes
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5.2  Visualization and analysis of ASE‑1

In order to gain detailed understanding of the SAE-1, visualization about spectral infor-
mation is provided in this section. The spectral curves are used to visualize the features 
before and after extraction by SAE-1. The raw spectral curves of graminoid marsh(class 

Fig. 9  Impact of SAE-1 encoder depth on overall accuracy

Fig. 10  Imapct of 2D or 3D operations in SAE-2 on overall accuracy
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8) and spartina marsh(class 9) in KSC are shown in Fig. 12a and b. Obviously, the two 
curves are very similar and fifficult to distinguish. The extracted feature curves by SAE-1 
are shown in Fig. 12c and d. These two features, which dimensions are reduced from 175 
to 20, become more discriminable and abstract.

5.3  Comparison of classification results

In this experiment, the overall accuracy(OA), average accuracy(AA), and Kappa 
coefficient(Kappa) are introduced to evaluate the classification results. In addition, the 
results of the proposed TMC-SAE are compared with six state-of-the-art HSI classification 
models, which cover unsupervised learning and supervised learning with different dimen-
sions, such as 1D-CNN [39], 2D-CNN [36], 3D-CNN-C [6], M3D-DCNN [15], 3D-CNN-
H [3] and 3D-CAE [33]. The architectures and hyperparameters of these comparative 

Fig. 11  The training losses and classification accuracy curves

Fig. 12  Representative spectral curves of two land cover classes of the KSC. a Original spectral of class 8 
graminoid mash. b Original spectral of class 9 Spartina marsh. c Features of class 8 after SAE-1. d Features 
of class 9 after SAE-1
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models are consistent with that given in the corresponding papers. All the models are 
implemented using Python language and TensorFlow library. In order to verify the feature 
extraction ability of proposed model under the condition of small number of labeled sam-
ples, the training sample percentage of each class for IP, KSC and SV is set to 5%, 5% and 
1% respectively.

The quantitative results over IP, KSC and SV datasets are listed in Tables 4, 5 and 6 
respectively. It can be observed from three tables that the OA, AA and Kappa of propsed 
TMC-SAE outperform those of all other models for all datasets. The OA of TMC-SAE 
achieves 92.65% for IP, 94.41% for KSC and 98.50% for SV. The best accuracy of class 
1–4, 10, 11, 13, 15 for IP, class 1, 3, 6–13 for KSC and class 1–3, 5–7, 9, 13, 15, 16 for SV 
is generated by the proposed TMC-SAE model. The experimental results show that there 
is no much lower result among the accuracy of each class of the proposed TMC-SAE even 
if the training sample is very few. It can be concluded that the feature extraction capability 
of TMC-SAE is more stronger and the above capability is enhanced by the unsupervised 
learning of SAE-1 and SAE-2. Figure 13 illustrates the classification maps of IP dataset 
with each above-mentioned model. The quality of the classification map of TMC-SAE is 
much better than other models especially for the classes with small number of samples.

5.4  Impact of the training sample size

In this part, the effect of the different training sample size with all models is explored. 
For IP and KSC datasets, the percentage of training samples is set 3%, 5%, 10%, 15% 

Table 4  Classification accuracy of different models over the Indian Pines dataset

Class Train Test 1D-CNN 2D-CNN 3D-CNN-C M3D-
DCNN

3D-CNN-
H

3D-CAE TMC-SAE

1 2 44 65.91 18.18 77.27 25.00 52.27 54.55 84.09
2 71 1357 77.16 82.46 85.92 72.00 73.91 82.02 88.14
3 41 789 68.82 87.07 87.83 69.96 66.67 81.24 89.73
4 12 225 59.11 74.67 87.11 76.89 52.00 78.22 82.22
5 24 459 85.62 89.76 92.16 69.93 84.75 93.03 91.07
6 37 693 95.24 99.42 91.05 96.39 94.08 95.53 92.35
7 1 27 18.52 14.81 88.89 3.70 25.93 66.67 70.37
8 24 454 99.78 100.00 100.00 100.00 92.51 99.34 98.46
9 1 19 0.00 31.58 47.37 31.58 42.11 68.42 57.89
10 49 923 74.00 87.54 89.38 71.83 65.01 90.90 91.12
11 123 2332 79.97 91.55 95.45 85.12 80.06 90.18 96.4
12 30 563 81.71 70.87 87.21 69.45 61.81 83.84 84.9
13 10 195 98.97 98.97 98.46 100.00 97.95 95.38 100.00
14 63 1202 96.01 99.17 95.67 96.67 94.68 97.50 96.09
15 19 367 53.41 80.65 94.28 81.47 62.67 82.02 97.00
16 5 88 82.95 100 82.95 93.18 85.23 95.45 98.86
OA 81.00 88.92 91.74 81.54 77.99 89.17 92.65
AA 71.07 76.66 87.56 74.15 70.73 84.64 88.67
Kappa 78.31 87.32 90.57 78.86 74.78 87.65 91.61
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Table 5  Classification accuracy of different models over the KSC dataset

