Skip to main content
Log in

OPTP: A new steganography scheme with high capacity and security

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Steganography is the art of hiding secret information (text, audio, video, image or file) in a cover medium. Our goal in this paper is to propose a new image steganography scheme that simultaneously increases capacity and security. Increasing these two characteristics at the same time while maintaining the quality of the extracted secret image is a big challenge for scheme designers, and requires a trade-off. In the present paper, a new steganography scheme called OPTP is introduced in the spatial domain, where for the first time, One secret Picture is sent using only Two cover Pictures; therefore the name OPTP. In this method, two stego images are generated for each secret image using a simple equation, which brings higher capacity, security and quality compared to other existing schemes. To increase the capacity, we introduced a new lossy compression algorithm that performs better compared to conventional compression methods. Regarding the security, we used a key without initial handshake, and bloom filter is employed for the verification. We will compare features and results of the proposed scheme with some existing and recent schemes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data analyzed in this study were a re-analysis of existing data, which are openly available at locations cited in the reference section.

References

  1. Ab A, An B, Tg C (2020) Deep learning-based appearance features extraction for automated carpspecies identification. Aquac Eng 89:102053

    Article  Google Scholar 

  2. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  3. Ansari N, Ni Z, Shi YQ, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  4. Azzahra NF, Sugeng KA (2018) Verifiable image secret sharing using matrix projection. J Physics Conf 1108:1–6

    Article  Google Scholar 

  5. Blundo C, Cresti A, De Santis A, Vaccaro U (1996) Fully dynamic secret sharing schemes. Theor Comput Sci 165(2):407–440

    Article  MathSciNet  Google Scholar 

  6. Bose P, Guo H, Kranakis E, Maheshwari A, Morin P, Morrison J, Smid M, Tang Y (2008) On the false-positive rate of bloom filters. Inform Process Lett 108(4):210–213

    Article  MathSciNet  Google Scholar 

  7. Chang CC, Lee CF, Wang KH, Huang YL (2009) A reversible data hiding scheme based on dual steganographic images, In: Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication, In: ICUIMC, vol. 09, pp. 228–237

  8. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon JPEG and quantization table modification. Inform Sci 123-138

  9. Chang C-C, Hsieh Y-P, Lin C-H (2008) Sharing secrets in stego images with authentication. Pattern Recogn 41(10):3130–3137

    Article  Google Scholar 

  10. Chang CC, Qin C, Hsu TJ (2014) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimedia Tools Applic 74(15):5861–5872

    Google Scholar 

  11. Chen KC, Lee CF, Weng CY (2017) An efficient reversible data hiding with reduplicated exploiting modification direction using image interpolation and edge detection. Multimedia Tools Applic 76:9993–10016

    Article  Google Scholar 

  12. Christensen K, Roginsky A, Jimeno M (2010) A new analysis of the false-positive rate of a bloom filter. Inform Process Lett 110(21):944–949

    Article  MathSciNet  Google Scholar 

  13. Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2007) Digital watermarking and steganography, Morgan Kaufmann

  14. Das S, Sharma S, Bakshi S, Mukherjee I (2018) A framework for pixel intensity modulationbased image steganography. Adv Intell Syst Comput 563:3–14. https://doi.org/10.1007/978-981-10-6872-0_1

    Article  Google Scholar 

  15. Eslami Z, Razzaghi SH, Ahmadabadi JZ (2010) Secret image sharing based on cellular automata and steganography. Pattern Recogn 43(1):397–404

    Article  Google Scholar 

  16. FCMNet: Frequency-Aware Cross-Modality Attention Networks for RGB-D Salient Object Detection (2021). Neurocomputing

  17. Grajeda-Marín IR, Montes-Venegas HA, Marcial-Romero JR, Hernández-Servín JA, Muñoz-Jiménez V, Luna GDI (2018) A new optimization strategy for solving the fall-off boundary value problem in pixel-value differencing steganography, Int. J. Pattern Recognit. Artif. Intell 32:. https://doi.org/10.1142/S0218001418600108

  18. Hamza A, Shehzad D, Sarfraz M, Habib U, Shafi N (2021) Novel secure hybrid image steganography technique based on pattern matching. KSII Trans Internet Inform Syst (TIIS) 15(3):1051–1077

