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Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Early detec-
tion of CVD reduces the risk of a heart attack and increases the chance of recovery. The 
use of angiography to detect CVD is expensive and has negative side effects. In addition, 
existing CVD diagnostic methods usually achieve low detection rates and reach the best 
decision after many iterations with low convergence speeds. Therefore, a novel heart dis-
ease detection model based on the quantum-behaved particle swarm optimization (QPSO) 
algorithm and support vector machine (SVM) classification model, namely, QPSO-SVM, 
was proposed to analyze and predict heart disease risk. First, the data preprocessing was 
performed by transforming nominal data into numerical data and applying effective scaling 
techniques. Next, the SVM fitness equation is expressed as an optimization problem and 
solved using the QPSO to determine the optimal features. Finally, a self-adaptive thresh-
old method for tuning the QPSO-SVM parameters is proposed, which permits it to drop 
into local minima, and balances between exploration and exploitation in the solution search 
space. The proposed model is applied to the Cleveland heart disease dataset and compared 
with state-of-the-art models. The experimental results show that the proposed QPSO-SVM 
model achieved the best heart-disease-prediction accuracies of 96.31% on the Cleveland 
heart data set. Furthermore, QPSO-SVM outperforms other state-of-the-art prediction 
models considered in this research in terms of sensitivity (96.13%), specificity (93.56%), 
precision (94.23%), and F1 score (0.95%).

Keywords  Cardiovascular disease · Quantum-behaved particle swarm optimization 
(QPSO) · Support vector machine (SVM) · Cleveland heart disease dataset

1  Introduction

Cardiovascular disease (CVD) is currently the leading cause of death worldwide [14]. 
CVDs are heart disorders caused by coronary heart disease, cerebrovascular diseases, heart 
failure, and other types of pathology [29]. Heart disease is mainly caused by the failure 
of the heart to pump enough blood into the body [1]. The most important risk factors for 
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heart disease are an unhealthy diet, advanced age, smoking, high blood pressure, alcohol 
consumption, and physical inactivity. According to a World Health Organization (WHO) 
report [44], heart diseases kill approximately 17.9 million people each year. In the same 
context, the American Heart Association reported that nearly half of American adults, or 
approximately 121.5 million adults, are affected by CVDs [7]. Thus, it is crucial to detect 
cardiac factors early to effectively treat cardiac patients before a heart attack or stroke [26]. 
To our best knowledge, there are still few works deal with CVD prediction [13, 19]. In 
addition, most existing approached optimize one objective only such as model’ accuracy 
[27]. However, multiple conflicting objectives (such as sensitivity, specificity, precision, 
and F1 score) are expected to be optimized simultaneously. To that end, automated CVD 
prediction is one of the most important and challenging tasks globally.

Diagnostic testing and wearable monitoring are currently the two most common meth-
ods for detecting CVDs. However, extracting useful risk factors for heart disease from 
electronic diagnostic tests is extremely difficult because computerized medical records 
are unstructured and permanently expand in size [27, 32]. One obvious solution is to use 
a smart system, which will instantly combine the data from wearable monitoring and 
medical records, evaluate the data gathered, diagnose any concealed heart attack warn-
ing symptoms, and predict cardiac failure. In smart CAD diagnostic systems, Machine 
Learning (ML) models play a vital role due to their efficiency in classifying heart patients 
as normal or abnormal and predicting the output from existing data over relatively short 
periods to address the problem of heart disease prediction [8, 16, 36, 48]. Recenly, many 
ML approaches have been developed to detect the disease from training datasets contain-
ing both inputs and outputs [2, 20, 47]. For example, Naïve Bayes (NBs), Random For-
est (RF) [21], Logistic Regression (LR), K-Nearest Neighbor (k-NN) [17], Support Vec-
tor Machine (SVM) [18], and Artificial Neural Networks (ANN) [10, 11] are examples of 
ML algorithms. These state-of-the-art models were widely commercialized and frequently 
enhanced by professionals in academia and industry. Although these approaches may 
provide the solution to the problem of heart disease detection, they are easy to drop into 
local extreme solutions [9]. This can be a challenge for ML models in the medical domain, 
where it is critical to detect heart disease with very high accuracy.

Among ML models, SVM has shown effective performance in various classifica-
tion and prediction problems in many fields. Some of the current real-life applications 
of SVM include fault detection [45], classification of images [25], and bio-medical 
[5]. The use of the optimal hyperplane that separates cases of different class labels is 
responsible for SVM’s powerful learning capability. Moreover, SVM is sensitive to its 
hyperparameters, which have a direct effect on efficiency and accuracy [38].Therfore, 
SVM is combined with various optimization algorithms due to its strong dependence 
on specific parameters, such as modified binary particle swarm optimization (MBPSO) 
[40], genetic SVM, and analysis of variance (GSVMA) [15], gray wolf optimization 
(GWO) [4], genetic algorithm (GA), improved bacterial foraging optimization-based 
twin support vector machine (IBFO-TSVM) [30], a novel cuckoo search approach called 
CS-PSO-SVM [23], grasshopper optimization algorithm (GOA) [3], and ant colony 
optimization [34]. These hybrid ML methods have produced results that outperform 
conventional models.

