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Abstract
In the volleyball game, estimating the 3D pose of the spiker is very valuable for training
and analysis, because the spiker’s technique level determines the scoring or not of a round.
The development of computer vision provides the possibility for the acquisition of the 3D
pose. Most conventional pose estimation works are data-dependent methods, which mainly
focus on reaching a high level on the dataset with the controllable scene, but fail to get good
results in the wild real volleyball competition scene because of the lack of large labelled data,
abnormal pose, occlusion and overlap. To refine the inaccurate estimated pose, this paper
proposes a motion-aware and data-independent method based on a calibrated multi-camera
system for a real volleyball competition scene. The proposed methods consist of three key
components: 1) By utilizing the relationship of multi-views, an irrelevant projection based
potential joint restore approach is proposed, which refines the wrong pose of one view with
the other three views projected information to reduce the influence of occlusion and overlap.
2) Instead of training with a large amount labelled data, the proposed motion-aware method
utilizes the similarity of specificmotion in sports to achieve construct a spikemodel. Based on
the spike model, joint and trajectory matching is proposed for coarse refinement. 3) To finely
refine, a point distribution based posterior decision network is proposed.While expanding the
receptive field, the pose estimation task is decomposed into a classification decision problem,
which greatly avoids the dependence on a large amount of labelled data. The experimental
dataset videos with four synchronous camera views are from a real game, the Game of 2014
Japan Inter High School ofMen Volleyball. The experiment result achieves 76.25%, 81.89%,
and 86.13% success rate at the 30mm, 50mm, and 70mm error range, respectively. Since the
proposed refinement framework is based on a real volleyball competition, it is expected to
be applied in the volleyball analysis.
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1 Introduction

With the development of computer vision, 3D human pose is increasingly used in sports anal-
ysis, and human-computer interactions, and animation. Unlike 2D poses limited to the image
or video domain, 3D poses contain multi-level information in the real world. In the volleyball
field, at the spatial level, the 3D pose shows the position and velocity of players, which are
used to analyze the team formation and the players’ status. At the temporal level, a series of
the player’s 3D poses reflect which motion the player is doing, such as serving, spiking, or
receiving. This information helps the audience understand the motion in a volleyball game
for TV broadcasting. Furthermore, at the kinematics level, using the generalization feature
of 3D poses, the coach or even the computer [8] is able to guide the player’s motions by
comparing the player’s 3D pose with a series of standard 3D poses to improve the training
efficiency.

In a whole volleyball game, Table 1 shows action terms in the volleyball game. In these
actions, the efficacy of the spike is the most important action [28], because the spike directly
determines the scoring or not of a round. The definition of the spike is the action of attacking
the ball over the net with force and intent to score a point. In order to better analyze the
motion and improve the technical level of the spiker, the 3D pose of the spiker is essential.
Therefore, this paper is aiming to refine the 3D pose of the spiker.

With the rapid development of deep learning, such solutions have been shown in various
tasks including image recognition [15, 31, 45], action recognition [6, 21, 42], and image
steganography [19, 26, 27]. Significant progress and remarkable performance have already
been made by employing deep learning techniques in 3D pose estimation tasks. The goal of
3D human pose estimation is to localize joint keypoints of a human body in real space. Dong
et al. [9], Pavlakos et al. [29], Iskakov et al. [18], Kocabas et al. [20], and Qiu et al. [30]
achieve the high performance on dataset with controllable scene. However, conventional pose
estimators fail to get good results on the wild and real volleyball game scene, which has the
following challenges: (1) The pose of the spiker is very different from the common pose in
daily life scenes. The abnormal pose mainly causes miss joint point error, which represents a
large displacement from the groundtruth joint position; (2) There are not only 12 players on
a large volleyball court but also referees and staff. The occlusion and overlap mainly lead to
the inversion or swap joint points error. Inversion error occurs when a pose estimation model
is confused between semantically similar parts that belong to the same instance, such as left

Table 1 Terms in the volleyball
game. Note that this paper is
aiming to refine the 3D pose of
spike action

Terms Definition

Serve The action of starting a rally by sending the ball over the
net to the opposing team.

Pass The action of receiving the ball from a serve or attack,
usually with the forearms.

Set The action of placing the ball in the air for a teammate to
hit over the net.

Spike The action of attacking the ball over the net with force
and intent to score a point.

Block The action of stopping an opponent’s attack at the net by
jumping and reaching above the net with the hands.

Dig The action of diving or reaching to save a ball that has
been hit by the opposing team, usually with the forearms.
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or right elbow exchange; Swap error represents a confusion between the same or similar parts
which belong to different persons; (3) The application scene is for real competitions, similar
to the healthcare field [14], there is no sufficient labelled data for training or fine-tuning.
These challenges cause estimated errors from conventional pose estimation works (Fig. 1).

In order to overcome these errors caused by the challenges mentioned above for accurate
3D pose, utilizing multiple views information at the spatial level and the multiple frames
continuity at the temporal level is the key. In recent years, an increasing number of efforts in
the community are focused on pose refinement:

At the spatial level, Moon et al. [25] combine the empirical pose error distributions to pro-
pose a model-agnostic pose refinement network for common pose estimation work. Fieraru

Fig. 1 a shows the 2D pose estimated by OpenPose [4] from cropped frame (horizontal flip for better vision)
of one view, the ellipse area shows that the knee and ankle joints are not successfully detected. b shows the
reconstructed 3D pose with 2D estimated results. c shows our refined 3D pose. d shows the groundtruth 3D
pose
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et al. [11] directly generate the refined body pose from the initial pose prediction in one for-
ward pass by exploiting the dependencies between the input and output spaces. D’Eusanio
et al. [7] refine the 3D human pose with a depth map and a coarse 2D pose. The above
methods explore effective and general pose refinement at the spatial level. However, these
methods are based on a single image, and cannot benefit from the effectiveness of multiple
views. Moreover, for the continuous spiking motion of volleyball, in addition to the spatial
intra-frame information at the image level, the temporal continuity is very meaningful to be
considered.

