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Abstract
Tourism management plays an important role in the context of Smart Cities. In this work, 
we have used thermal cameras for the development of an Object Detection solution in 
pedestrian areas. The solution can classify people, bikes, strollers, and count people in 
Real-Time by using telephoto and wide-angle thermal cameras, in hot squares where there 
is a relevant number of people passing by. This work has improved FASTER-R-CNN and 
YOLOv5 architectures with new data sets and fine-tuning approaches to enhance mean 
average precision and flexibility whether compared to state of the art solutions. Both top-
down and bottom-up training adaptation approaches have been assessed in order to demon-
strate that the proposed bottom-up approach can provide better results. Results have over-
come the state-of-the-art in terms of mean Average Precision in counting (i) for relevant 
number of people in the scene (removing the limitation of previous state-of-the-art solu-
tions that were set to provide good precision up to 10 people) and (ii) in terms of flexibility 
with respect to different kinds of camera and resolutions. The resulting model can produce 
results also when executed on thermal camera and in Real-Time on industrial PC of mid-
level. The proposed solution has been developed and validated in the framework of the 
Herit-Data EC project and it has exploited the Snap4City platform for the final collection 
of data results, monitoring and their publication on real time dashboards.

Keywords Smart city · Tourism management · Multiclass object detection · Crowd people 
counting · Tracking · Thermal cameras · YOLO · Faster-R-CNN

1 Introduction

Undoubtedly tourism is a vital component for many cities and yet its management is a 
difficult task, with many problems, like overcrowded situations, getting in the way and 
bringing forth lesser appreciation of any touristic site experience. Thanks to the devel-
opment of modern cities there are plenty of possible solutions in the context of Smart 
Cities based on the use of Big Data and IoT Devices (Internet of Things) to acquire 
useful information on city conditions/context, and tourists’ behaviour within the city. 
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People detection and counting are the most interesting features for both security and 
touristic monitoring in hot destinations and sites of interest around the world, as in 
malls, stadiums, theatres, etc., to provide support to decision makers. People counting 
can be very useful for any detection of critical conditions (early warning), for security 
purposes and for support to decisions on cleaning activities. Detection and counting of 
people is a needed instrument for cultural sites’ management, and any adopted solution 
has to respect the GDPR (General Data Protection Regulation) [17] and more generally 
privacy issues.

Italy is one of the countries having a large number of hot destinations, such as: 
Florence, Venice, Rome, Milan, etc. In some cases, municipalities drew the line some-
where, to keep an acceptable quality of services and experiences for each and every 
city user, including tourists. This was performed by putting limits for instance on the 
number of people attending the main city squares and areas. Limitations are typically 
imposed by tripod gates, tickets, and other physical/invasive solutions reducing any 
free flow of and it may cause difficulties in evacuation cases. There are nonintrusive 
solutions based on different technologies, which allows to detect and count the num-
ber of people in specific areas of interest. For example, IoT sensors-based solutions as 
PaxCounters are widely used (Wi-Fi sniffers [3], Laser counting, infrared counters, 
etc. [41]) and yet in some scenarios, like the one of major squares, such means could 
be difficult to exploit, as most of them have limited range capabilities in counting in 
wide ranges of conditions. In any controlled conditions, such as fairs, festivals, muse-
ums, etc., using wearable tags, to be assigned to a significant number of attendees, 
can be a viable solution to understand how people move, how much time they stay 
in each room, etc. On the other hand, these solutions are invasive and quite expen-
sive. Alternative solutions are based on video cameras, which allow to detect, classify, 
count and track people [29] by Computer Vision and artificial intelligence, AI. This is 
a field where AI analyzes visual data and provides support to decision-makers, with 
hints on scene understanding for both environment and situation [40]. Governments 
and companies are investing in security networks hundreds of millions: more and more 
surveillance cameras are watching the world, according to the report from the industry 
researcher IHS Markit (https:// www. wsj. com/ artic les/a- billi on- surve illan ce- camer as- 
forec ast- to- be- watch ing- within- two- years- 11575 565402). Most of these solutions have 
strong applications in the context of security and surveillance where GDPR issues 
are not so binding. On the contrary, when it comes to on-street people counting, RGB 
cameras are not very much appreciated by municipalities for their difficulties in pass-
ing GDPR compliance assessment.

An emerging trade-off consists in using thermal cameras for both detection and 
counting purposes. Thermal cameras are much more acceptable in on-road counting, 
since they do not allow any face recognition, whereas RGB cameras do. Thermal cam-
eras are more expensive than RGB cameras, but, as to people counting, they have the 
advantage to be (i) non-invasive privacy compliant, and (ii) capable to work well even 
without lighting. As to thermal cameras, there are object detection algorithms that 
could be used to elaborate video stream images, so as to detect the presence of par-
ticular types of objects and their position in the image [21, 27, 28]. These algorithms 
provide relevant limitations regarding when it comes to counting, as discussed in next 
subsection. This is the reason preventing their usage for the described purpose. There-
fore, our focus has been on solving such pending problems about the usage of thermal 
cameras for people detection and counting in dense conditions.

https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
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1.1  Related works

In the framework of people flow analysis for tourism management, Multiclass Object 
Detection and People Counting are fundamental tasks to provide support to decision-mak-
ers. In most cases, the task is managed by using Computer Vision techniques using colour 
images. They could be a bit of a problem for privacy issues, and same for the procedure to 
get the GDPR approval. The related work discussed on this section is focused on thermal 
camera and it is summarized in Table 1.

Multiclass Object Detection aims to determine the bounding boxes of the elements in an 
image and their classification. For this problem, Computer Vision solutions at the state-of-
the-art are primarily based on RGB images [4, 23, 25, 45], or on thermal images [21, 27, 
28], and in some cases by using both colour and thermal images [36].