Many optimization techniques are available in the field of swarm intelligence algo-
rithms. Among them is the Particle Swarm Optimization (PSO) algorithm, a population-
based stochastic optimization algorithm with a few parameters [12]; hence, it is simple 
to implement [41]. PSO is an important component in ML models because it is used 
to adjust SVM parameters [6]. Furthermore, PSO was used to adjust the weights of the 
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back-propagation neural network, and it produced better results than the conventional back-
propagation method [37]. Moreover, it was used to select the best feature subsets. Swarm 
intelligence algorithms typically identify the optimum solution when it exists, but because 
PSO is stochastic, they cannot be relied on to find the best solution for any given problem. 
Since 1995, many variants have been developed to improve the performance of the PSO 
and achieve good results. Liu and Fu [23] used the Chaos theory to modify the PSO iner-
tia weight parameter. The proposed chaotic PSO balances the exploration and exploitation 
phases effectively. Recenly, Sun et al. [35] suggested quantum theory into PSO and devel-
oped a quantum-behaved PSO (QPSO) algorithm. QPSO achieved better results than tradi-
tional PSO, which effectively moves toward the best optimal solutions in the search space. 
Unlike the PSO method, the QPSO method does not require velocity vectors to move the 
particles and has fewer adjusting parameters overall [37]; hence, the QPSO algorithm is 
easier to construct than the PSO algorithm. Therefore, in this study, QPSO is uttilied to 
modify the optimal SVM parameter to accurately predict heart disease.

This study mainly aimed to develop a novel QPSO-SVM approach for detecting heart 
diseases and predicting cardiac disease. This approach takes the proprieties of SVM—sim-
plicity, fast classification in healthcare applications, and efficiency—while avoiding its 
convergence to a local minimum by training SVM using a QPSO, a new version of PSO 
that is inspired by birds’ flock searching for the location of food. To the best of our knowl-
edge, this study developed the first method for detecting heart illnesses using the hybrid 
quantum PSO and an SVM learning algorithm. The QPSO algorithm is an excellent choice 
for heart disease identification, and it works well on high-dimensional problems and has 
balanced exploitation and exploration capabilities. The first step in the QPSO-SVM model 
is data preparation, which includes cleaning up all datasets required to train the model and 
extracting information that can be used for decision-making. QPSO computes the fitness 
value after the parameters’ values have been adjusted. The entire swarm then evolves to 
generate new solutions. Subsequently, an adaptive threshold is used at the end of each gen-
eration to maintain a balance between exploitation and exploration. Finally, to evaluate the 
performance of the proposed QPSO-SVM, Cleveland heart disease datasets were used to 
build the model and compare it to some state-of-the-art methods. The QPSO-SVM outper-
forms other techniques in terms of classification accuracy. Furthermore, the experiments 
are repeated for different values of the re-adapt control parameters to show the classifiers’ 
sensitivity to the parameter values.

The contributions of the work are summarized as follows:

(1)	 An improved SVM trained by a quantum-behaved PSO (QPSO) algorithm is proposed 
to select the optimal values of the SVM parameters and improve classification accuracy. 
Anovel QPSO-SVM was proposed by integrating QPSO and SVM to improve predic-
tion accuracy.

(2)	 The QPSO-SVM was trained and learned using public heart disease datasets to forecast 
the patients’ heart disease status based on their current state.

(3)	 The proposed QPSO-SVM is evaluated and compared with the results of previous stud-
ies using evaluation metrics such as accuracy, specificity, precision, G-Mean, and F1 
score. Additionally, the statistical analysis was presented to evaluate the QPSO-SVM 
significance compared to other models.

The remainder of this study is structured as follows: Section 2 summarizes the literature 
review. Section 3 describes two algorithms, SVM and QPSO. Section 4 provides a detailed 
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explanation of the proposed QPSO-SVM model for heart disease prediction. Section 5 pre-
sents the experimental results. Section 6 contains the conclusions and recommendations 
for future work.

2 � Literature review

This section provides a literature review of many variants of ML models used to pre-
dict heart disease. Recently, Joloudari et al. [18] suggested a new and highly efficient 
CAD diagnosis called GSVMA to help the effective diagnosis and prediction of CAD 
by selecting key features. There are two key blocks to the GSVMA approach. The first 
method is genetic optimization, which selects the most important features. The second 
is the SVM algorithm with an ANOVA kernel, which is used to categorize the input 
dataset. In comparison to the previously described techniques, the proposed GSVMA 
method performed the best on 31 of 55 features in terms of accuracy (89.45%), F-meas-
ure (80.49%), specificity (100%), sensitivity (81.22%), and area under the curve (AUC) 
(100%). In the same context,Perumal [28] investigated the effect of using three ML 
classifiers, namely, k-NN, SVM, and LR, based on the principal component analysis 
method. Their approach achieved 85%, 87%, and 69% accuracy rates for SVM, LR, and 
k-NN, respectively. It is shown that SVM and LR provide almost similar accuracy val-
ues than k-NN. Furthermore, Liu et  al. [24] proposed a new model for heart disease 
diagnosis based on the ReliefF and Rough set (RFRS) methods. They provided two sub-
systems: the classification system and the RFRS feature selection system. The first sys-
tem is divided into three phases: data normalization, feature extraction using the Reli-
efF method, and feature reduction using RFRS. The second system uses an ensemble 
classifier based on the C4.5 classifier. The experiments in this study were performed on 
the University of California Irvine (UCI) database based on the classifier C4.5. Based 
on a jackknife cross-validation method, it achieved a maximum classification accuracy 
of 92.59%. Similary, Obasi and Shafiq [8] proposed a new ML model based on exist-
ing techniques such as LR, RF, and NB classifiers. The proposed system based on the 
medical records of patients with 1990 observations and 18 features achieved the high-
est accuracy of 92.44%, 61.96%, and 59.7% for LR, RF, and NB classifiers, respec-
tively. Besides, Latha and Jeeva [21] improved the accuracy of heart disease risk pre-
diction based on various classifiers. An ensemble method was used, including bagging, 
boosting, voting, and stacking. When bagging and boosting were used, the accuracy 
increased by a maximum of 6.92% and 5.94%, respectively. While C4.5, PART, and 
Multilevel perceptrons generate an accuracy of less than 80%, the NB classifier achieves 
high accuracy of 83.17%.