At the temporal level, considering the temporal continuity of video, the pose of the human
body does not suddenly change or disappear, there are rich correlations between the multi-
frames, and it is meaningful to refine the human pose by considering the prior temporal
information. A non-linear pose manifold [24, 41] model is constructed by using temporal
prior. Wang et al. [41] propose a method that learns a number of bases to obtain tight approxi-
mations of the low-dimensional pose manifold, which is able to avoid generating illegitimate
poses. With the pose manifold model, Mei et al. [24] refine noisy 3D human pose sequences
by jointly projecting them onto a non-linear pose manifold. These works explore good gen-
eralization results in the field of video-based 3D human pose refinement. However, these two
methods directly refine the 3D pose from input 3D pose sequences and do not utilize multi-
view information. Moreover, these data-dependent methods mentioned above require a large
amount of labelled data, which is difficult to apply to the real wild volleyball competition
scene. Tian et al. [38] combine temporal prior information and joints heatmap to refine the
2D skater’s pose, utilizing multi-constrains by skating knowledge to refine the skater’s pose
in 3D space. But this work only refines the 2D pose on each view one by one and also does
not consider the relationship of multiple views. To overcome the limitations of the existing
method, simultaneously considering multi-view relationships, prior temporal information in
a unified framework is highly desired.

Multi-view Relationships The proposed framework includes an irrelevant projection based
potential joint restore method. The main idea is that utilize the projection relationship of
the multi-view camera system, aiming to restore joint points with swap or inversion errors
mainly caused by occlusion or overlap. The logic behind this method is that the joint point
with swap or inversion error is not completely undetected or wrong, but is just given the
wrong label, such as a different person ID or a different joint point number. In a single-view
system, it may be difficult to refine, but in a multi-view system, these errors in the one view
are able to be refined by projecting the reconstructed results from other pairwise views.

Prior Temporal Information To overcome the problem of insufficient labelled data, a
motion-aware pose model is constructed by combining the spike motion and temporal prior
information with limited labelled sequences. The intuition behind this proposal is that the
same type of motion in different sequences is highly similar in sports. For instance, such as
jumping in figure skating or spiking in volleyball, although they are abnormal and difficult to
estimate correctly, the similarity is regarded as temporal prior information to guide the refine-
ment. This intuition is the key to getting rid of data dependence. Based on the spike model,
with joint and trajectory matching, the missing error mainly caused by abnormal pose is
refined to the coarse-refined point. To obtain more accurate points, a point distribution based
posterior decision network is proposed for fine refinement. Specifically, several 3D points are
used to generate a distribution around the coarse-refined points, aiming to generate a larger
receptive field. A posterior decision multi-network is proposed to filter the distribution to get
the accurate refined points. Therefore, the complex estimation problem is transformed into a
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pure classification decision problem, which only requires a limited number of labelled data
for training to overcome data dependence.

In particular, the contributions of this paper are briefly summarized as follows:

1. We propose an innovative projection-based potential joint restore method for multi-view
camera systems. This method leverages the benefits of multi-view reconstruction and
projection to enhance the accuracy of joint point inversion and swap errors, which are
primarily caused by occlusion or overlap in individual views.

2. We propose a novel motion-aware spike model based matching method to effectively
correct the miss errors caused by abnormal poses in real-world volleyball game scenes.
This method utilizes prior motion and temporal information to refine the 3D poses. In
the context of volleyball, different sequences exhibit highly similar motion patterns. This
motivates us to leverage the temporal prior of poses, requiring only a small amount of
labeled data in advance to reduce data dependency.

3. To further enhance the refinement performance, we propose a point distribution based
posterior decision network. The novelty is that the proposedmethod decomposes the pose
estimation task into a pure classification decision problem. By employing thismethod, we
significantly reduce the reliance on a substantial amount of labeled data, thus achieving
fine refinement with improved accuracy.

4. The experiment results show that the proposed method achieves a better result than the
conventional pose estimation works on a wild real volleyball game dataset, reflecting that
the proposed method is able to be applied to actual volleyball matches.

The rest of this paper is arranged as follows. The related work is introduced in Section 2.
Section 3 shows the framework and the detail of the proposedmethods. The experiment result
is described in Section 4. Finally, Section 5 is the conclusion.

2 Related work

2.1 Sports analysis with human pose

The player pose plays a very important role in the sports analysis field. By analyzing the pose
of the athlete, a lot of data that is very helpful for sports analysis is able to be obtained. Cheng
et al. [5] propose a spike height analysis system, which combines the pose and heatmap of the
player to obtain the spike height of 3D space in the real world for volleyball game analysis.
Askari et al. [2] propose a Recurrent Neural Network (RNN) based method, equipped with
image features and players’ poses as input to recognize the interaction for ice hockey analysis.
Zhu et al. [47] propose FenceNet with 2D pose input to automate the classification of fine-
grained footwork techniques in fencing. Analyzing the pose of the athlete is also used as
a training aid. Wang et al. [40] propose a spatial-temporal relation module, considering the
spatial relation of different keypoints among each time frame and temporal relation of specific
keypoints among time dimensions simultaneously, aiming to achieve abnormal detection and
exemplar-based visual suggestions for a better user training experience. Zou et al. [48] present
a fitness training system with pose estimation, which not only shows fitness training courses
but also provides motion correction. Guo et al. [13] design a usable visual analytic prototype
with pose estimation for cheerleading and dance training. Liu et al. [22] design a golf swing
evaluation system, which uses the similarity between the player pose and reference pose to
evaluate swing quality and report a score ranging from 0 to 10. The above work reflects
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that accurate and reliable athlete pose is extremely important for sports analysis. Therefore,
this paper focuses on refining the performance of general pose estimation works for spiking
motion in volleyball games.