In more details, Jia, Zhu et al. [21], presented the LLVIP dataset including street images 
in RGB and thermal formats that can be used for different purposes. In [21], authors wrote 
a section relevant to the problem of Pedestrian Detection. To this end, they fine-tuned the 
pre-trained YOLOv5 model [22] on COCO dataset [31] by using the infrared data from 
LLVIP. The solution achieved a mean Average Precision (mAP) at the Intersection over 
Union (IoU) threshold of 0.5 (mAP_0.5) of 0.965 on the thermal images, compared to the 
0.908 of the corresponding RGB images. Krišto et al., in [28], proposed a solution for per-
son detection and surveillance by using thermal cameras and taking into account also the 
effects of weather conditions. In that context, a custom dataset has been created with vid-
eos acquired during winter in different weather conditions (clear weather, rain, fog), dur-
ing night and at different distances from the camera (ranging from 30 m to 215 m, using 
YOLOv3). This solution achieved a mAP_0.5 of 0.87. In [37], a YOLOv3 model has been 
trained to detect both Human and Nonhuman objects (e.g., dogs) in thermal images. In 
this case, they achieved a mAP_0.5 score of 0.9798, thus confirming a possible exploita-
tion of the solution for any automatic monitoring of protected objects and areas. Kowal-
sky et at., in [27], compared different state-of-the-art Object Detection models to detect 
people and inflatable boats from a distance of 50-200  m, thanks to thermal images. In 
terms of performance, the best model turned out to be Faster R-CNN (Region based Con-
volutional Neural Network) with ResNet101. On the other hand, in terms of processing 
time, YOLOv3 was significantly faster and achieved a Detection Rate (DR) with an IoU 
threshold set at 0.7 (DR_0.7) of 65%. Goel et  al., focused on the problem of pedestrian 
detection [18]. The dataset used was the Thermal OSU Pedestrian Dataset from OTCBVS 
Benchmark Database [10]. Best results were obtained by using a Faster R-CNN, thus dem-
onstrating the solution validity in multiple illumination conditions depending on weather 
(Dense Cloudy, Light Rain, Partly Cloudy, Haze, Sunny). Multiclass Object Detection has 
an important role in advanced driver assistance systems (ADAS) and autonomous driving 
applications. In [8], Dai et al., proposed TIRNet a deep neural network architecture based 
on convolutional layers to detect cars, pedestrians, cyclists, buses and trucks. Overall, the 
mAP_0.5 over all the classes for the proposed dataset achieved 0.7485 and, if consider-
ing only the pedestrian class, mAP_0.5 = 0.8047. On the KAIST dataset [7], the TIRNet 
achieved a mAP_0.5 = 0.5993. Other works on Multiclass Object Detection in autonomous 
driving are Kera et  al., [24] and Munir et  al., [35]. Here authors used a self-supervised 
technique to learn enhanced feature representation by using unlabelled data and a multi-
scale encoder-decoder transformer network; the latter could exploit these enhanced fea-
tures embedding to develop a robust thermal image object detector. In this latter case, the 
proposed approach achieved over all the classes on the KAIST dataset a mAP_0.5 = 0.7322 
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and on the FLIR-ADAS dataset [14] mAP_0.5 = 0.7757. Kera et  al., in [24], proposed 
an EfficientNet solution with a weighted bidirectional feature pyramid network, achiev-
ing a mAP_0.5 = 0.773 on the FLIR-ADAS. Li et al., in [30], have based their solution on 

Table 1  Related works comparison for Object Detection via thermal cameras

Authors Task Image 
Type

Dataset Model Results Range

Jia et al.,

2021 [21]

Pedestrian 
Detec�on

RGB and 
Thermal

LLVIP YOLOv5 mAP_0.5 0.9650 < 10 people per 
image

Krišto et 
al., 2020 
[28]

Person 
Detec�on

Thermal UNIRITI
D

YOLOv3 mAP_0.5 0,9793 < 10 people per 
image

Kowalski 
et al., 
2021 [27]

Boat and 
People 
Object 
Detec�on

Thermal Elblag 
and Bug 
rivers in 
Poland

Faster R-
CNN with 
ResNet10
1

DR_0.7 0.83 1 or 2 people 
per image

Goel et 
al., 2021

[18]

Pedestrian 
Detec�on

Thermal Thermal 
OSU 
Pedestri
an 
dataset

Faster R-
CNN

Accuracy 0.9238

Precision 0.8932

Racall 0.9124

< 10 people per 
image

Dai et 
al., 2021 

[8]

Mul�class 
Object 
Detec�on 

Thermal CTIR, 
KAIST

TIRNet dataset mAP_0.5

CTIR 0.7485

KAIST 0.5993

CTIR: 31035 
people in 
11938 images

KAIST: 86.2K 
people in 95K 
images

Kera et 
al., 2022 
[24]

Object 
Detec�on

Thermal FLIR-
ADAS

EfficientN
et + BiFPN

FLIR-ADAS

mAP_0.5 0.773

FLIR-ADAS: 
28151 people 
in 10288 
images

Munir et 
al., 2021

[35]

Mul�class 
Object 
Detec�on

RGB and 
Thermal 

FLIR-
ADAS, 
KAIST

SSTN dataset mAP_0.5

FLIR-
ADAS

0.7757

KAIST 0.7322

FLIR-ADAS: 
28151 people 
in 10288 
images

KAIST: 86.2K 
people in 95K 
images

Li et al., 
2021 
[30]

Mul�class 
Object 
Detec�on

Thermal FLIR-
ADAS, 
KAIST

YOLOv5 dataset mAP_0.5

FLIR-
ADAS

0.835

KAIST 0.983

FLIR-ADAS: 
28151 people 
in 10288 
images

KAIST: 86.2K 
people in 95K 
images
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YOLOv5, improving the state-of-the-art performance as to the problem of Object Detec-
tion in the two datasets FLIR-ADAS and KAIST, achieving a mAP_0.5 of 0.835 and 0.983, 
respectively.

When the goal is just counting people in the scene, the state-of-the-art primarily pre-
sents detection-based approaches [13, 15, 33, 43]. These systems first detect people on 
images and then count them, such as in [38]. These systems are in most cases based on 
classifiers trained on the recognition of a whole body or a part of it (for example the head, 
which resulted to be in most cases less precise than body detection). An example, is based 
on YOLOv3 classifier as presented in [34], obtaining a classification accuracy of 96.1% on 
the INRIA dataset [9] (uncrowded urban contexts) and 82.1% on the Shanghai Tech dataset 
[46] (urban contexts with some crowded scenes). Detection-based approaches can be used 
for people counting and are also widely exploited in tracking systems as in [2], [5, 12, 39, 
47]. Thermal cameras have been also used for the analysis of bio samples, where some ele-
ments may present specific thermal characteristics [1].

1.2  Article aims and contributions

In this paper, we have focused on problems related to people detection and counting in cul-
tural heritage locations, which are crowded with tourists such as: Florence in Italy, Valen-
cia in Spain, Pont du Gard in France, Dubrovnik in Croatia, etc. These places have specific 
city squares (located in strictly pedestrian areas) which attract high numbers of tourists, 
almost at any time of the day. Therefore, the proposed solution has dealt with the issue 
of people detection (classification) and counting; if compared with other solutions, it has 
overcome the state-of-the-art solutions on three main goals, and it could provide higher:

• mean average precision for detection and counting in crowded conditions, detection to 
identify/count: people, bikes/motorbikes, strollers/carts;

• flexibility in terms of counting range where the relevant mean average precision can 
be obtained over 10 people, which is a limitation of state-of-the-art solutions, as high-
lighted in the paper;

• flexibility with respect to changing different kinds of thermal camera lenses: from tel-
ephoto to wide-angle, without losing in terms of mean average precision.

The proposed solution exploited the YOLOv5 [22] and LLVIP [21] with a set of tuning 
approaches (transfer learning) to improve the mean average precision and the flexibility 
of previous solutions in the state-of-the-art. To this end, we explored both top-down and 
bottom-up training adaptation approaches and could demonstrate that bottom-up approach 
can provide best results according to the above-mentioned objectives in terms of perfor-
mance and flexibility.