Aljarah et al. [3] recently implemented a hybrid GOA and SVM to maximize SVM 
classification accuracy. The hybrid GOA-SVM was tested on 18 datasets. The experi-
mental results are compared with GA, PSO, GWO, CS, firefly algorithm (FF), bat algo-
rithm, and multi-verse optimizer. Although lots of efforts have been made in GOA-
SVM, it has some drawbacks of being trapped in local optima. Furthermore, Vieira 
et al. [40] proposed MBPSO, a modified binary PSO method for detecting patients with 
septic shock. The experimental results show that the MBPSO achieves high accuracy 
compared to other PSO-based algorithms. Similary, Wei-jia et al. [43] proposed a new 
detection algorithm for heart diseases based on a hybrid PSO-SVM algorithm wherein 
PSO automatically reduces the number of features to improve SVM classifier accuracy. 
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Experimental results are compared with other algorithms such as an ANN and feature 
selection-based SVM (FS-SVM). The generated rule showed that men are more likely to 
develop coronary heart disease than women. Subsequently, Al-Tashi et al. [4] proposed 
the GWO-SVM classification model for predicting heart disease. The proposed method 
is a combination of the feature selection method by GWO and classification by SVM. 
In GA-SVM, the GA is used to select the more important features, and experimen-
tal results showed that the GA-SVM model outperformed current models in terms of 
accuracy. When classifying heart disease using all features, the SVM achieved 83.70% 
accuracy. However, when classifying heart disease using the selected features, the SVM 
classifier achieves an accuracy of 88.34%. Liu and Fu [23] introduced a novel approach 
called CS-PSO-SVM for disease diagnosis depending on the hybridization of cuckoo 
search (CS), PSO, and SVM. CS is used as a search algorithm for finding the best ini-
tial parameter of the kernel function in SVM. Thereafter, PSO used the SVM train-
ing part to determine the best SVM parameters. The experimental results showed that 
CS-PSO-SVM outperforms PSO-SVM and GA-SVM in terms of classification accuracy 
and F-measure. However, the classification accuracy in CS-PSO-SVM still needs to be 
improved. Subanya and Rajalaxmi [33] developed ABC-SVM, an Artificial Bee Colony 
(ABC) algorithm based on swarm intelligence to identify the optimal features for heart 
disease detection. The SVM method is used to examine ABC’s fitness. The Cleveland 
heart disease dataset from the VCI ML repository is used to validate the performance of 
the proposed algorithm. The experimental results indicate that the ABC-SVM strategy 
can outperform current models in terms of classification accuracy. ABC-SVM gener-
ated an accuracy of 85.29% in the first test with five features. With seven features and 
the same dataset in the second experiment, it obtained an accuracy of 86.76%.

Recently, Wang et  al. [42] proposed the cloud-random forest (C-RF) model, which 
combines the cloud model and random forest to estimate the risk of coronary heart dis-
ease. The proposed model is based on the conventional classification and regression 
trees (CART). It compares the C-RF model with CART, SVM, Convolutional neural 
network ( CNN), and RF using standard performance measures including accuracy, 
error rates, ROC curve, and AUC value. In comparison to CART, SVM, CNN, and RF, 
the C-RF model’s classification accuracy is 85%, which is an improvement of 8, 9, 4, 
and 3%, respectively. As a result, the C-RF model performs better in terms of clas-
sification effect and performance when assessing the risk of coronary heart disease. 
Lin e al. [22] also used PSO to select features and determine parameter values. The 
SVM is then used to evaluate the classification using the selected subset. Comparing the 
results with those from other methods indicated that the proposed method, PSO-SVM 
with feature selection, performs better than PSO-SVM without feature selection. How-
ever, the experiment results of PSO-SVM must use other classifications to increase their 
performance. Reddy et al. [31] employed several machine learning models for efficient 
heart disease risk predictions such as NB, Sequential Minimal Optimization (SMO) 
[28], instance-based classifier (IBk), AdaBoostM1 with decision stump (DS) [24], Ada-
BoostM1 with LR, bagging with REPTree, bagging with LR [43], and RF. Based on the 
results of the experiment, SMO achieved accuracy of 85.148% using the entire set of 
features. Additionally, when using the chi-squared attribute evaluation method, it pro-
duced the highest accuracy of 86.468%.

Although many studies have been conducted to predict the risk of heart disease [46], 
they have some drawbacks such as being trapped in local optima and the need to improve 
the detection rate. Therefore, in this study, a novel approach, called QPSO-SVM, was pro-
posed to effectively detect the risk of heart disease. The QPSO algorithm was used because 
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it is simple to develop and apply, has few parameters, and produces high classification 
accuracy. The proposed model was applied to the Cleveland heart disease dataset that is 
available from the University of California, Irvine repository with two groups. Each dataset 
group has 303 patients and 13 attributes.

3 � Preliminaries

In this section, SVM and PSO are briefly explained here.