2.2 Multi-view 3D pose estimation

With the development of deep learning, The requirements for the accuracy of pose estimation
are also increasing. For the calibrated multi-view camera system, most approaches estimate
2D poses with monocular pose estimators [1, 4, 10] from each view separately to reconstruct
or recover the 3D poses. As for 2D pose estimation, Cao et al. [4] propose OpenPose, which
is a bottom-top estimator, through heatmaps and part affinity fields, using convolutional pose
machines to predict joint coordinates and connection of multi-person in one image. Fang et
al. [10] propose a top-down regional multi-person pose estimation method, which contains
a symmetric spatial transformer network, parametric pose non-maximum-suppression, and
pose-guided proposals generator. Artacho and Savakis [1] propose OmniPose, which incor-
porates contextual information across scales and joint localization with Gaussian heatmap
modulation at the multi-scale feature extractor to estimate human pose. As for 3D recovering
or reconstruction, Dong et al. [9] propose using the combination of geometric, appearance,
and cycle-consistency constraints to design a matching algorithm to reconstruct 3D poses
with clustering 2D poses. Pavlakos et al. [29] reconstruct the 3D poses from multi-view
2D poses by gathering 3D annotations with a ConvNet for 2D pose estimation, and record-
ings from a multi-view setup. Iskakov et al. [18] propose a learnable method that combines a
basic differentiable algebraic triangulation and volumetric aggregation from intermediate 2D
backbone feature maps. Kocabas et al. [20] utilize epipolar geometry to reconstruct 3D poses
and camera geometry from multi-view 2D poses to train a 3D pose estimator. Qiu et al. [30]
propose a CNN based multi-view feature fusion approach to improve the 2D pose estima-
tion accuracy, and recover 3D poses from multi-view 2D poses by incorporating multi-view
geometric priors in the model. Specifically, these 2D poses are estimated from multi-view
images, captured by cameras from different angles at the same time. And then they present
a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses.

The existing pose estimation approaches mainly depend on the massive labelled data to
focus on achieving great performance on open-source datasets with controllable scene, but
for the wild real volleyball scene, with the limitation of large amount of labelled data, it is
worth to further exploring a data-independent refinement method.

2.3 Pose refinement

There still exist a lot of difficult cases such as the volleyball scene where even the state-of-
the-art method cannot estimate all joints without any error. Based on the conventional pose
estimation framework, many works are focusing on refining the estimated pose to increase
detection accuracy.Moon et al. [25] propose amodel-agnostic pose refinement method called
PoseFix, which uses error statistics as prior information to generate synthetic poses to train
the model. Fieraru et al. [11] propose a solution by directly generating the refined body pose
from the initial pose prediction in one forward pass, exploiting the dependencies between
the input and output spaces. For the video input, the multi-frames temporal prior information
is widely utilized. A non-linear pose manifold [24, 41] model is constructed to refine the
3D pose. Zhou et al. [46] propose a temporal keypoint matching and refinement network
by matching keypoints in across frames and matching pose in adjacent frames. Véges and
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Lőrincz [39] propose an energy minimization approach for the smooth, valid trajectories in
time. Zeng et al. [43] propose a plug-and-play refinement network, which suppresses the
influence of long-term jitters from the initial pose result. For the multi-view video input,
Tian et al. [38] propose a multi-task architecture based on a calibrated multi-camera system
to facilitate jointly 3D jump pose of figure skater, which uses temporal heatmap on 2D by
temporal prior information and multi-constrains on 3D by skating prior knowledge to refine
the inaccurate pose results. Considering the relationship of multi-view cameras, Bridgeman
et al. [3] propose a method to associating poses between multi-view works by seeking the
best correspondences first in a greedy fashion, while reasoning about the cyclic nature of
correspondences to constrain the search. Based on the knowledge of volleyball, this paper
constructs a spike model to refine the wrong joint points by using the similarity of spike
action. Existing pose refinement works are mainly data-dependent and utilize generalized
prior information and made indelible achievement. But for spike motions in volleyball game,
lacking labelled data makes training difficult, and generalized priors do not fully describe
the motion because of their abnormality. We observed that the same motions in different
sequences are abnormal but have a high similarity, this paper proposes to build a spiking
motion-aware and data-independent model as a motion prior to guide pose refinement.

3 Proposal

3.1 Preprocessing

The input is a set of synchronous 4 views spike videos V with 4K resolution and 30 Frames
Per Second, and a series of estimated 2D poses x of the spiker. The 2D poses are obtained
by the conventional 2D pose estimators. A well-known high-accuracy multi-person 2D pose
estimation work called OpenPose [4] is implemented as the baseline to obtain the 2D pose
of the spiker. Specifically, For each video in V, firstly, we applied cropping to the video
based on the spiker’s position in order to eliminate extraneous information. Then we input
cropped videos to the pre-trained OpenPose demonstration. Given that the poses generated
by OpenPose are anonymous, meaning that poses associated with the same person ID in
different frames may not necessarily pertain to the same individual, it becomes essential
to filter the initial poses. We utilize a simple and efficient method to filter the 2D pose of
the spiker from the initial poses. We annotate the pose of the spiker in the first frame. In
the subsequent frames, we establish the association of the pose by calculating the distance
between the positions of joint points across consecutive frames. Among the all initial poses,
we identify the pose with the minimum distance from the previous frame as the current
frame’s spiker pose. To ensure reliability, we use joint points that are not prone to errors for
calculating the distance: nose, neck, shoulders, and hips joints.

In volleyball analysis, we pay more attention to the movements of the limbs rather than
facial organs or toes. Therefore, we remove the joint points of the eye, ear, toe, and heel from
BODY25 pose model1 generated by OpenPose. In this paper, the joint points from number
0 to number 14 of the BODY25 model are considered.

1 The joint of the BODY25 model uses 25 joint points to represent the human body, and the joint numbers
are shown as follows: 0 Nose, 1 Neck, 2 RShoulder, 3 RElbow, 4 RWrist, 5 LShoulder, 6 LElbow, 7 LWrist,
8 MidHip, 9 RHip, 10 RKnee, 11 RAnkle, 12 LHip, 13 LKnee, 14 LAnkle, 15 REye, 16 LEye, 17 REar,
18 LEar, 19 LBigToe, 20 LSmallToe, 21 LHeel, 22 RBigToe, 23 RSmallToe, 24 RHeel. L means left, and R
means right.
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Finally, the input 2D pose of the spiker is presented as x = {
xc ∈ R

F×N×2
}4
c=1, which c

is the index of camera view, F is total frames of input video, N = 15 is 15 joint points in the
BODY25 model, 2 is the 2D coordinate of the joint point in each frame.

3.2 Framework

Figure 2 shows the overall framework of our 3D pose refinement system. The goal of this
work is to obtain a serial of refined 3D pose Xr, i.e.