In addition, the solution has been implemented to obtain Real-Time execution on (i) 
mid-level industrial PC capable to perform multiple Python stream processing (which 
allows to use the solution connected to any RTSP stream of thermal cameras), (ii) board of 
AXIS thermal cameras. The results of people detection processes can be used to track the 
number of objects of some specific classes of interest, and they can be integrated in moni-
toring dashboards to become a useful tool for decision-makers. The proposed solution has 
been tested and validated to detect people (pedestrians, bikes/motorbikes, strollers/carts) in 
strictly pedestrian areas, which is the typical case in cultural cities in Europe. And more in 
particular in Piazza Della Signoria in Florence, Italy, the city hall square of Florence, Italy, 
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which is a city attracting about 15 million of tourists per year. Solutions have been devel-
oped and validated in the context of the Herit-Data Interreg European Commission project 
[20] which aims to identify innovative solutions to monitor and manage the impact of tour-
ism on cultural and natural heritage sites, with the support of new Big Data technologies. 
The solution has been implemented by exploiting the Snap4City framework and platform 
which is a fully open-source solution [https:// www. snap4 city. org], [16, 19].

1.3  Article structure

The paper structure is as follows. Section  2 describes both problem and data according 
to the operating conditions, therefore data which can be obtained by thermal cameras of 
different kinds. On these grounds, an assessment of the state-of-the-art solutions (based 
on YOLO and Faster-R-CNN) is provided to stress the identified limitations which make 
them unsuitable in counting and classifying high number of people via thermal cameras. In 
Section 4, the identified solution to enforce flexibility and high mean average precision in 
counting high number of people is presented. Section 5 presents the usage of a bottom-up 
training adaptation approach (transfer learning) which additionally has improved the mean 
average precision and flexibility of the early YOLO with LLVIP training. In Section 6, the 
deployment architecture, which can be used to adopt the solution for Real-Time detection 
and counting of people, is described. Conclusions are drawn in Section 6.

2  Problem and data definition

As mentioned in the introduction, the main goal of this research was to detect and count 
people in real-time within tourism frameworks. And, in particular, the goal was set in terms 
of detecting and managing situations where we may have up to 60-70 people in a single 
image. The state-of-the-art of thermal camera datasets and solutions have not yet addressed 
such a condition. For example, considering the most widespread dataset of thermal images: 
LLVIP dataset [21] is limited to max 10 people, KAIST dataset provides a mean number 
of objects of 0.90 per image [19], CTIR dataset provides a mean number of objects of 2.59 
per image [8], and FLIR-ADAS dataset a mean number of objects per image of 2.73 [14]. 
Critical tourism conditions may present much higher numbers, thus counting solutions 
have to work with relevant mean average precision in the range from 0 to 70.

For example, in Piazza della Signoria square in Florence, Italy, we manually counted 
hundreds of people in total and 70 under the view of each single camera. These conditions 
can be regarded as crowded. In the views reported in Fig. 1, two cameras’ views (CAM51 
and CAM52) take the most relevant portions of the square, in which we may have reason-
ably up to 70 people in the square. Over that number of people, a critical condition may 
be warned. Squares need to be physically monitored for security reasons and for clean-
ing and assistance. In this specific case, large amount of people in the square may unex-
pectedly arrive from two main directions, that is from Ponte Vecchio (CAM51) and Uffizi 
(CAM52), respectively. In Fig. 2, sample raw images of CAM51 and CAM52 labelled in 
Fig. 1 are reported.

Our main goal has focussed on producing a solution which can: (i) perform people 
detection and counting with high mean average precision in the range from 0 to 70, (ii) be 
applied to different thermal cameras without retraining (which would increase cost), (iii) 

https://www.snap4city.org
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Fig. 1  Cameras’ views of Piazza Della Signoria, Florence, Italy

Fig. 2  Views of CAM51 (a) and CAM52 (b) of Piazza Della Signoria, Florence, Italy, see Fig. 1
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be adopted in real time on RTSP stream, as well as directly on board of the camera (to pro-
duce detections and counting, providing the bounding box via MQTT messages).

According to above requirements, our first experiment has been to assess best solutions 
from the state-of-the-art on CAM51 and CAM52 scenarios and data. To this end, we began 
from assessing:

 (i) YOLOv5 based solution pre-trained with COCO dataset and fine-tuned with LLVIP 
dataset implemented as in [21], which includes more than 12,000 images limited to 
max 10 people. Implementation has been based on the Ultralytics code [22] using 
the architecture YOLOv5s to balance detection capability, speed of execution and 
model weight in view of installing the solution on edge devices. The obtained model 
has been called YOLO-LLVIP.

 (ii) Faster R-CNN (in the following FRCNN) pre-trained with ImageNet dataset [11]. 
The FRCNN has been realized using the Detectron2 framework [42] specifically 
using the architecture X101-FPN. FRCNN has been fine-tuned with LLVIP dataset 
(never carried out in literature). This was performed for the first time by the authors 
in this research and presented in this paper (named as FRCNN-LLVIP model).

Therefore, the resulting models of this first phase (YOLO-LLVIP and FRCNN-LLVIP 
models) have been assessed with respect to the original LLVIP validation dataset and with 
respect to test datasets created from the videos acquired from CAM51 and CAM52 and 
by selecting images in the latter dataset with at most 10 people. Results are reported in 
Table 2. Please note that all the adopted datasets in this first case had a maximum of 10 
people (since the LLVIP provides images of 10 people to the utmost, a selection has been 
performed for the comparison). More details on the standard metrics used for the com-
parison are reported in Section 5.A. From this early analysis, see Table 2, it turned out that 
there was a reduction of performance for both YOLO-LLVIP and FRCNN-LLVIP models 
in terms of mAP_0.5 and precision, passing from LLVIP validation to the two real cases of 
CAM51 and CAM52 (see Table 2). This assessment has provided evidence about a lack of 
flexibility as to the models under test, since they could not be successfully used on people 
detection on new cases, which may have different camera lens and contexts.

All solutions at the state-of-the-art are providing results for less than 10 people [18, 
21, 27, 28], and this is also evident from data sets as described at the beginning of Sec-
tion 4. Therefore, a second experiment was conducted to assess the quality of the above 
presented models with respect to images taken from CAM51 and CAM52 test data sets, 
in the event of higher number of people (see Table 3). When the number is greater than 
10, more relevant errors are occurring. Both YOLO-LLVIP and FRCNN-LLVIP models 

Table 2  People detection results on YOLO-LLVIP and FRCNN-LLVIP models with respect to validation 
cases including images with at most 10 people

Trained Model and validation datasets precision recall mAP_0.5 mAP_0.5: 0.95

YOLO-LLVIP LLVIP Validation <=10 0.953 0.930 0.959 0.698
FRCNN-LLVIP LLVIP Validation <=10 0.971 0.944 0.964 0.606
YOLO-LLVIP CAM51 Test <=10 0.931 0.870 0.908 0.471

CAM52 Test <=10 0.944 0.515 0.737 0.383
FRCNN-LLVIP CAM51 Test <=10 0.841 0.751 0.775 0.338

CAM52 Test <=10 0.858 0.626 0.701 0.323
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provide a worst mAP_0.5, when the number per image is greater than 50 wrt to the “<=10 
case”, of Table 1. Both models seem to work better for CAM51, rather than for CAM52 set 
(see their description in Section 2.A).