3.1 � SVM

The SVM is a well-known ML technique, developed by Vapnik in [39]. SVM maximizes 
the margin between the positive and negative data points closest to the decision hyperplane 
in an N-dimensional space when there are several classes to distinguish. The effectiveness 
of SVM is significantly impacted by nonlinearly separable data. However, this challenge 
can be overcome by transferring the data from the input space to a new, higher-dimensional 
space using one of the kernel functions. The objective of this kernel function is to identify 
the optimal decision plane.

SVM is a popular ML model that is widely used in heart disease risk prediction [3–5, 
15, 23, 25, 30, 34, 38, 40, 45]. The diagnosis of heart disease is considered an SVM classi-
fication problem that assigns the feature vector of patient �⃗x =

[
x1, x2,… , xn

]
, to a class 

yj ∈ Y = {y1, y2,… , y|Y|} or not, where Y is a set of classes. Assume that, there are N 
training sets {( �⃗x1, �⃗y1

)
,
(
�⃗x2, �⃗y2

)
,… , ( �⃗xN, �⃗yN)

}
, �⃗xi ∈ Rd, and yi ∈ (±1), 1 ≤ i ≤ N , where yi, yi,… , yN 

indicate the class labels for feature vectors 
{
�⃗x1, �⃗x2,… , �⃗xN

}
 , respectively. In linearly separa-

ble data, the line  �⃗ωT
. �⃗xi + b = 0 represents the decision boundary between the two classes, 

positive and negative classes, where �⃗ω is a weight vector, b is the bias, and �⃗xi is the input 
data. The goal of the SVM is to find the best parameters of �⃗ω and b that construct the 
planes H1 and H2,where H1 → �⃗ω

T
. �⃗xi + b ≥ +1 for positive class and H2 → �⃗ω

T
. �⃗xi + b ≤ −1 for 

Fig. 1   SVM classifier
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the negative class, as shown in Fig. 1. Generally, SVM maximizes the margin between the 
positive and negative data points closest to the decision hyperplane. Here, the planes 
H1 and H2  can be combined as follows, yi

(
�⃗ω
T
. �⃗xi + b

)
− 1 ≥ 0∀i = 1, 2,… ,N , where yi ∈ {±1}. 

Here, the hyperplanes are formulated as an optimization problem in standard SVM, by 
using Eq. (1) to distinguish between the negative and positive classes, which represent the 
margin of SVM.

In the case of nonlinearly separable data, the standard SVM cannot be 
classified new cases into the correct class. The SVM introduces a kernel 
function (ψ) that maps the training data into a higher-dimensional space to 
avoid misclassification. The formulation of the objective function of SVM is 
given by Eq. (2):

Here, C is a penalty parameter between ∈i and margin size, and ∈i represents a slack 
variable.

In a nonlinear SVM classifier, the feature vector �⃗xi is labeled as i∗ if the objective func-
tion fi generates the highest value for i∗ as follows:

The results of i∗th objective function may be positive or negative as given in Eq. (4):

During classification, the feature vector �⃗xi that does not satisfy Eq. (4) is not classified 
and defined as an ambiguous case as follows:

Here, the ambiguous vectors are classified using the naïve bayes method. According to 
naïve bayes, the probability that the ambiguous vector �⃗xi belongs to a class Cj is defined 
using Eq. (6):

The ambiguous vector �⃗xi is labeled as i∗ , if the conditional probability P(Cj| �⃗xi) is the 
highest for i∗ , as given in Eq. (7):

(1)
��������{

1

2
��⃗�
�
⋅��⃗�}

�.�.��

(
��⃗�
�
⋅ �⃗�� + �

)
− 1 ≥ 0∀� = 1, 2,… ,�

(2)
��������

�
1

2
��⃗�
�
⋅��⃗�

�
+ �

∑�

�=1
∈�

�.�.��

�
��⃗�
�
⋅�( �⃗��) + �

�
− 1 + ∈� ≥ 0 ∀� = 1, 2,… ,�

(3)�∗ = ������ ��
(
�⃗��
)
= ������ ��

((
��⃗�
�
⋅�( �⃗��) + ��

))
∀� = 1, 2,… ,�

(4)f i=i∗
(
�⃗𝐱𝐢
)
> 0, f i≠i∗

(
�⃗𝐱𝐢
)
< 0.

(5)∀��⃗xi ∉ { �⃗𝐱𝐢|f i=i∗
(
�⃗𝐱𝐢
)
> 0, f i≠i∗

(
�⃗𝐱𝐢
)
< 0}

(6)P(Cj| �⃗��) =
P
(
Cj

)
P( �⃗��|Cj)

P
(
�⃗��
) ,∀� = 1, 2,… ,�

(7)i∗ = argmax(P(Cj| �⃗𝐱𝐢)) ∀𝐢 = 1, 2,… ,𝐍
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3.2 � PSO algorithm

Kennedy and Eberhart in [12] proposed the PSO optimization algorithm. A swarm 
in PSO is made up of a fixed number of particles. Each particle represents a single 
solution to the d-dimensional space optimization problem. Specifically, two types of 
information determine how the ith particle moves in d-dimensional space. The first 
type is the historically best position of the ith particle, denoted by Pbest(t) (i). The 
second type of information is the best among all Pbesti in the whole swarm. The 
global best position, denoted by gbest(t), has the highest fitness value and its velocity 
can be updated as follows:

where V(i) and X(i) represent the velocity and position of the ith particle in the D-th dimen-
sional space, respectively, |V(i)| ≤ Vmax. r1 and r2 are random numbers with a uniform dis-
tribution in the range of [0, 1]. C1 and C2 are the cognition learning factors.