Xr ∈ R
F×N×3 = �(V; x), (1)

where � is an abstraction that represents the overall framework, the meaning of F and N are
the same as the 2D pose, 3 is the 3D coordinate of the joint point in the real world, x is the
2D pose obtained by the conventional 2D pose estimator and V is given multi-view spike
videos.

The proposed framework designs a three-stage method with 2D-to-3D and coarse-to-fine
strategy to refine the pose of the spiker. In stage one, as we discussed, the swap or inversion
error is not completely undetected orwrong, but is just given thewrong label. As for themulti-
view system, the 2D swap and inversion errors for a single view are refined by exploiting
information from the other three irrelevant views. These three irrelevant views are combined
by pairs for triangulation reconstruction [16], and dotted lines of the same color protruding
from the three irrelevant views indicate pairings in Fig. 2. The obtained three 3D points are
reprojected to another view, which are the three white points in Fig. 2. These three projected
points are supplementary information to find out whether there are potential joint points
that can be recovered. Finally, the RWrist point of the other player is restored as RAnkle of
the spiker. In stage two, a series of multi-view 2D poses are reconstructed into 3D poses.
Besides, with the motion-aware and temporal prior information, a spike model is constructed
with few labelled sequences. By comparing the reconstructed 3D poses and 3D poses in the
spike model on joint and trajectory level, a matching relationship is able to be calculated to
transform the 3D poses in the model to the reconstruction result, the miss joint points with
large deviations are refined to small deviations. After, the coarse-refined 3D poses are input
to stage three to do the finely refinement. In stage three, for each joint in the coarse-refined
3D pose, a point set is distributed around each joint point in the 3D space. A decision network
estimates the confidence score for each distributed point to find the best one as the final 3D
joint point. After the operation frame by frame, a series of finely refined 3D poses are output
finally. Each proposed method is presented in the following subsections.

Input: Cropped multi-view 
videos + estimated 2D pose

Irrelevant projection based 
potential joint restore (Section 
III-B)

Green 
point 
restore

Reconstruct

…

…

Motion-aware spike model

Reconstruction result

Trajectory 
Matching

Joint 
Matching

Motion-aware spike model based
matching (Section III-C)

Point distribution for 
coarse-refined 3D pose 

(one frame for example)
Output: Final 

refined 3D pose

Decision 
network

Point distribution based posterior decision 
network (Section III-D)

……

Frame

Frame

Nose

LHip

LKnee

LAnkle

Fig. 2 Framework of the proposed 3D pose refinement method, in which a data-independent, 2D-to-3D, and
coarse-to-fine architecture is proposed with combining the multi-view relationship, motion and temporal prior
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3.3 Irrelevant projection based potential joint restore

The accuracy of the 3D pose estimation is highly dependent on the corresponding 2D pose
estimation. Hence, refining the 2D pose is of utmost importance prior to refining the 3D
pose. Refining the 2D pose based on a single image is a challenging task. However, in
the case of multi-view systems, the availability of additional information from other views
proves advantageous. Consequently, we propose an innovative projection-based potential
joint restore method for the multi-view camera system, refining the 2D pose for each view.
Benefiting from other views, it becomes feasible to refine mislabeled errors, such as swap
and inversion, which constitute nearly half of all errors [25].

To end this, with a four-view system, we consider that for the joint point with the same
number, use three views that are irrelevant to the current view. Then we reconstruct pairwise
these three views into 3D space and then reproject them back to the current view. And we
calculate the Euclidean distance between the estimated joint point and reprojected points.
Then, a threshold τ1 is used to determine whether there is an error joint point in the current
view. If the error happens and the estimated result of the other three irrelevant views is good, all
detected joint points of all players are searched. Through evaluating the Euclidean distance
between each joint point and reprojected points one by one, comparing with a threshold,
the point with the smallest distance and less than the threshold τ2 is restored. Formally,
considering the frame f in camera view c of V, the irrelevant reconstructed 3D points RI

are defined as
R

I
c [ f ] =

{
XI

(i, j)[ f ] ∈ R
N×3

}

i �= j �=c
, (2)

where the i, j, c represent the index of camera view from 1 to 4 in four-view system, I means
irrelevance. For a camera view c, there are three irrelevant camera pairs represented as (i, j).
Then, the reprojection PI is defined as

P
I
c [ f ] =

{
xI(i, j)[ f ] ∈ R

N×2
}

i �= j �=c
. (3)

For each joint, the Euclidean distance between the estimated joint point and irrelevant repro-
jection points is defined as

DE I
c [ f , n] =

{∥∥∥xc[ f , n], xI(i, j)[ f , n]
∥∥∥
2

}

i �= j �=c
, (4)

where n is the joint number from 0 to 14, and there are three element in DE I
c [ f , n] for four-

view system. A threshold τ1 = 40 is used to evaluate the each distance in DE I
c [ f , n], a score

is given to each view c for each joint n, which is shown as:

Scorec[ f , n] =
∑

Th(DE I
c [ f , n], τ1), (5)

where the Th is the threshold function, if the distance is equal or less than the τ1, the output
is 1, else 0, and three elements in DE I

c [ f , n] are compared with τ1 one by one, the output is
summed as Scorec[ f , n]. After combining the scores of the four views, there are the following
three cases. 1) The first case is that each view’s score is equal to 3, which shows the three
irrelevant projected points are close to the estimated point. It means that the estimated points
of the four views have the correct correspondence, so the joint point n of frame f is marked
as correct in all four views. 2) The second case is that each view’s score is equal to 0, which
shows all the irrelevant projected points are not close to the estimated point. It means that at
least two views have wrong estimated points, but cannot distinguish which view has a wrong
point, so the joint point n of frame f is marked as to-refine in all four views. 3) The third case
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is that the score of three views is equal to 1, and the score of another is equal to 0, meaning
the three views with score 1 have the correct correspondence. Because the joint point in the
one view with score 0 is wrong, the distance between the estimated point and three irrelevant
projected points is larger than the threshold τ1. Therefore, the joint point n of frame f in the
one view with score 0 is marked as the to-restore joint (see Fig. 3).