The above-presented experiments have proven the limited capabilities shown by YOLO-
LLVIP and FRCNN-LLVIP models, when they are used in different cases, such as CAM51, 
CAM52. In fact, they present:

• low and decreasing mean average precision in detection and counting people in 
crowded conditions, and in general when the number of people is greater than 10;

• low flexibility, providing a relevant decrement of mean average precision when differ-
ent kinds of thermal cameras from telephoto to wide-angle are adopted.

For this reason, the approach of direct transfer learning was not viable to solve the prob-
lem and we decided to perform an additional fine tuning and training. We created new 
data sets for training and validation to overcome the detected and verified problems, as 
described above.

2.1  Flexible people detection dataset of thermal images

In order to generate data for training some video sequences have been taken and manu-
ally classified by using Yolo_Label tool (https:// github. com/ devel oper0 hye/ Yolo_ Label). It 

Table 3  People detection results of YOLO-LLVIP, FRCNN-LLVIP models with respect to test data sets 
coming from CAM51 and CAM52, providing different ranges of people in the image

Test dataset on YOLO-LLVIP model precision recall mAP_0.5 mAP_0.5: 0.95
CAM51 <=10 0.931 0.870 0.908 0.471

>10& < =25 0.933 0.731 0.842 0.439
>25& < =50 0.887 0.492 0.706 0.387
>50& < =75 0.836 0.348 0.602 0.299
> 75& < =97 0.820 0.274 0.544 0.230

CAM52 <=10 0.944 0.515 0.737 0.383
>10& < =25 0.771 0.255 0.508 0.264
>25& < =50 0.501 0.099 0.291 0.114
>50& < =75 0.388 0.061 0.201 0.075
> 75& < =79 0.296 0.031 0.158 0.048

Test dataset on FRCNN-LLVIP Model precision recall mAP_0.5 mAP_0.5: 0.95
CAM51 <=10 0.841 0.751 0.775 0.338

>10& < =25 0.905 0.789 0.821 0.389
>25& < =50 0.884 0.642 0.696 0.308
>50& < =75 0.854 0.534 0.593 0.236
> 75& < =97 0.882 0.504 0.601 0.239

CAM52 <=10 0.858 0.626 0.701 0.323
>10& < =25 0.698 0.414 0.429 0.165
>25& < =50 0.462 0.192 0.182 0.053
>50& < =75 0.374 0.114 0.116 0.031
> 75& < =79 0.285 0.068 0.614 0.014

https://github.com/developer0hye/Yolo_Label
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creates a .txt file for each image, where for each object in the image it specifies: <object-
class> < x_center> < y_center> <width > <height>. The <object-class> for the object 
detection/ classification has been assigned as: 0-green for people, 1-blue for bikes/motor-
bikes and 2-red for strollers/carts (the sum of these classes makes the number of counted 
people in the image). See the example of Fig. 3 for CAM51, where 71 people, 1 bike and 
2 strollers have been labeled. Regarding CAM52, frames were rectified by removing the 
wide-angle lens distortion. Subsequently, the images were labelled.

In order to build a new thermal image training data set and to evaluate machine learn-
ing models and solutions as a function of the number of detected/classified people, images 
have been labeled according to the number of people and their classification. Typically, 
the images of a data set have been grouped according to the number of people: <=10, 
>10 and < =25, >25 and < =50, >50 and < =75, >75. The highest number of people in the 
scene is 97 people for CAM51, and 79 people for CAM52. Table 4 shows the number of 
images and the number of people, bikes and strollers within the different datasets. Each and 
every image stands for a positive example, meaning that it includes at least one object. In 
addition, to train the multi-category detection “person”, “bike” and “stroller”, a minimum 
of 7% of images containing each category has been selected. As to test datasets, images 
from the two thermal cameras have been labeled considering only people in the scenes; 
wherever on the bike there was a person, it was considered and same for strollers.

2.2  Metrics

In order to evaluate the results of such trained models, the following metrics have been 
used. IoU metric in Object Detection evaluates the degree of overlap between the ground 
truth (gt) and prediction (pd):

Fixed α IoU threshold and defining: TP = True Positive, FP = False Positive, FN = False 
Negative, TN = True Negative. Other metrics are:

IoU =
area(gt ∩ pd)

area(gt ∪ pd)

Fig. 3  Example of object detection, CAM51
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• Precision =
TP

TP+FP
• Recall =

TP

TP+FN
• AP is the area under precision-recall curve (p(r)) evaluated by using α αIoU threshold.

• mAP, mean Average Precision is the average of AP values over all classes.

3  Enforcing flexibility in the model

This section describes the process to realize a model addressing the problems of people 
detection (classification) and counting satisfying requirements of:

R1) high mean average precision for people detection and counting, as well as bikes/
motorbikes, strollers/carts detection and counting in crowded conditions;
R2) high flexibility in terms of counting range where a relevant mean average precision 
is obtained;
R3) high flexibility allowing the usage of different thermal cameras from telephoto to 
wide-angle without a relevant decrement of mean average precision in counting;
R4) real time computation capabilities on stream and on board of TV Cameras.

AP
�
= ∫

1

0

p(r)dr

mAP
�
=

1

∣ n_classes ∣

n_classes
∑

i=1

AP
� i

Table 4  Descriptions of old and new datasets

Thermal dataset # images # objects with class specification # tot labels

LLVIP training 12,025 people 33,648 33,648
LLVIP validation 3463 people 7931 7931
CAM51 training 178 people 5210, strollers 78, bikes 115 5403
CAM51 validation 44 people 1175, strollers 13, bikes 35 1223
CAM52 training 175 people 4472, strollers 59, bikes 39 4750
CAM52 validation 44 people 1357, strollers 13, bikes 20 1390
CAM51 test <=10 25 People, strollers, bikes 112

test >10& < =25 25 People, strollers, bikes 474
test >25& < =50 25 People, strollers, bikes 957
test >50& < =75 25 People, strollers, bikes 1649
test >75 & < =97 25 People, strollers, bikes 2057

CAM52 test <=10 25 People, strollers, bikes 130
test >10& < =25 25 People, strollers, bikes 329
test >25& < =50 25 People, strollers, bikes 780
test >50& < =75 25 People, strollers, bikes 1348
test >75 & < =79 25 People, strollers, bikes 1911
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Based on the results at the state-of-the-art, the single-stage object detection YOLO 
architecture has been compared to the multi-stage object detection FRCNN with FPN 
architecture in terms of both detection capability and execution speed.

3.1  Case(i) for multiclass object detection

In this Case (i), the selected architectures YOLO pretrained on COCO dataset and 
FRCNN pretrained on ImageNet dataset [11], have been fine-tuned for the problem of 
multiclass object detection of people, bikes and strollers using the training datasets from 
CAM51 and CAM52 with the aim of choosing the best solution to satisfy requirements 
R1, R2, R3. CAM51 and CAM52 training sets are described in Section 2.A and they 
contain a large range of people in the scene, even more than 70.