After evaluating the initial population, each particle in the swarm will calculate the 
weighted average position S(t) (i) = [S(t) (i, 1), S(t) (i, 2),... S(t) (i, d)] of their own historically 
best position Pbest(t) (i) and global best position gbest(t) as the attraction point and gradu-
ally move to this point. The formula for calculating the weighted average position S(t) (i, d) 
is as follows:

When the value of Vmax parameter is incorrect, particles are prevented from transi-
tioning too quickly from breadth to depth search, causing the particle track to frequently 
drop into local optima. Sun, Fang, Wu, and Palade [35] proposed a quantum-behaved 
PSO approach to improve the performance of the PSO algorithm, which is represented 
by the Schrödinger equation ψ(x, t) [35], rather than position and velocity in the original 
PSO algorithm.

4 � Proposed model

The proposed new model in this section is based on the quantum-behaved par-
ticle swarm optimization (QPSO) algorithm and SVM to analyze and diagnose 
heart disease risk using a real dataset. The proposed QPSO-SVM classification 
model consists of three phases. First, the data were processed by converting nomi-
nal data into numerical data and applying effective scaling techniques. Second, 
QPSO automatically adjusts the SVM parameters. Finally, the improved QPSO-
SVM performs the classification tasks. Figure  2 shows the flow diagram of the 
proposed methodology for heart disease detection. Here, a simple and efficient 
hybrid model is suggesed to improve optimization capabilities without increasing 
the computational complexity.

(8)

�(�+1)(�) = ���(�)(�) + �1��1�
(�)(�)(�����(�)(�) − �(�)(�)) + �2��2�

(�)(�)
(
�����(�) − �(�)(�)

)

= �(�+1)(�) + �(�)(�)

(9)S(t)(i, d) =
C1.r1(t)(i).Pbest(t)(i) + C1.r1(t)(i).gbest(t)

C1.r1(t)(i) + C1.r1(t)(i)
1 ≤ i ≤ N, 1 ≤ d ≤ D
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4.1 � Data preprocessing

Preprocessing data is the most important step before implementing the proposed model. 
However, real-world data cannot be directly used in the prediction task because it appears 
disorganized, incomplete, and contradictory. First, the categories on the training set are 
converted to a numerical representation, which is then applied equally to the test set. The 
categorical columns have values ranging from 0 to n − 1, where n is the number of catego-
ries. Next, the data is scaled from 0 to 1 using a min–max method after the missing values 
are replaced with random uniform noise ranging from 0 to 0.01.

4.2 � Quantum‑behaved particle swarm optimization algorithm

The quantum PSO (QPSO) algorithm assumes that the dynamic behavior of the particles in 
the PSO system meets the fundamental premise of quantum mechanics [35]. QPSO trains 
SVM by adjusting its parameters to avoid falling into local optima. QPSO uses the Monte 
Carlo method to calculate the position of the particle. The updated formula of QPSO is 
defined as:

(10)S(t)(i, d) = � ⋅�����(t)(i, d) + (1 − �)⋅�����(�)(t)

(11)mbest(d) =
1

N

∑N

i=1
�����(d)

Fig. 2   The flow diagram of the proposed QPSO-SVM classification model for heart diseases detection
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where S(t)(i, d) is a random position between pbest and gbest , u(t)(i, d) and � is a random 
number uniformly distributed in the range [0, 1], and � is an expansion coefficient.

Here, the Eqs. (10) and (12) were combined to get the generalized form of standard par-
ticle postion formula as follows:

For every ith particle, select two particles from the swarm at rand(0, 1) that are not the 
same as ith particle, respectively, k and m, and i ≠ k ≠ m, it is possible to calculate the dif-
ference in location between particles k and m.

Substitute Eq.  (11) for 
(
Pbest(t)(i, d) − gbest(d)(t)

)
 from Eq.  (10), and to increase the 

randomness, add rand(0, 1) to the second term gbest(d)(t) , and the revised evolution equa-
tion is as follows:

According to Eqs. (13) and (15), the position X(t+1)(i, d) is generated; thereafter, the 
individual X(t+1)(i, d) and the optimal position P(t)(i) is separated to calculate the test posi-
tion T(t) (i) = [T(t) (i, 1), T(t) (i, 2),... T(t) (i, d)] as follows:

where � is the cross-over probability.
Using formula (13), the optimal position P(t)(i) of the ith particle is then updated:

Here, the adaptive value function is denoted by F(*). The value of � has a significant 
impact on the QPSO algorithm’s search capabilities and convergence speed. A lower � 
allows individuals in a swarm to save more information while maintaining group variety, 
which benefits the algorithm’s global exploration. On the other hand, higher � encourages 
individuals to learn more empirical information in the entire swarm, speeding up the algo-
rithm’s convergence.