For these to-restore joint points, a global searching method is used to find the best joint to
restore. For view c, frame f , joint n, defining the overall joint points in view c as potential

joint points PP
c [ f , n] =

{
xPc [ f , n] ∈ R

N P×2
}
, where N P is the total number of potential

joint points. Then evaluate the Euclidean distance between each potential joint point and
three irrelevant projected points, the point index nP with minimum distance DP I

c [ f , n, nP ]
is defined as

DP I
c [ f , n, nP ] = arg min

nP∈[0,N P )∈N
[ 1

C2
3

4∑

i �= j �=c

∥∥∥xPc [ f , n, nP ], xI(i, j)[ f , n]
∥∥∥
2

], (6)

where C is the combination function. And the threshold τ2 = 25 is used to evaluate the
DP I
c [ f , n, nP ] is restored or not. If the distance is less than or equal to the τ2, the potential

joint point nP is restored and marked as corrected.

xc[ f , n] ← xPc [ f , n, nP ], (7)

else the joint point xc[ f , n] is marked as to-refine, and refined by the subsequent steps, which
are presented in the following subsections.

3.4 Motion-aware spikemodel basedmatching

In addition to leveraging the multi-view relationship at the 2D level, our work takes into
account the specific motion patterns observed in sports as prior knowledge. Limited by the
availability of labeled data, data-driven methods are not suitable in this scenario. Unlike con-
ventional data-driven approaches, we recognize that the same motion in different sequences
may appear abnormal but exhibits similarity. This similarity can be utilized as meaningful
prior temporal information. Motivated by this observation, we propose a novel motion-aware
spike model based matching method. This method is based on a contrastive idea, using a
data-independent spiking model and test poses as input at the same time, effectively refining
the wrong test poses.

In this regard, as shown in Fig. 4, our approach utilizes only a few non-testing spike
sequences with labeled 3D poses as reference sequences. These sequences are aligned to
generate a spike pose model. This model captures the relative position and distribution at the
spatial level, as well as the movement trend and trajectory at the temporal level. Formally,
the spike pose model is defined as

M
S =

{
X̂S ∈ R

R×Fr×N×3
}

, (8)

where X̂ is the 3D groundtruth of the reference sequence, S means spike, R is the total
number of reference sequences, and Fr is the total frames of each reference sequence. The
spike model is a series of labelled 3D poses.

The four-views 2D test results get from Section 3.3 are reconstructed to the 3D by
triangulation method [16]. The reconstructed 3D poses before refinement are defined as
X ∈ R

F×N×3. Considering both spatial and temporal levels, a Joint and TrajectoryMatching
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Fig. 3 The schematic diagram of irrelevant projection based potential joint restore: The blue points are esti-
mated LAnkle joint points, the white points are irrelevant projected points, the yellow points are the potential
joint points, and the yellow point with green contour is the restored joint point
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Fig. 4 The concept and schematic diagram of motion-aware spike model based matching

method based on the generic one-sided Procrustes Analysis (JTMPA) [12] is proposed for
3D coarse refinement. Mathematically, the purpose is to find an optimal transformation that
makes two matrices as close as possible to each other. Joint and trajectory matching are
presented in the following subsections in detail.

3.4.1 Joint matching

Considering the spatial similarity of human poses in the same motion between different
sequences, such as the relative position and distribution of joint points, the spike model
provides a library of similar poses, and the JTMPA method is proposed to search for the best
matching and the transformation matrix. As Fig. 5(a) shows, for the test 3D pose of frame
f , to ensure the accurate matching without influence of wrong joint points, choosing the N J

3D coordinate with corrected mark get from Section 3.3 to concatenate a test joint matrix
XJ [ f ] ∈ R

N J×3. The Procrustes method requires the shape of the reference joint matrix to
be the same as the test joint matrix, choosing the same N J 3D coordinate in spike model
M

S , the spike model with chosen joint points is defined as X̂SJ ∈ R
R×Fr×N J×3. Then a

optimized problem is defined that for each 3D pose in the spike model, the best matched
3D pose index r J of reference sequences, frame index f Jr and the transformation matrix
A

J ∈ R
3×3 is searched by

argmin
r J , f Jr , AJ ,BJ

∥∥∥X̂SJ [r J , f Jr ] · AJ + B
J , XJ [ f ]

∥∥∥
2

F
, (9)
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model

Test 
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Frame
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Reference 2
Reference 3
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Fig. 5 Joint matching and trajectory matching between spike model and test sequence
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where, the ‖ ‖F denotes the Frobenius norm, and the matrix B
J ∈ R

1×3 is a translation
matrix, which ensures that the reference pose and the test pose are matched in the unified
3D coordinate system. After all, the left (15 − N J ) wrong joint points are refined by the
following equation:

(X[ f ] \ XJ [ f ]) ← (X̂S[r J , f Jr ] \ X̂SJ [r J , f Jr ]) · AJ + B
J , (10)

where, \ means complement set. After joint matching frame by frame, the refined 3D joint
points are reprojected to the view with a to-refined mark, and the mark is updated with
Section 3.3.

3.4.2 Trajectory matching

Similar to joint matching, consider the temporal similarity of human pose in the samemotion
between different sequences. For each joint number n in the test 3D pose, to ensure accurate
matching without the influence of wrong joint points, choosing the FT 3D coordinate with
updated corrected mark get from Section 3.3 to concatenate a test trajectory matrix of joint n,
which is defined asXT [n] ∈ R

FT ×3. To ensure the same shape with test trajectory of joint n,
the frame length Fr of the reference sequences in the spike model are interpolated to frame
length F , and then choosing the same FT 3D coordinate in spike modelMS , the spike model
after choosing is defined as X̂ST [n] ∈ R

R×FT ×3. Then a optimized problem is defined that
for each trajectory of joint n in the spike model, the index rT of reference sequences, the
transformation matrix A

T ∈ R
3×3, and the translation matrix B

T is searched by

argmin
rT , AT ,BT

∥∥∥X̂ST [rT , n] · AT + B
T , XT [n]

∥∥∥
2

F
, (11)

After matching, the left (F − FT ) wrong joint points are refined by the following equation:

(X[n] \ XT [n]) ← (X̂S[rT , n] \ X̂ST [rT , n]) · AT + B
T . (12)

After trajectory matching joint by joint, the refined 3D joint points are reprojected to the
view, which has the to-refined mark, and the mark is updated with Section 3.3 again.