The YOLO architecture, pretrained with COCO [21], has been fine-tuned with the 
training sets of CAM51 and CAM52 (see Table 4), respectively. This brought forth the 
so called: YOLO-CAM51 and YOLO-CAM52 models. Such training processes used an 
early stopping with patience set to 100 on the mAP_0.5 of the validation set. Moreover, 
also FRCNN pretrained with ImageNet [11] has been fine-tuned with training sets of 
CAM51 and CAM52 (see Table 4), respectively, thus obtaining the so called: FRCNN-
CAM51 and FRCNN-CAM52 models. Both training processes used an early stopping 
with patience set to 500 on the mAP_0.5 of the validation set.

Results in terms of precision, recall, mAP_0.5, mAP_0.5:0.95 are reported in 
Table  5. Results show that the models based on YOLO achieved better results com-
pared to those based on FRCNN and overall, the validation dataset CAM51 achieved 
better performance compared to the CAM52 in both tested architectures. Please note 
that CAM51 and CAM52 validation data sets include images for multiclass detection 
with a number of people in most cases higher than 10.

To better understand such results on the assessed models, the confusion matrixes for 
each class of interest (namely people, bikes and strollers and background) can be ana-
lyzed. Therefore, Figs. 4 and 5 show confusion matrixes for the validations of CAM51/
CAM52, for YOLO and FRCNN respectively. In both validation cases, especially for the 
True Positives on the class Person, the YOLO based model architectures outperformed 
the FRCNN based models. Comparing results of Table 5 with those of Tables 2 and 3, 
it is self-evident that fine tuning of YOLO and FRCNN models could produce better 
results than those directly obtained on YOLO-LLVIP and FRCNN-LLVIP models, in 
terms of mAP_0.5.

Table 5  Multiclass object detection results in validation of fine-tuned models – YOLO vs FRCNN models. 
In bold are reported best results for each specific case

model vs validation set precision recall mAP_0.5 mAP_0.5:0.95

YOLO-CAM51 vs CAM51 Validation set 0.988 0.960 0.975 0.605
YOLO-CAM52 vs CAM52 validation set 0.925 0.879 0.865 0.398
FRCNN-CAM51 vs CAM51 validation set 0.787 0.777 0.744 0.338
FRCNN-CAM52 vs CAM52 validation set 0.811 0.808 0.779 0.365
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3.2  Case (i) for MonoClass object detection

According to requirement R1, research focused on overcoming the performance of 
the newly developed models with respect to the number of people in the scenes. For 
this purpose, YOLO-CAM51, YOLO-CAM52, FRCNN-CAM51, FRCNN-CAM52 
models have been compared to assess the mAP as a function of a number of people 
detected with respect to the test sets shown in Table 4 for CAM51 and CAM52. Results 
are reported in Table  6 for YOLO-CAM51, FRCNN-CAM51 models (fine-tuned with 
CAM51 training set), and in Table 7 for the YOLO-CAM52, FRCNN-CAM52 models, 
which were developed with CAM52 training set. As a result, such 4 fine-tuned mod-
els for specific cameras achieve better results, if compared with results obtained by the 
YOLO-LLVIP and FRCNN-LLVIP models of Table 3. Please note that, the LLVIP data-
set (used in YOLO-LLVIP and FRCNN-LLVIP models of Table 3) contains images with 
fewer people (<=10) and in this category YOLO-LLVIP model achieved a mAP_0.5 of 
0.908 for the CAM51 test <=10 dataset (see Table 3), to be compared with the value 

Fig. 4  Confusion Matrixes on 
the validation dataset of CAM51 
for models: a YOLO-CAM51, b 
FRCNN-CAM51
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of both 0.970 as to YOLO-CAM51 model and 0.9232 as to FRCNN-CAM51 model, 
as reported in Table  4. As to CAM52 test set <=10, YOLO-LLVIP model achieved 
a mAP_0.5 = 0.737 (in Table  3), compared to the value of 0.975 of FRCNN-CAM52 
model and 0.962 of YOLO-CAM52 model (in Table 7).

When considering scenes with more than 10 people (see Tables 6 and 7), performances 
of the newly fine-tuned models outperform YOLO-LLVIP values, see Table 3. Therefore, a 
relevant level of flexibility has been enforced into the fine-tuned models with respect to the 
formed YOLO-LLVIP and FRCNN-LLVIP models. In more details, according to Table 6, 
the most suitable architecture for flexible detection capabilities in terms of counting range 
as to CAM51 test set turned out to be YOLO-CAM51 model. On the other hand, as to 
CAM52 test set, no identified models can overcome the others in all the cases under analy-
sis. YOLO-CAM52 model could be better ranked on 3 of the 5 ranges of people counts 
(Table 7), while FRCNN-CAM52 model on 2. As a final consideration, the YOLO-CAM51 
model turned out to be the best balance, as it was the best model on 7 cases over 10 for 
both CAM51 and CAM52 test sets. A consideration can be performed on the mean value 
of mAP_0.5 over all cases (Table 6). As to YOLO-CAM51 model it resulted to be 0.9271, 

Fig. 5  Confusion Matrixes on 
the validation dataset of CAM52 
for models: a YOLO-CAM52, b 
FRCNN-CAM52
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while for FRCNN-CAM51 model we recorded 0.8882, which confirm the detailed results 
above.

Moreover, according to requirement R4, solutions have been assessed in terms of their 
execution time (see Table 8). CPU computations have been performed on 8 cores XEON 
at 2.3 GHz, while deep learning solutions have been executed on GPU as NVIDIA Quadro 
GV100 with 32GByte Ram, which has 5120 CUDA Cores, FP64 perf as 7.4 TFLOPS. 
YOLO-CAM51 model can perform real-time detections up to 112 frames per second, 
using the GPU in the worst case evaluated (>75& < 97 detection test set) compared to the 8 
frames of FRCNN-CAM51 model.

According to R1-R4declared goals and requirements, the most suitable architecture 
turned out to be YOLO-CAM51 (YOLO model with fine-tuned with the new data set of 
CAM51). For this reason, it has been further improved by (i) combining other newly train-
ing sets, (ii) using bottom-up layer wise domain adaptation, as reported in the following 
section, with a focus on object detection and counting.

3.3  Case (ii) for MonoClass object detection

According to the above results, with the aim of enforcing more flexibility to the YOLO-
CAM51 model, two new approaches have been produced and discussed in the following. 
They have been named as: Case (ii)a, and Case (ii)b.