4.3 � Hybrid QPSO‑SVM

The hybrid QPSO-SVM classification model for heart disease detection is proposed. The pro-
posed model has three stages. First, it sets the population size to N, and each ith particle posi-
tion in the d-th dimensional is S(t) (i) = [S(t) (i, 1), S(t) (i, 2),... S(t) (i, d)]. Set the number of par-
ticles to M, the maximum number of iterations to Maxiter , and the range of particle position 

(12)X(t+1)(i, d) = S(t)(i, d) ± �
|||mbest(d) − X(t)(i, d)

|||⋅��
(

1

u(t)(i, d)

)

(13)

X(t+1)(i, d) = � ⋅

(
�����(t)(i, d) − �����(�)(t)

)
+ �����(�)(t) ± �

|||mbest(d) − X(t)(i, d)
|||⋅��

(
1

u(t)(i, d)

)

(14)� = xm − xk

(15)

X(t+1)(i, d) = � ⋅�d + (1 − �)⋅�����(�)(t) ± �
|||mbest(d) − X(t)(i, d)

|||⋅��
(

1

u(t)(i, d)

)

(16)�(t+1)(i, d) =

{
X(t+1)(i, d) rand(0, 1) < �

P(t)(i) other

(17)�(t+1)(i, d) =

{
�(t+1)(i, d) F(�(t+1)(i, d) < F(�(t)(i, d))

�(t)(i, d) other
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and particle velocity. The model uses k-fold cross-validation to ensure its effectiveness. Sec-
ond, the root mean square error (RMSE) was used by the QPSO-SVM algorithm as the fitness 

equation. RMSE is defined as follows: RMSE = 
�

∑N

i=1
Yi−Ŷi

N
 , where Yi and Ŷi denote the predi-

cated and actual values, respectively; N is the number of test samples. Thereafter, the model 
checks the number of iterations; if it does not equal Maxiter , the model updates the individual 
optimal position Pbest(t) (i) of the ith particle, the velocity, and the position of the ith particle 
using Eqs. (8) and (9), respectively. The population of the next-generation S(t + 1) (i) is as fol-
lows: S(t + 1) (i) = [S(t1) (i, 1), S(t + 1) (i, 2),... S(t + 1) (i, d)]. If Maxiter and k-fold satisfy, it 
computes the average RMSE and average accuracy of k-folds. Finally, return the best optimal 
position Pbest, global position gbest of the whole swarm.. The fitness function value of an 
individual should be less than the average for a problem to be minimized, indicating that the 
particle’s neighboring search region is potential and promising. Furthermore, the fitness func-
tion is used to evaluate the quality of individual solutions in a population of candidate solu-
tions, and the goal of the QPSO-SVM algorithm is to evolve a population of solutions towards 
higher fitness values.

In any classification process, selecting a decision threshold is one of the most dif-
ficult challenges. This paper introduces a self-adaptive Threshold scheme for tuning 
the QPSO-SVM parameters. The SVM classification equation is formulated as an 
optimization problem and solved using the QPSO. The method optimizes the thresh-
old values through effectively exploring the solution space in obtaining the global 
best solution. In any classification process, selecting a decision threshold is one of the 
most difficult challenges.

The steps of the QPSO-SVM approach are described as follows:

Step 1: Set the number of particles to be M, the maximum number of iteration to be 
Maxiter ; set the range of particle position and particle velocity;
Step 2: The ith particle position in the d-th dimensional is S(t) (i), S(t) (i) = [S(t) (i, 1), S(t) 
(i, 2),..., S(t) (i, d)]; the ith particle velocity is V(t) (i), V(t) (i) = [V(t) (i, 1), V(t) (i, 2),..., V(t) 
(i, d)];
Step 3: i is set to 1;
Step 4: Particle position S(t) (i) is related to the QPSO-SVM algorithm for training 
model with a large number of samples;
Step 5: After that the root mean square error (RMSE) was used by QPSO-SVM algo-

rithm uses as the fitness. RMSE is defined as follows: RMSE = 
�

∑N

i=1
Yi−Ŷi

N
  (where Yi  

and Ŷi denote the predicated and acual values respectively; N is the number of test 
samples).
Step 6: Update the individual optimal position Pbest(t) (i) of the ith particle;
Step 7: If i ≤ M, goto to step 8; otherwise, i = i + 1, go back to step 4;
Step 8: Update the global best value gbest(t) (i) of the ith particle;
Step 9: If t ≥ Maxiter , go to step 12; otherwise, go to step 10;
Step 10: Update the velocity and position of the the ith particle using Eqs. (14) and 
(15) respectively. The population of the next generation S(t+1) (i) is as follows, S(t+1) 
(i) = [S(t1) (i, 1), S(t+1) (i, 2),..., S(t+1) (i, d)].
Step 11:t = t + 1 , go back to step 2;
Step 12: Return the best optimal position pbest and global position gbest of the whole 
swarm.
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The QPSO-SVM model is explained in detail in Algorithm 1.

4.4 � Measure for performance evaluation based on self‑adapting threshold

In this study, a series of operating points are generated by applying classifier thresholds to 
obtain a multiclass ROC curve. Here, the adaptive threshold ¥(i, t) of particle i at iteration t 
is defined as a minimization problem as follows:

where f it(gbest(d)(t)) is the best global position and fit() is the function to be optimized.

(18)¥(i, t) =

{
1 if f it(gbest(i)(t) < f it(gbest(d)(t))

0 if f it(gbest(i)(t) = f it(gbest(d)(t))

Algorithm 1:    Pseudo-code for QPSO-SVM classification model.
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Sensitivity, specificity, accuracy, precision, G-Mean, and F-score are used in this 
work to assess the performance of the proposed QPSO-SVM model. Their computation 
requires the count of true positive and true negative at a given threshold ¥, which is cal-
culated as follows using the confusion matrix:

•	 Accuracy(¥) : It calculates the proportion of successfully identified cases in the test 
collection to the total number of observations. TP(¥) calculates the number of heart 
disease observations that the model properly classifies as heart illness at classifier 
threshold¥ . However, TN(¥) calculates the number of normal heart observations that 
the model properly classifies as the absence of heart illness at the classifier thresh-
old¥ . Also, False Positive FP (¥) is the number of normal heart observations that the 
model wrongly classifies as heart disease.