The overall JTMPAmethod is shown inAlgorithm 1. Since the JTMPAmethod is based on
themotion-aware and temporal prior information to solve lacking large labelled data problem,
and the spike model contributes a similar joint and trajectory to coarse refine the test poses
by matching, but similarity only provides the approximate location of a joint point, in order
to obtain more accurate results, a finely-refine method is proposed, which is introduced in
the next section.

3.5 Point distribution based posterior decisionmulti-network

To achieve a fine refinement of the test results obtained from the JTMPA step in the pre-
vious section, conventional data-driven frameworks face challenges due to the scarcity of
labeled data. Training or fine-tuning a pose estimation network becomes difficult under such
limitations. To address this issue, we propose a point distribution based posterior decision
multi-networkmethod. This method decomposes the pose estimation task into a pure classifi-
cation decision problem, which greatly reduces the dependency on a large volume of labeled
data. As a result, we effectively refine the test results without the need for an extensive amount
of labeled data.
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Algorithm 1 The algorithm of Joint and Trajectory Matching based on the generic one-sided
Procrustes Analysis for coarse refinement

Input: The spike pose model MS , and reconstructed 3D poses X before refinement; // MS is obtained from
Eq. (8).

Output: Updated 3D poses X by the proposed coarse refinement method.
1: for ( f = 0; f < F; f + +) do // Joint Matching: iterate each frame
2: N J = correctJointNumberIndex(X[ f ]); //Only choose the correct joint marked from Section 3.3
3: XJ [ f ] ⇐ X[ f , N J , :, :]; // Test joint matrix
4: X̂SJ ⇐ M

S [:, :, N J , :]; // A set of matrices in the spike model to be matched
5: for (r = 0; r < R; r + +) do
6: for ( fr = 0; fr < Fr ; fr + +) do
7: Xtest = XJ [ f ]; Xre f = X̂SJ [r , fr ]; // Two matrices to be matched
8: A,B = genericProcrustesAnalysis(Xtest ,Xre f ); // Matching
9: E = calculateMatchError(A,B,Xtest ,Xre f ); // Evaluate matching error according to Eq. (9)
10: if (E is minimum error) then
11: r J , f Jr ,AJ ,BJ ⇐ r , fr ,A,B; // Best match
12: end if
13: end for
14: end for
15: X[ f ].update(r J , f Jr ,AJ ,BJ , X̂SJ ); // Update according to Eq. (10)
16: end for
17: for (n = 0; n < N ; n + +) do // Trajectory Matching: iterate each joint
18: rT ,AT ,BT = findBestMatch(XT [n], X̂ST ); // similar to Joint Matching, find best-matched trajectory

according to Eq. (11)
19: X[n].update(rT ,AT ,BT , X̂ST ); // Update according to Eq. (12)
20: end for
21: return X

As Fig. 6 shows, A point distribution located around each joint point of the 3D coarse-
refined pose gets from Section 3.4 with a to-refine mark to expand the receptive field. For
frame f , joint n, the point distribution XD[ f , n] is represented as follows:

XD[ f , n] ∈ (X[ f , n] + S × N(0, 1)3)) ∈ R
K D×3 (13)

where, S and K D are hyper-parameters, which means the scale of distribution and number of
points, and set as 85 and 200 respectively in our implementation, and N(0, 1) is the standard
normalization distribution function.

From now on, the estimation task is decomposed into a classification decision problem
by evaluating each point in distribution from a multi-network γ . In order to improve the
stability of the network since the lacking of training data, a multiple network architecture is
proposed to eliminate the decision contingency of a single network. The backbone networks
are ResNet-34 [17] and VGG-16 [35], and the output of the fully connected layer is a tensor
with two elements, which fuse the feature of two backbones. A softmax operation gives a
confidence score to the output tensor, which means the possibility of good joint. The input of
the multi-network is wD × hD image patches centred at the reprojection point of XD[ f , n]
for the four views, which represents as

IDc [ f , n] ∈ R
K D×wD×hD ∈ V. (14)
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where, wD = 30 and hD = 30 in our implementation. Then, the indexes kD with top-3
confidence score in point distribution is calculated by:

argmax
kD

4∑

c=1

γ (IDc [ f , n, kD]). (15)

To search for more precise results near high score points, other point distributions are gen-
erated with decreased S and K D in Eq. 13 based on the indexes kD iteratively. Therefore, in
the second iteration, the Eq. 13 is rewritten as following:

XD
2 [ f , n] ∈ (XD[ f , n, kD] + S2 × N(0, 1)3)) ∈ R

K D
2 ×3 (16)

After iterations, the wrong joint points are refined by the highest confidence score, which is
the final refined point represented as

X[ f , n] ← XD
it [ f , n, kDit ], (17)

where, i t is the iteration times, and kDit is the highest point of i t iteration. After do the decision
for every joint and frame, the final results is represented as Xr = X.

4 Experiment result

4.1 Dataset and experimental setting

To evaluate the proposed approach in the wild real competition game scene, as Fig. 7 shows,
the dataset video was recorded from the Game of 2014 Japan Inter High School of Men
Volleyball with four synchronous camera views located at each corner of the court. In theory,
the more camera views, the more accurate the reconstruction results, but due to equipment
and shooting license constraints, this paper only discusses the case of four cameras. The
video resolution is 4K (3840 × 2160) with 30 frames per second. To focus on spike motion,
each sequence is clipped from the start to the end of the spike motion in a whole volleyball
game, including four stages of overall spike motion: run up, jump, swing and follow-through.
The video size is cropped to remove redundant information.
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Fig. 7 Four camera views of the dataset videos

To verify the performance of the proposedmethod, the sequences with different character-
istics need to be considered. We analyzed all the spike actions in the whole game and found
that the number of blockers affects the estimation accuracy of the spiker’s pose. Because the
blocker and the spiker are very close together, more blockers mean more occlusion or over-
lap. To verify the performance of the proposed refinement framework from different aspects,
we divided the video sequences of spikes into four categories: no blocker, one blocker, two
blockers, and three blockers. And we randomly select 4 sequences in each category as the
test dataset. Figure 8 shows examples of each category.