Class Train Test 1D-CNN 2D-CNN 3D-CNN-C M3D-
DCNN

3D-CNN-
H

3D-CAE TMC-SAE

1 38 723 94.74 94.47 87.28 92.81 92.67 68.74 100.00
2 12 231 84.85 42.42 82.68 84.85 90.04 30.74 89.61
3 13 243 87.65 57.20 64.61 67.90 71.60 68.31 99.59
4 13 239 46.03 35.56 75.31 39.75 48.12 36.40 61.09
5 8 153 40.52 75.16 82.35 47.06 37.25 72.55 68.63
6 11 218 45.41 50.46 83.03 82.57 70.18 47.25 95.41
7 5 100 86.00 80.00 67.00 13.00 95.00 62.00 100.00
8 22 409 80.20 58.92 81.91 49.14 74.15 73.11 80.20
9 26 494 94.53 85.63 90.08 83.60 95.14 53.44 96.15
10 20 384 85.42 51.56 97.66 91.67 86.72 63.54 99.74
11 21 398 96.48 88.94 96.98 96.23 98.99 83.17 100.00
12 25 478 80.54 56.69 95.82 92.05 79.50 59.62 100.00
13 46 881 100.00 98.30 100.00 100.00 99.89 94.67 100.00
OA(%) 85.32 73.99 89.13 82.04 85.24 67.74 94.41
AA(%) 78.65 67.33 84.98 72.36 79.71 62.58 91.57
Kappa 83.64 71.00 87.91 80.00 83.57 64.24 93.76

Table 6  Classification accuracy of different models over the Salinas dataset

Class Train Test 1D-CNN 2D-CNN 3D-CNN-
C

M3D-
DCNN

3D-CNN-
H

3D-CAE TMC-SAE

1 20 1989 100 99.95 100 100 100 100 100
2 37 3689 96.43 95.57 85.56 99.68 98.33 100 100
3 20 1956 94.93 99.54 99.06 93.36 92.25 99.34 99.79
4 14 1380 98.70 96.77 99.78 98.63 96.50 95.80 99.07
5 27 2651 98.00 99.62 98.31 98.78 93.72 99.23 99.89
6 39 3920 99.31 99.77 100 100 98.21 100 100
7 36 3543 98.79 100.00 90.57 98.71 99.66 100 99.72
8 113 11,158 71.67 89.12 97.31 89.65 82.44 95.39 97.24
9 62 6141 96.26 99.47 98.81 97.06 96.50 99.02 99.98
10 33 3245 90.32 94.90 97.84 89.66 86.67 99.48 97.85
11 11 1057 83.77 98.03 97.88 100 90.09 90.62 99.81
12 19 1908 97.44 100.00 92.13 95.45 97.31 99.89 98.50
13 9 907 95.96 100.00 97.88 98.22 83.21 98.59 100
14 11 1059 92.10 99.06 98.28 98.36 90.32 99.15 96.53
15 72 7196 81.67 95.18 88.53 75.77 76.78 89.51 95.49
16 18 1789 98.73 92.07 99.30 95.14 97.60 100 100
OA(%) 88.70 95.81 95.17 92.53 90.26 97.03 98.50
AA(%) 92.39 97.44 94.98 94.68 93.00 98.32 98.89
Kappa 87.35 95.33 94.62 91.69 89.16 96.69 98.33
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Fig. 13  Classification maps generated by different models over IP dataset. a 1D-CNN. b 2D-CNN. c 
3D-CNN-C. d M3D-DCNN. e 3D-CNN-H. f 3D-CAE. g Proposed TMC-SAE
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and 20% and for SV dataset, it is set 0.5%, 1%, 3%, 5% and 7%. Figure 14 shows the OA 
results of different percentage of training samples on all datasets. As we can observe 
in Fig. 14, for all models, higher classification results can be obtained with larger pro-
portion of training samples. However, with the decline of the proportion of training 
samples, the decline of classification accuracy of different models varies greatly. For IP 
dataset, the OA results of 2D-CNN-N, 3D-CNN-C, 3D-CAS and TMC-SAE are similar, 
when the percentage of training sample is 20%. However, there is more than difference 
between the largest OA result (proposed TMC-SAE, 85.29%) and the smallest classifi-
cation result (M3D-DCNN, 75.11%) when the percentage of training sample is reduced 
to 3%. The proposed TMC-SAE model generates the highest accuracies in all experi-
ments with small number of training sample. Specifically, when the proportion of train-
ing sample is 3% and 5%, the decline of classification accuracy of the proposed TMC-
SAE is the smallest. For SV dataset, when the percentage of training samples is 7%, the 
OA results of all methods exceed 99% except 1D-CNN. It indicates that these models 
can extract sufficient features for classification when there are enough training samples. 
When the percentage of training samples decreases, especially at 1% and 0.5%, the OA 
of TMC-SAE remains the highest value. It indicates that the TMC-SAE maintains better 
feature extraction ability in small number of training samples.

Fig. 14  Experimental results of all models with different percentages of training samples over three data-
sets. a IP. b KSC. c SV
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6  Discussion and conclusion

In this paper, a new network architecture for hyperspectral remote sensing image clas-
sification is proposed. It consists of two stacked autoencoder networks SAE-1 and SAE-
2. The purpose of SAE-1 based on 1D CNN is for feature extraction in spectral domain 
only. The asymmetric architecture improves the feature extraction ability of SAE-1 by 
making the number of trainable parameters in encoder more than that in decoder. The 
SAE-2 based on 2D and 3D CNN can extract spatial-spectral joint features from the 
information compressed by SAE-1. Generally, there is only one unsupervised learning 
in the previous network training. In this paper, the proposed TMC-SAE is divided into 
two independent autoencoders SAE-1 and SAE-2. This architecture increases the num-
ber of unsupervised training times to two, so that the information in unlabeled samples 
can be extracted more fully. The experimental results with real hyperspectral images 
demonstrate that the proposed TMC-SAE can achieve better classification result with a 
small number of training samples.
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