    Google Scholar 

  19. Holub V, Fridrich J (2015) Low-complexity features for jpeg steganalysis using undecimated DCT. IEEE Trans Infor Forensics Secur 10:219–228

    Article  Google Scholar 

  20. Kadhim IJ, Premaratne P, Vial PJ, Halloran B (2019) Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research. Neurocomputing 335:299–326

    Article  Google Scholar 

  21. Kalita M, Tuithung T (2016) A novel steganographic method using 8-neighboring PVD (8nPVD) and LSB substitution, In: Proceedings of the 25th international conference on systems, signals and image processing. https://doi.org/10.1109/IWSSIP.2016.7502756

  22. Kieu TD, Chang CC, Chou YC, (2007) Reversible data hiding scheme using two steganographic images, In: Proceedings of IEEE Region 10 International Conference (TENCON), vol. 117–118, pp. 1–4.

  23. Kim S, Lee D, Kim JS, Lee HJ (2015) A block truncation coding algorithm and hardware implementation targeting 1/12 compression for lcd overdrive. J Display Technol 12:376–389

    Article  Google Scholar 

  24. Kumar MS, Biswapati J, Debasis G (2016) Weighted matrix based reversible data hiding scheme using image interpolation. Comput Intell Data Min 2:239–248

    Google Scholar 

  25. Lee CF, Huang YL (2013) Reversible data hiding scheme based on dual stegano-images using orientation combinations. Telecommun Syst 52(4):2237–2247

    Article  Google Scholar 

  26. Li X, Peng F, Yang B (2014) Improved PVO-based reversible data hiding. Digit Signal Process 25:255–265

    Article  Google Scholar 

  27. Lin CC, Tsai WH (2004) Secret Image Sharing with Steganography and Authentication. J Syst Softw 73(3):405–414

    Article  Google Scholar 

  28. Lin PL, Hsieh CK, Huang PW (2005) A Hierarchical Digital Watermarking Method for Image Tamper Detection and Recovery. Pattern Recogn 38(12):2519–2529

    Article  Google Scholar 

  29. Liu L, Wang A, Chang C, Li Z (2017) Asecretimagesharing with deep-steganography and two-stage authentication based on matrix encoding. Int J Netw Sec 19(3):327–334

    Google Scholar 

  30. Lu TC (2017) Adaptive (k, F1) interpolation-based hiding scheme using center folding strategy. Multimedia Tools Applic 76:1827–1855

    Article  Google Scholar 

  31. Lu T, Chang C, Huang Y (2013) High capacity reversible hiding scheme based on interpolation, difference expansion, and histogram shifting. Multimed Tools Appl. 72:417–435. https://doi.org/10.1007/s11042-013-1369-0

    Article  Google Scholar 

  32. MoADNet: Mobile Asymmetric Dual-Stream Networks for Real-Time and Lightweight RGB-D Salient Object Detection (2022). IEEE Transactions on Circuits and Systems for Video Technology

  33. Mullin J (1983) A second look at Bloom filters. Commun ACM 26(8):570–571

    Article  Google Scholar 

  34. Nezami ZI, Ali H, Asif M, Aljuaid H, Hamid I, Ali Z (2022) An efficient and secure technique for image steganography using a hash function. PeerJ Comput. Sci 8:e1157. https://doi.org/10.7717/peerj-cs.1157

    Article  Google Scholar 

  35. Nyeem H (2017) Reversible data hiding with image bit-plane slicing, In: Proceed-ings of the 20th international conference of computer and information Technology, IEEE, pp. 1–6

  36. Rabbani M, Honsinger CW, Jones PW, Stoffel JC (2001) Lossless recovery of an original image containing embedded data. US Patent Applic 6(278):791

    Google Scholar 

  37. Radford M, Witten IH, Cleary JG (1987) Arithmetic coding for data compression. Commun ACM 30(6):520–540

    Article  Google Scholar 

  38. Rajendran S, Doraipandian M (2017) Chaotic map based random image steganography using LSB technique. Int J Netw Secur 19:593–598. https://doi.org/10.6633/IJNS.201707.19(4).12