Table 6  People detection results for YOLO-CAM51 and FRCNN-CAM51 models as a function of the num-
ber of people in the scene

Model Test dataset precision recall mAP_0.5 mAP_0.5: 0.95

YOLO-CAM51 CAM51 <=10 0.972 0.938 0.970 0.891
>10& < =25 0.969 0.932 0.964 0.881
>25& < =50 0.961 0.934 0.963 0.863
>50& < =75 0.966 0.885 0.939 0.832
> 75& < =97 0.971 0.861 0.927 0.819

CAM52 <=10 0.984 0.923 0.961 0.682
>10& < =25 0.946 0.906 0.950 0.665
>25& < =50 0.915 0.847 0.909 0.596
>50& < =75 0.868 0.868 0.890 0.565
> 75& < =79 0.858 0.706 0.798 0.462

Mean 0.9271
FRCNN-CAM51 CAM51 <=10 0.933 0.883 0.923 0.619

>10& < =25 0.940 0.922 0.958 0.628
>25& < =50 0.929 0.892 0.914 0.576
>50& < =75 0.898 0.780 0.861 0.484
> 75& < =97 0.904 0.772 0.814 0.430

CAM52 <=10 0.968 0.961 0.967 0.574
>10& < =25 0.966 0.943 0.952 0.558
>25& < =50 0.914 0.876 0.896 0.509
>50& < =75 0.909 0.835 0.881 0.502
> 75& < =79 0.885 0.712 0.716 0.377

Mean 0.8882
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 Case (ii)a has been obtained by starting from YOLO model performing a fine-tuning 
using both CAM51 and CAM52 training sets, as described in Table 4. The resulting model 
has been called YOLO-CAM51-52 model; results are reported in Table  9 which shows 
how the model has been assessed against test datasets of both cameras, in different peo-
ple ranges. According to the mAP, combinations of training sets did not improve results 
obtained for CAM51 of Table 6, while it improved the ones obtained for CAM52. Espe-
cially mAP_05 could improve for all ranges, but not for the range of (50-75] people with a 
mAP_0.5 of 0.878, to be compared with CAM52 model of 0.879 in Table 7, thus improv-
ing its flexibility. The mean value of mAP_05 over all ranges turned out to be 0.91.

Table 7  People detection results for YOLO-CAM52 and FRCNN-CAM52 models as a function of the num-
ber of people in the scene

Model Test dataset precision recall mAP_0.5 mAP_0.5: 0.95

YOLO-CAM52 CAM51 <=10 0.988 0.878 0.931 0.667
>10& < =25 0.966 0.831 0.907 0.664
>25& < =50 0.960 0.703 0.840 0.595
>50& < =75 0.957 0.610 0.789 0.517
> 75& < =97 0.951 0.579 0.770 0.466

CAM52 <=10 0.976 0.938 0.962 0.853
>10& < =25 0.977 0.924 0.958 0.821
>25& < =50 0.975 0.841 0.914 0.781
>50& < =75 0.976 0.770 0.879 0.744
> 75& < =79 0.963 0.601 0.786 0.656

mean 0.874
FRCNN-CAM52 CAM51 <=10 0.917 0.893 0.920 0.536

>10& < =25 0.880 0.874 0.944 0.627
>25& < =50 0.871 0.778 0.817 0.403
>50& < =75 0.834 0.644 0.645 0.272
> 75& < =97 0.703 0.489 0.533 0.183

CAM52 <=10 0.984 0.977 0.975 0.500
>10& < =25 0.935 0.924 0.969 0.536
>25& < =50 0.881 0.860 0.879 0.425
>50& < =75 0.867 0.810 0.819 0.384
> 75& < =79 0.884 0.653 0.688 0.317

mean 0.819

Table 8  Performance analysis in terms of execution time

Model assessment in 
execution

CAM51: <= 10 CAM51: >75 & < = 97

tot 25 execution (s) Mean 1 frame (s) tot 25 execution (s) Mean 1 frame (s)

FRCNN-CAM51-
MODEL

CPU 41.5088 1.6603 42.9870 1.7194
GPU 2.8147 0.1125 2.8459 0.1138

YOLO-CAM51-
MODEL

CPU 0.9264 0.0371 0.9676 0.0387
GPU 0.2084 0.0083 0.2225 0.0089
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Case (ii)b has been created from YOLO model and by means of a fine-tuning using 
three training sets of Table 4: CAM51 Training, CAM52 Training, and LLVIP Training. 
Results are reported in Table 10, where the produced YOLO-CAM51-52-LLVIP model has 
been assessed against test datasets for each class of people counting. As a result, YOLO-
CAM51-52-LLVIP model has provided a valid solution to the problem of people detection 
and has achieved comparable results, since this specific model was trained on the LLVIP, 
thus achieving/confirming a mAP_0.5 of 0.96, a non-reduction of performance on LLVIP 
case. The mean value of mAP_0.5 on all cases has been 0.9278, while it has been 0,9247 if 
we take into account only results of test set coming from the CAM51/52.

On test datasets of CAM51 and CAM52, results are comparable and, in some cases, 
also better than the specific model, as in the case with <=10 people on CAM52 where the 
combined model could achieve a mAP_0.5 of 0.974, while the specific one has a mAP_0.5 
of 0.962. Results with crowded situations in our case study are also valid and especially 
when there are more than 75 people in the scene: in this occurrence the combined model 
achieves better mAP_0.5 scores forCAM52 (with a mAP_0.5 of 0.804 with respect to 

Table 9  Case (II)A: People 
detection results on YOLO-
CAM51-52 model as a function 
of the number of people in the 
scene

Test dataset precision recall mAP_0.5 mAP_0.5:0.95

CAM51 <=10 0.916 0.786 0.876 0.702
>10& < =25 0.934 0.907 0.946 0.745
>25& < =50 0.945 0.875 0.929 0.719
>50& < =75 0.949 0.816 0.897 0.674
> 75& < =97 0.937 0.824 0.898 0.660

CAM52 <=10 0.984 0.977 0.985 0.696
>10& < =25 0.975 0.954 0.971 0.653
>25& < =50 0.909 0.874 0.915 0.608
>50& < =75 0.885 0.843 0.878 0.560
> 75& < =79 0.891 0.692 0.805 0.495
mean 0.910

Table 10  Case (II)b: People detection results on YOLO-CAM51-52-LLVIP- Model

Test dataset precision recall mAP_0.5 mAP_0.05:0.95

LLVIP <=10 0.959 0.928 0.959 0.690
CAM51 <=10 0.944 0.902 0.964 0.742

>10& < =25 0.923 0.956 0.969 0.751
>25& < =50 0.927 0.907 0.943 0.706
>50& < =75 0.926 0.846 0.910 0.655
> 75& < =97 0.918 0.864 0.915 0.626

CAM52 <=10 0.984 0.954 0.974 0.686
>10& < =25 0.99 0.927 0.963 0.687
>25& < =50 0.946 0.852 0.910 0.628
>50& < =75 0.903 0.846 0.895 0.588
> 75& < =79 0.906 0.678 0.804 0.515

Mean of CAM51 0.9247
Mean on CAM51/52 cases 0.9278
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0.786 of the specific model). Relevant improvements in the flexibility among different 
cameras have been obtained in wider range of cases (see Table 10) with a marginal reduc-
tion of the highest performance obtained for CAM51 case, in Table 6. The mean mAP_0.5 
turned out to be slightly improved in this latter case (see Table 10). Therefore, the resulted 
YOLO-CAM51-52-LLVIP model outperforms the mean average precision of the former 
YOLO-LLVIP model for small number of people, and strongly outperform all YOLO-
LLVIP and FRCNN-LLVIP models when larger ranges of people need to be addressed. 
This final model has demonstrated a high degree of flexibility and resilience with respect to 
people range and different kinds of cameras, thus satisfying requirements R1, R2, and R3.