•	 Recall(¥) : It calculates  the number of heart disease cases identified by the model 
divided by the total number of activities in the test set.

•	 Specificity(¥) : It correctly identifies people without the heart disease.

•	 Precision(¥) : It calculates the amount of heart disease observations detected divided by 
of the total number of observations the model detect.

•	 F1 Score(¥) : It computes the weighted average of Precision rate and Recall. It is mainly 
used when the class distribution is unbalanced, and it is more valuable than accuracy 
because it calculates FP and FN.

•	 G-Mean(¥): It is used to calculate the trade-off between sensitivity and specificity and 
it is an important measure for class imbalance problem.

5 � Experimental results and discussion

The proposed new classification model for heart disease detection is implemented and 
tested using Python 3 on a PC with an Intel (R) Core (TM) i5-7200U and RAM of 16 GB. 
The proposed model was ran on the heart disease dataset to investigate the feasibility of 

(19)�������� =
TP(¥) + TN(¥)

TP(¥) + TN(¥) + FP(¥) + FN(¥)
× 100

(20)�����������(������) =
TP(¥)

TP(¥) + FN(¥)
× 100

(21)������ ����� =
TN(¥)

TN(¥) + FP(¥)
× 100

(22)��������� =
TP(¥)

TP(¥) + FP(¥)
× 100

(23)�1 �����(¥) = 2 ×
���������(¥) × ������(¥)

��������(¥) + ������(¥)

(24)G −Mean(¥) = sqrt(Sensitivity(¥) − Specif icity(¥))
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QPSO-SVM. Table  1 shows detailed information about the UCI dataset properties. The 
data of 297 patients shows that 137 of them have a value of 1, indicating the presence of 
heart disease, while the remaining 160 have a value of 0, indicating the absence of heart 
disease. The class value is set to 1 if the patient has cardiac issues, while 0 indicating that 
they do not have heart disease.

5.1 � Parameters setting

Several parameters in the proposed QPSO-SVM model must be initialized before evalu-
ation. QPSO-SVM was trained using grid search techniques. Table  2 shows the initial 
parameters for the competitive classification models GA-SVM, ABC-SVM, GSVMA, 
CS-PSO-SVM, GWO-SVM, and GOA-SVM. These parameters include the number of 
particles, cognition learning factors C1 and C2, mutation probabilityand other paramters.

5.2 � Results of the Cleveland dataset

The effectiveness of all competitive classification algorithms, including PSO-SVM, GA-
SVM, ABC-SVM, GSVMA, CS-PSO-SVM, GWO-SVM, and GOA-SVMs, is evaluated 
in this section using the Cleveland heart disease. The accuracy of classification models 
is calculated before and after threshold-offset tuning. Tables 3 and 4 show a comparison 
among the classification accuracies of the proposed QPSO-SVM and other classifiers from 
the literature for the heart disease dataset with grid search technique and using k-fold = 10. 
The comparison results of the classification accuracies among the proposed QPSO-SVM 
algorithm and the other comparative classification approaches (i.e., PSO-SVM, GA-SVM, 
ABC-SVM, GSVMA, CS-PSO-SVM, GWO-SVM, and GOA-SVM) are summarised in 
Table  3. It can be shown that QPSO-SVM achieved the highest classification accuracy 

Table 1   Cleveland heart disease dataset attributes detailed information

Attribute name description

Age Patient’s age is calculated in years
sex Male = 1, Female = 0
Cp Chest pain type categorized into four types (typical angina = 1,

atypical angina = 2; non-anginal pain = 3;asymptomatic = 4)
Blood Pressure mmHg admitted at the hospital
Cholesterol serum cholesterol in mg/dl
fasting Blood sugar Fasting blood sugar > 120 mg/dl True = 1 and False = 0
Resting EGG Normal = 0, having ST-T = 1 and hypertrophy = 2
Thalach Maximum heart rate
induced angina Yes = 1 and No = 0
Old peak ST depression induced by exercises relative to test
Slope Slpoe depicated in three categories (Upsloping = 1, flat = 2, and Downsloping = 3)
CA (0–3) colored by fluoroscopy
Thalassemia Blood disorder depicated in three categories (normal = 3, fixed defect = 6, and 

reversible defect)
Target 0 = normal Nominal

1 = heart disease
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under different grid parameters in comparison with other algorithms. From Table 3, it is 
seen that, the average accuracy achieved by ABCSVM, CS-PSO-SVM, and GOA-SVM 
algorithms were of 87.40%, 86.21%, and 83.98%, respectively. A slightly increased accu-
racy was achieved by PSO-SVM, GA–SVM, and GSVMA approaches, with an average 
accuracy of 88.65%, 89.28%, and 89.13%, respectively. At the same time, the GWO-SVM 
algorithm provides a competitive accuracy of 90.87%. However, the proposed QPSO-SVM 
gives an effective value with the best accuracy of 92.81%. Additionally, Table 4 displays 
the accuracy for the Cleveland heart disease dataset utilising classification models after 
threshold-offset tuning and using k-fold = 10. It shows that the average accuracy of the 
QPSO-SVM classifier is significant and superior to the other classifiers after threshold-
offset adjustment and using k-fold = 10. QPSO-SVM has a 96.31% accuracy rate. Likewise, 
GA-SVM provided the second-best result with an accuracy of 93.01%. GOA-SVM, on the 
other hand, achieves worse outcomes and gives an accuracy rate of 87.38%. Here, to avoid 
local optimization, the QPSO algorithm acts in such a way that when it encounters such 
a location, the particles will be flied to different portions of the search space, where they 
will seek for optimised solutions, and this process will be repeated until the global opti-
mised solutions are found. The technique works effectively when dealing with problems 
of very high dimensions as well as difficulties where the population is primarily unsuitably 