    Article  Google Scholar 

  39. Shamshirband S, Rabczuk T, Chau KW (2019) A survey of deep learning techniques: Application in wind and solar energy resources. IEEE Access 7:164650–164666

    Article  Google Scholar 

  40. Shieh JM, Lou DC, Chang MC (2006) A Semi-blind Digital Watermarking Scheme Based on Singular Value Decomposition. Comput Stand Interfaces 28(4):428–440

    Article  Google Scholar 

  41. Shih FY (2017) Digital Watermarking and Steganography: Fundamentals and Techniques, 2nd edn, CRC Press

  42. Starosolski R (2016) Skipping selected steps of dwt computation in lossless jpeg 2000 for improved bitrates. Plos One 11:e0168704

    Article  Google Scholar 

  43. Swain G (2016), A steganographic method combining lsb substitution and pvd in a block. Procedia Comput Sci 39–44, https://doi.org/10.1016/j.procs.2016.05.174.

  44. Tai W-L, Yeh C-M, Chang C-C (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video Technol 19:906–910. https://doi.org/10.1109/TCSVT.2009.2017409

    Article  Google Scholar 

  45. Tekalp AM, Celik MU, Sharma G, Saber E (2002) Reversible data hiding, in: Proceedings of IEEE International Conference on Image Processing, vol. 2, pp. 157–160

  46. Tekalp AM, Celik MU, Sharma G, Saber E (2003) Localized lossless authentication watermark, In: Proceedings of SPIE Security and Watermarking of Multimedia Contents, vol. 5020, pp. 689–698

  47. Tekalp AM, Celik MU, Sharma G, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  48. Tian J (2003) Reversible data embedding and content authentication using difference expansion. IEEE Trans Circ Syst Video Technol 13(8):831–841

    Google Scholar 

  49. Tseng CY, Lu TC, Wu JH (2015) Dual imaging-based reversible hiding technique using LSB matching. Signal Process 108:77–89

    Article  Google Scholar 

  50. Ulutas G, Ulutas M, Nabiyev VV (2013) Secret image sharing scheme with adaptive authentication strength. Pattern Recogn Lett 34(3):283–291

    Article  Google Scholar 

  51. Verma HK, Malik A, Sikka G (2017) An image interpolation based reversible data hiding scheme using pixel value adjusting feature. Multimedia Tools Applic 76:13025–13046

    Article  Google Scholar 

  52. Visual Sentiment Classification via Low-rank Regularization and Label Relaxation (2021). IEEE Transactions on Cognitive and Developmental Systems

  53. Wei J, Ling B, Chau KW, Heutte L (2008) Palmprint identification using restricted fusion-sciencedirect. Appl Math Comput 205:927–9348

    MathSciNet  Google Scholar 

  54. Wong HM, Yip SK, Au OC, Ho CW (2006) Generalized lossless data hiding by multiple predictors, In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1426–1429.

  55. Wu CL, Chau KW (2013) Prediction of rainfall time series using modular soft computing methods. Eng Appl Artif Intell 26:997–1007

    Article  Google Scholar 

  56. Wu JH, Lu TC, Huang CC (2015) Dual-image-based reversible data hiding method using center folding strategy. Signal Process 115:195–213

    Article  Google Scholar 

  57. Wu X, Chen D, Yang CN, Yang YY (2019) A (k, n) threshold partial reversible AMBTC-based visual cryptography using one reference image. J Vis Commun Image Represent 59:550–562

    Article  Google Scholar 

  58. Wu Y, Wu Q, Dey N, Sherratt RS (2020) Learning models for semantic classification of insucient plantar pressure images. Int J Interact Multimedia Artif Intell 6:51–61

    Google Scholar 

  59. Yan X, Gong Q, Li L, Yang G, Lu Y, Liu J (2020) Secret image sharing with separate shadow authentication ability. Signal Process: Image Commun 82:115721

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Taghi Farahi.

Ethics declarations

Conflicts of interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 8

Table 8 For more readability, pseudocode of the given flowcharts are presented in this section

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian Dehkordi, M., Mashhadi, S., Farahi, S.T. et al. OPTP: A new steganography scheme with high capacity and security. Multimed Tools Appl 83, 17579–17599 (2024). https://doi.org/10.1007/s11042-023-16312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16312-x

Keywords

Navigation