4  Bottom‑up layer‑wise domain adaptation

While aiming at a solution that can preserve both flexibility in terms of range of people 
and camera kinds, an additional solution has been developed and is discussed in this sec-
tion. Kiew et  al., in [26], performed an extensive assessment comparing both top-down 
and bottom-up domain adaptation strategies on thermal images and proposed a bottom-up 
layer wise domain adaptation on YOLOv3 architecture, outperforming the best performing 
single-modality pedestrian detection results on the KAIST and the FLIR-ADAS datasets. 
In [26], domain adaptation attempted to exploit learned knowledge from a source domain 
(RGB images) in a new target related domain (thermal images). In our case, we performed 
a fine-tuning process starting from a pre-trained model on COCO dataset (RGB images) 
using thermal images.

The approach of fine-tuning adopted in the previous section has been a top-down 
domain adaptation on the thermal domain via back-propagation, where the supervision sig-
nal comes from the loss at the top of the network down to the new input distribution.

Both top-down and bottom-up domain adaptation strategies adopt the same flow chart, 
which is presented in terms of main steps in Fig. 6. New training data sets have been cre-
ated by both collecting images from thermal cameras (CAM51 and CAM52) and annotat-
ing them manually, while dataset LLVIP has been just inherited. Images have been preproc-
essed to bring them to the same size. Then, on the basis of the new training set, YOLOv5s 
pre-trained on COCO has been fine-tuned with the Bottom-Up layer-wise domain adapta-
tion. Validation and test sets have been used, respectively. Details regarding the Bottom-Up 
layer-wise domain adaptation are reported in the following.

The bottom-up layer-wise domain adaptation is based on the hypothesis that slowly 
fine-tuning from bottom of the network should preserve more knowledge from the origi-
nal domain. We applied this process on YOLOv5s architecture, which is made up of three 
main components: (i) the model backbone: CSPDarknet [44] extracting features from input 
image and being composed by Simplified Cross Stage Partial Bottleneck blocks C3 and a 
cascaded faster version of Spatial Pyramid Pooling Layer SPPF (https:// github. com/ ultra 
lytics/ yolov5/ pull/ 4420/ files); (ii) the model neck: PANet [32] elaborating feature pyra-
mids to generalize objects in different scales; (iii) YOLO-head performing final detection. 
YOLOv5s is represented in Fig. 7, and it has been summarized with a representation of 
27 blocks that are reported in the figure with both parenthesis and block id. Main details 
about type of blocks are also reported in terms of functionality and dimensionality. Similar 
blocks are grouped in terms of color. YOLOv5s is made up of a total of 177 (N) layers and 
a total of 7.2 M parameters.

https://github.com/ultralytics/yolov5/pull/4420/files
https://github.com/ultralytics/yolov5/pull/4420/files
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Differently from [26], we applied the approach bottom-up layer-wise domain adaptation 
fully on thermal data and on YOLOv5 architecture: this process is graphically summarized 
in Fig. 8. Considering the epoch i during the training of the network, the process freezes 
the layers 3i + 1:N, where N is the total number of layers of the considered architecture (for 
YOLOv5s is 177). Therefore, at the starting epoch of a re-training process, base layers are 
also trainable, while the other upper part of the network is frozen. After every epoch, the 
3i + 1 layers are unfrozen until the entire network is fine-tuned.

We applied the bottom-up layer-wise domain adaptation starting from YOLOv5s pre-
trained on COCO dataset, at first using only single camera datasets, then using combination 
of both CAM51 and CAM52 training datasets: results did not improve the top-down fine-
tuning reported in Section 5. On the other hand, using the bottom-up layer-wise domain 
adaptation on LLVIP, CAM51 and CAM52 training datasets could produce the new model 
YOLO-CAM51-52-LLVIP-BLDA, with results that improved those obtained by using the 
top-down strategy, as reported in Table 11. This new model achieved a mAP_0.5 on the 
validation dataset made up of the united version of LLVIP, CAM51, CAM52, test datasets 
of 0.966.

To compare these results with respect to those of the Multiclass Object Detection 
reported in Section 5, YOLO-CAM51-52-LLVIP-BLDA model has been validated on the 
united version of validation datasets CAM51 and CAM52. Results in terms of confusion 
matrix are reported in Fig. 9.

YOLO-CAM51-52-LLVIP-BLDA model for Multiclass Object Detection task could 
achieve, as to the person class category, a percentage of True Positive detected objects 

Fig. 6  Flowchart of technical details for the proposed approach
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of 0.93; as to the bike class 0.89 and it could manage to detect every stroller presented 
in the validation sets. When comparing these results using the specifics CAM51 and 
CAM52 models on the respective validation datasets as reported in Section 5, the per-
centage of True Positive detected objects as to the person class has improved with 
respect to the value of 0.895 of the specific models; as to the stroller class it has achieved 
the same number of detection as in the validation datasets, and as to the bike class it has 
achieved a slightly less value of 0.89 compared to the value of 0.895 achieved with 
the specific camera models. On these grounds, this one bottom-up model could provide 
high flexibility for detection of people, bikes, strollers on different image types from 
telephoto to wide-angle cameras.

As to the analysis on datasets with number of people in the image, results in terms 
of precision, recall, mAP_0.5, mAP_0.5:0.95 are reported in Table 12. When consid-
ering the mAP_0.5 on the LLVIP validation dataset, YOLO-CAM51-52-LLVIP-BLDA 
model has achieved a value of 0.959, thus confirming results related to YOLO-LLVIP 
model. When considering test datasets of CAM51 in the categories with number of peo-
ple <=10 and > 10& < =25, YOLO-CAM51-52-LLVIP-BLDA-Model has achieved the 
best results over all the proposed models, with mAP_0.5 values of 0.979 and 0.974. As 
to test datasets of CAM52 in all the categories from people <=10 up to 79, this model 
has achieved the best results over all the models under evaluation in this work.

Therefore, YOLO-CAM51-52-LLVIP-BLDA-Model could provide better results with 
respect to the YOLO-CAM51-52-LLVIP-Model of Table 12, showing more flexibility 
with respect to the different number of people in the scenes, as well as when changing 

Fig. 7  Yolov5s architecture
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camera resolution and lenses. The mean value of mAP_0.5 on all cases turned out to be 
0.9456, while it has been 0.9443 if taking into account only results of test set coming 
from CAM51/52.

Fig. 8  Bottom-up layer-wise domain adaptation

Table 11  Comparison of 
Multiclass object detection 
results in YOLO-CAM51-52-
LLVIP and YOLO-CAM51-
52-LLVIP-BLDA model with 
respect to mixed test sets 
combining CAM51, CAM52 and 
LLVIP test sets

Models precision recall mAP_0.5 mAP_0.5:0.95

YOLO-
CAM51-
52-LLVIP

0.929 0.942 0.963 0.582

YOLO-
CAM51-
52-LLVIP-
BLDA

0.943 0.930 0.966 0.563
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5  Deployment architecture

In compliance with GDPR rules, our system has used two thermal cameras CAM51 
(which is an AXIS Q1951-E), and CAM52 (AXIS Q1952-E). The Q1951-E has a tel-
ephoto  35  mm camera lens with a horizontal field of view of 10.5° and F1.14 with 
768 × 576 pixel images. The Q1952-E has a wide-angle 10 mm camera lens with a hori-
zontal field of view of 63° and F1.17 with 640 × 480 pixel images but it has been posi-
tioned vertically. In order to process images from thermal camera Q1952-E, a wide-
angle correction has been applied using the undistortImage function of the Fisheye 
camera model in the OpenCV library [6]. The deployment of the solution can be per-
formed in two ways, as reported in Fig. 10.