The experimental setting is shown in the following setting: the network part of Section 3.5
runs on a server with one RTX3090 GPU. The training and validation data are 90% and
10% wD × hD patches from the labelled reference sequence of the spike model with a
random horizontal flip. The implementation is programmed in Python under the framework
of PyTorch. And the other parts of the approach are programmed in Python with the OpenCV
library on the PyCharm platform, and run on the i5-7300HQ CPU with 8GB RAM. To
achieve data independence, the spike model is constructed by only three typical spike motion
sequences from non-test sequences, and the same sequences are used to train the posterior
decision multi-network.

4.2 Evaluationmetric

Although IoT technology [32–34] is being increasingly used in controllable scenes. By
using connected devices such as sensors, and wearable devices, IoT can collect accurate
data to obtain the groundtruth of 3D human pose. However, since the dataset videos are
taken from the real volleyball game, it is impossible to let players to wearing the sensor.
Therefore, the groundtruth of the 3D joint position is reconstructed by the position of four 2D
camera views with manual labelling. Following to existing study of the figure skating scene
[38], considering the large venue with small target and manual labelling inevitably produce
some pixel-level jitter, resulting in millimeter-level error for the 3D joint position in the real
world. Therefore, this work utilizes both qualitative and quantitative metrics to evaluate the
results.

For the qualitative metric, as Fig. 9 shows, the range of the joint size called the groundtruth
range is considered, which is defined that a spherical region in 3D space centered on the joint
center. The result is defined as a successful joint if the result joint 3D coordinate is located
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Fig. 8 Examples of spike action categories with different numbers of blockers

in the green circle. This work uses the success rate under different error ranges to evaluate
the result, which is defined as follows:

SRrange = #Success f ul Joint

#Total Joint
× 100%. (18)

For the quantitative evaluation metric, a common metric the mean per joint position error
(MPJPE) is used to evaluate the result, which means the average distance between the ground
truth and the result of all joints. Formally, the MPJPE is represented as:

1

N × F

F∑

f =1

N∑

n=1

∥∥∥Xr[ f , n] − X̂[ f , n]
∥∥∥
1
. (19)

Fig. 9 Groundtruth range and error range
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4.3 Comparisons and performance improvement of the state-of-the-art methods

We report the comparison and performance improvement when our proposed refine-
ment framework is applied to the recent state-of-the-art human pose estimation methods.
SimCC [23], IntegralPose [37], HRnet [36], DarkNet [44], and OpenPose [4] are used to
generate the input pose. To obtain the pose estimation results of the previous methods, we
used their released codes and pre-trained models.

Table 2 shows the comparison and performance improvements in success rate under dif-
ferent error ranges when our proposed method is applied to the recent state-of-the-art human
pose estimation methods. Our proposed method consistently improves the performance of
the state-of-the-art methods. This result indicates that our method not only refines the 2D
errors based on the multi-view relationship but also refines the 3D errors based on the prior
temporal information. Taking into consideration the fact that the state-of-the-art methods
employed in the experiments exhibit structural and learning strategy variations, we argue
that our model possesses a high degree of generalizability, thereby enabling its application
to other pose estimation methods. Additionally, it is worth noting that our proposed frame-
work necessitates only a limited amount of labeled data, thereby rendering it exceptionally
convenient for deployment in real-world competitive scenarios.

4.4 Ablation study

4.4.1 Contribution of different components

To validate the contribution of each component of the proposed approach for refining the
pose of the spiker, we perform ablation experiments and analysis on each component. And
we use the pretrained OpenPose framework [4], which is a state-of-the-art multi human pose

Table 2 Comparison and performance improvement when our proposed framework is applied to the state-of-
the-art methods. SR30, SR50, and SR70 mean Success Rate under the 30 mm, 50 mm, and 70 mm error range
respectively. MPJPE is the mean per joint position error

Methods Publication SR30 [%] SR50 [%] SR70 [%] MPJPE

SimCC [23] ECCV 2022 50.55 57.61 63.01 119.54 mm

SimCC + Ours / 64.82
(+14.27)

73.30
(+15.69)

78.53
(+15.52)

82.39 mm (-37.15 mm)

IntegralPose [37] ECCV 2018 51.01 58.39 64.92 101.50 mm

IntegralPose + Ours / 64.00
(+12.99)

72.61
(+14.22)

78.97
(+14.05)

78.60 mm (-22.9 mm)

HRnet [36] CVPR 2019 64.34 68.77 72.70 89.36 mm

HRnet + Ours / 71.71
(+7.37)

79.67
(+10.90)

84.84
(+12.14)

63.64 mm (-25.72 mm)

DarkNet [44] CVPR 2020 62.91 67.75 71.67 93.54 mm

DarkNet + Ours / 70.04
(+7.13)

77.18
(+9.43)

82.86
(+11.19)

64.46 mm (-29.08 mm)

OpenPose [4] TPAMI 2019 67.12 71.62 75.28 83.19 mm

OpenPose + Ours / 76.25
(+9.13)

81.89
(+10.27)

86.13
(+10.85)

56.81 mm (-26.38 mm)

Note that the bold emphasis means the best performance
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Table 3 The success rate of each component in the proposed framework

Method P1a P2b P3c SR30 [%] SR50 [%] SR70 [%] MPJPE

Baseline × × × 67.12 71.62 75.28 83.19 mm√ × × 74.46 (+7.34) 78.29 (+6.67) 81.59 (+6.31) 70.48 mm (-12.71 mm)√ √ × 75.53 (+8.41) 80.67 (+9.05) 84.41 (+9.13) 61.19 mm (-22.00 mm)

Ours
√ √ √

76.25 (+9.13) 81.89 (+10.27) 86.13 (+10.85) 56.81 mm (-26.38 mm)

aP1: Irrelevant Projection Based Potential Joint Restore
bP2: Motion-aware spike model based matching
cP3: Point distribution based posterior decision multi-network
Note that the bold emphasis means the best performance

estimation method to generate the input poses. For detail, the experiments are shown as
follows:

• Baseline: The baseline is reconstructing multi-view original OpenPose 2D pose to 3D
directly without any refinement.

• P1: To validate the contribution of the potential joint restore method, the basic framework
combines the multi-view relationship to refine the pose at the 2D level only.