Fig. 9  Confusion matrix valida-
tion YOLO-CAM51-52-LLVIP-
BLDA model

Table 12  People detection results on YOLO-CAM51-52-LLVIP-BLDA-Model. In bold best results wrt 
Table 9 of CAM51-52-LLVIP-Model

Test dataset precision recall mAP_0.5 mAP_0.05: 0.95

LLVIP <=10 0.960 0.917 0.959 0.683
CAM51 <=10 0.881 0.991 0.979 0.768

>10& < =25 0.957 0.930 0.974 0.757
>25& < =50 0.915 0.920 0.956 0.714
>50& < =75 0.930 0.824 0.916 0.636
> 75& < =97 0.892 0.849 0.923 0.603

CAM52 <=10 0.992 0.977 0.993 0.682
>10& < =25 0.964 0.966 0.980 0.670
>25& < =50 0.950 0.865 0.950 0.621
>50& < =75 0.884 0.877 0.921 0.567
> 75& < =79 0.879 0.754 0.851 0.493

Mean on CAM51/52 cases 0.9443
Mean on all cases 0.9456
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In the first case, AXIS cameras are ARM7 architecture, and thus an Application 
Plugin in C++ to execute such trained models has been developed. Therefore, in this 
case, the model execution is performed on Edge into the Application Plugin. The Appli-
cation Plugin (see Fig. 11) can directly show results (image and related bounding boxes, 
and data below the image with its bounding box and the classification) on the cam-
era’s web interface and it can produce MQTT messages with bounding box of detected 
objects and their classifications. MQTT messages can be sent outside to some MQTT 
brokers, as well on local Node-RED (with an internal Aedes MQTT broker) installed in 
the camera; Snap4City Library can be installed on the local Node-RED to send data in 
protected way to some servers and create dashboards. In addition, via Node-RED it is 
possible to create dashboards or collect data coming from multiple cameras to perform 
data aggregation, reasoning and providing higher level results to be sent on cloud via 
MQTT or other protocols.

In the second case (reported in the bottom part of Fig. 10), a Python process receives 
the RTSP stream from a camera, it executes the above produced model for object detec-
tion and it saves the detected bounding boxes directly on some local database. It may also 
send the same information via some protocols to others for example via MQTT, NGSI V2, 
and rest calls. The execution is performed on Python, executing the training model on an 
NVIDIA T1000 4gb GPU. In this case, the model execution can process 8 frames per sec-
ond, which is the number of frames produced by the thermal camera. On this appliance 
(industrial PC), a NODE-RED can be installed to get data from database and send them to 
Snap4City framework infrastructure via MQTT or NGSI V2 messages.

In both cases, data have to arrive to a Snap4City/IoT platform, where a given number of 
IoT Devices is used to receive data and visualize results in dashboards in Real-Time. There-
fore, dashboards are used to show results as in Fig. 12, which reports trends on number of 

Fig. 10  System architecture for the two modalities of deployment: above, on the TV CAM, below, on an 
industrial PC connected to the camera via RTSP. Combinations of these cases are also viable
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Fig. 11  Results page of the Axis native App

Fig. 12  Monitoring dashboard of people counting in Piazza Della Signoria, Florence
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people for a week for both cameras, and on which the drill down/up on time trends of peo-
ple counting can be performed.

5.1  Edge‑device architecture and execution performance analysis

For the first case, the architecture of the Application Plugin is shown in Fig. 13. The pro-
cess on ARM7 extracts a frame from the RTSP stream and performs wide-angle correction 
and image resize (to 640X640) according to the camera kind and settings. Then the above 
presented model is used for object detection generating the counting and bounding boxes 
for the detected classes. Bounding boxes are superimposed on the frame to show them to 
the web pages produced by the camera, and sent in MQTT to some brokers or other cam-
eras (in this case Snap4City platform to collect real time data and further data aggregation 
and data analytics).

As to the Application Plugin installed on CAM51, execution time has been assessed and 
tuned. In fact, execution time also depends on the number of people detected. In Fig. 14, exe-
cution time as a function of the number of bounding boxes is reported. Our analysis has been 
performed by processing the image data acquired since 14/07/2022 until 19/07/2022, when 
the interval of boxes/people detected has been from 0 to 60. Based on these execution times 

Fig. 13  System architecture for the application plugin of Fig. 10

Fig. 14  Mean execution time 
based on the number of boxes 
detected on the native app 
installed on CAM51
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starting from base scenario (0 boxes) with an execution time of 9.174 seconds, the time incre-
ment to detect a box is of about 0.077 seconds.

6  Conclusions

An important role for Smart Cities is played by Tourism management applications especially 
to study solutions able to let tourists enjoy the quality of their experience, even in crowded 
sites. In this work, we have proposed the usage of thermal cameras which are not invasive 
and cope well with privacy issues and GDPR. Both YOLO and Faster-R-CNN were fine-
tuned using the LLVIP dataset to improve their flexibility in people detection. When the scene 
presented more than 10 people the results were not satisfactory. Therefore, in this paper an 
approach for multiclass object detection of people, bikes and strollers, has been proposed, with 
results used to create a monitoring dashboard. For multiclass object detection task, YOLO 
engine has been exploited, because it performs a single-shot object detection providing at the 
same time low computational time performances and good detection accuracy over all the 
considered classes. To this end, new specific thermal cameras training sets have been pro-
duced for fine tuning both YOLO and Faster-R-CNN. We have tested and compared a wide set 
of tuning approaches in order to improve the mean average precision and flexibility of state-of-
the-art solutions. To this end, we have explored both top-down and bottom-up training adapta-
tion approaches and we have demonstrated that bottom-up approach can provide best results 
according to the above-mentioned goals in terms of performance and flexibility. As a result, 
we have produced a solution providing a higher mean average precision for cameras with dif-
ferent lenses (from wide-angle to telephoto) and covering a large of number of people in the 
scenes. The solution has been derived from YOLOv5 architecture based on a bottom-up layer-
wise domain adaptation that could fit for the need of a lower computational time. As to mean 
mAP_0.5, the solution has achieved a value of 0.986 on the object of the scene on the test 
datasets for scenarios with less than 10 objects, and a value of 0.9456 with mixed scenes with 
up to 97 objects. Moreover, this solution has been tested in two possible deployment configu-
rations: (i) an industrial PC with GPU that could provide Real-Time processing results and, 
(ii) a specific implementation and deploy on thermal cameras which can produce good results 
over 2 frames per minute. Such solution has been massively tested on Piazza Della Signoria, 
Florence, Italy, sending data to Snap4City platform and Dashboards.
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