• P1+P2: To validate the contribution of the spike model with matching method, the 3D
coarse refinement is added to the experiment #2.

• P1+P2+P3: The overall framework is tested, adding the point distribution based posterior
decision multi-network.

Table 3 shows the success rate of the ablation experiments at 30mm, 50mm, and 70mm
error ranges. Comparing the success rate of adding P1 or not, the experiment indicates that
the result is higher than the result without refinement about 7.34%, 6.67%, and 6.31% at the
30mm, 50mm, and 70mm error ranges respectively after adding the potential joint restore
method. The result shows that the proposed method combining the multi-view information
is effective to refine the single-view 2D error from the potential joint points. From the result
of adding P2, it shows that spike model with matching makes contribution to refine the 3D
pose under the condition of lacking labelled data, but the result is based on the similar motion
and need to finely refinement. The result of the overall proposed framework shows that the
point distribution based posterior decision multi-network provides a more accurate 3D pose.
In summary, all the proposed methods in the framework play their due role and achieve good
results in the 3D pose refinement of the spiker on the volleyball scene.

Table 4 Effects of joint and trajectory matching strategy in proposed motion-aware spike model based match-
ing method

Method Joint
Matching

Trajectory
Matching

SR30 [%] SR50 [%] SR70 [%] MPJPE

× × 73.82 79.31 83.58 63.29 mm√ × 75.44 (+1.62) 81.33 (+2.02) 85.22 (+1.64) 59.60 mm (-3.69 mm)

× √
73.47 (-0.35) 79.00 (-0.31) 82.25 (-1.33) 66.03 mm (+2.74 mm)

Ours
√ √

76.25 (+2.43) 81.89 (+2.58) 86.13 (+2.55) 56.81 mm (-6.48 mm)

Note that the bold emphasis means the best performance
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4.4.2 Studies on the effect of joint and trajectory matching

To investigate the effects of joint and trajectory matching strategy in the proposed matching-
aware spike model based matching method in Section 3.4, we conduct several experiments
to evaluate the performance. Table 4 summarizes the performance with different matching
methods.

We observe that when only using the joint matching strategy, the performance achieves
2.19 %, 2.55 %, and 1.96 % improvements respectively on the success rate under 30 mm,
50 mm, and 70 mm. Meanwhile, the performance achieves a -3.69 mm decrease on the
MPJPE. However, when only using the trajectory matching strategy, the performance has
a slight decrease. Specifically, compare with the performance without any matching, the
result degrades 0.47 %, 0.39 %, and 1.59 % on the success rate under 30 mm, 50 mm,
and 70 mm respectively. On the MPJPE, the performance is worse by a +2.74 mm error.
The experimental results illustrate that only using trajectory matching strategy damages the
performance. Since the wrong joints crucially affect the trajectory matching at the temporal
level. Moreover, these wrong joint points also affect the subsequent multi-network decision
for fine-grained refinement.

4.4.3 Studies of the comparison between the single andmultiple networks

To investigate the effects of single and multiple networks in the proposed point distribution
based posterior decision multi-network method in Section 3.5, we conduct several experi-
ments to evaluate the performance. Table 5 summarizes the performance comparison with
single and multiple networks.

We observe that when only using a single VGG16 network, the performance achieves
0.42 %, 0.27 %, and 0.18 % improvements respectively on the success rate under 30 mm, 50
mm, and 70 mm. Meanwhile, the performance achieves a -1.39 mm decrease on the MPJPE.
When only using a single ResNet34 network, the performance achieves 0.64 %, 0.87 %, and
1.46 % on the success rate under 30 mm, 50 mm, and 70 mm respectively. On the MPJPE,
the performance achieves a -3.84 mm decrease. The experimental results illustrate that the
multi-network provides more accurate results than a single network.

4.5 Visualization

We present a visual representation of the input video frames, baseline 3D pose, refined 3D
pose, and ground truth 3Dpose in Fig. 10. The comparison clearly illustrates that our proposed
method exhibits closer 3D poses with the ground truth when compared to the baseline.

Table 5 Effects of the single and multiple networks in proposed Point distribution based posterior decision
multi-network

Method VGG16 ResNet34 SR30 [%] SR50 [%] SR70 [%] MPJPE

× × 75.53 80.67 84.41 61.19 mm√ × 75.85 (+0.32) 80.89 (+0.22) 84.56 (+0.15) 59.80 mm (-1.39 mm)

× √
76.01 (+0.48) 81.37 (+0.70) 85.64 (+1.23) 57.35 mm (-3.84 mm)

Ours
√ √

76.25 (+0.72) 81.89 (+1.22) 86.13 (+1.72) 56.81 mm (-4.38 mm)

Note that the bold emphasis means the best performance
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Fig. 10 Visualization of experiment results for each action of spike motion: Each column shows the input
cropped frame of four views and its 3D pose observed by four views. First row shows the four view cropped
frame of input video; Second row shows reconstructed 3D pose by the baseline conventional pose estimation
work [4]; Third row shows the refined 3D pose by proposed approach; Fourth row shows the groundtruth 3D
pose reconstructed by manual 2D labelled pose

5 Conclusion

In this paper, the target is 3D pose refinement for refining the estimated pose error work of the
spiker on wild real volleyball scene. At the 2D level, to decrease the influence of occlusion
and overlap, from the multi-view relationship, this work utilizes the information of other
irrelevant camera views, and searches from all potential joint points to refine the 2D pose of
a single view. At the 3D level, with the limitation of abnormal pose and lacking labelled data,
from the motion similarity, this work proposes a data-independent method, which utilizes
the prior motion and temporal information to construct a motion-aware spike model with
few labelled sequences for coarse refinement by matching. To finely refinement, a point
distribution based posterior decision network is proposed. While expanding the receptive
field, the pose estimation task is decomposed into a pure classification decision problem,
which greatly reduces the dependence on a large amount of labelled data. The experiment
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on a wild real multi-view volleyball competition dataset proves the proposed refinement
framework, and every component improves the accuracy of the conventional pose estimation
work. For futurework, since the proposed refinement framework is basedon the real volleyball
competition, it is expected to be applied in the volleyball analysis.
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