Table 2   The Initial parameters of 
the classification models

Models parameters value

PSO-SVM Inertia �
Number of particles
Generations
Cognition learning factors C1, C2

1
50
100
[2.1,2.1]

GA–SVM Crossover ratio
Mutation probability
Population size
Generations

0.9
0.01
50
100

ABC-SVM Number of colony
Number of food source
Number of iterations

10
5
100

GSVMA Population size
Initial probability
Probability of mutation
Crossover type

50
0.5
1.0
Shuffle

CS-PSO-SVM Number of nests
Number of generations
Discovery rate

100
200
0.25

GWO-SVM Maximum generation
Lower bound
Upper bound

30
1
Size of features

GOA-SVM cMin
cMax
Number of search agents
Number of iterations

0.00001
1
50
100

QPSO-SVM Population size
Maximum number of iterations
Lower bound
Upper bound
Problem dimension

40
100
0.01
100
2
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distributed due to the movement of the employed particles. So, the QPSO-SVM has a high 
success rate in addressing optimization issues.

Figure 3 illustrates the confusion matrix of correct predicted and false predicted heart 
detection using the proposed QPSO-SVM model and all competitive classification algo-
rithms, including PSO-SVM, GA-SVM, ABC-SVM, GSVMA, CS-PSO-SVM, GWO-
SVM, and GOA-SVMs. The proposed QPSO-SVM model has extremely few incorrect 
classifications, as can be seen in the figure, so the classification can be done accurately and 
effectively.

5.3 � Comparison between different classifiers

The standard statistical p-value is used in this study to determine whether the pro-
posed QPSO-SVM algorithm’s mean coverage values are significantly lower 
than those of competing models for ten k-fold scenarios. Table  5 shows that the 
p-values for C(QPSO-SVM, PSO-SVM), C(QPSO-SVM, GA-SVM), C(QPSO-
SVM, GSVMA), C(QPSO-SVM, CS-PSO-SVM), C(QPSO-SVM, GWO-SVM), 
and C(QPSO-SVM, GOA-SVM) are (p < 0.00001), (p < 0.02786), (p < 0.03192), 

QPSO-SVM GA–SVM

PSO-SVM GWO–SVM

Fig. 3   Confusion matrix for Cleveland heart disease dataset using competitive classification algorithms, 
including QPSO-SVM, PSO-SVM, GA-SVM, ABC-SVM, GSVMA, CS-PSO-SVM, GWO-SVM, and 
GOA-SVMs
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(p < 0.21138),(p < 0.000012), (p < 0.29875), and (p < 0.5507), respectively, which 
indicated that there is a significant difference between the performance of QPSO-
SVM and PSO-SVM, GA-SVM, ABC-SVM, GSVMA, CS-PSO-SVM, GWO-SVM, 
and GOA-SVM for ten k-fold cases for heart disease dataset. In addaion, it is clear 
that the mean coverage ratios (mean) (0.400944), standard deviation (0.022743) 
(SD), and covariance (CV) (4.45) of C(QPSO-SVM, PSO-SVM) are superior to the 
ratios C(QPSO-SVM, ABC-SVM) (0.302981, 0.021531, 4.41) and C(QPSO-SVM, 
GSVMA) (0.270304, 0.02031, 5.45), respectively. One of the reasons why the pro-
posed QPSO-SVM classifier outperforms previous classifiers is because it is based on 
our proposed adapting threshold method.

Table  6 shows the superiority of the novel QPSO-SVM algorithm. The sensitivity 
(96.13%), specificity (93.56%), precision (94.23%), and F1 score (0.95%) achieved by 
QPSO-SVM after threshold-offset tuning are better than those obtained by QPSO-SVM 
before threshold-offset tuning. Overall, it is seen that the QPSO-SVM method outper-
formed all other competing algorithms in terms of sensitivity, specificity, precision, and 
F1 score.

GSVMA ABC-SVM

CS-PSO-SVM GOA-SVM

Fig. 3   (continued)
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5.4 � Comparison of the ROC curves of classifiers

Figure  4 shows the ROC curves and Geometric Mean or G-Mean of all classification 
models (i.e., PSO-SVM, GA-SVM, ABC-SVM, GWO-SVM, CS-PSO-SVM, and GOA-
SVM) for the Cleveland heart disease datasets before threshold-offset tuning. The proposed 
QPSO-SVM model performed best (ROC = 0.91) at the start and before threshold-offset 
tuning on the Cleveland heart disease dataset, followed by the GA-SVM model. On the 
other hand, GWO-SVM had the lowest ROC score (ROC = 0.79), followed by GOA-SVM 
and CS-PSO-SVM models, while ABC-SVM and GSVMA performed at the average level. 
It can be seen that QPSO-SVM had the highest Geometric Mean or G-Mean among all 
classification methods (G-Mean = 90.25), followed by GSVMA (G-Mean = 89.60) and 
CS-PSO-SVM (G-Mean = 83.97). The reason for this result is that the QPSO-SVM model 
eliminates the limited particle-to-particle communication within PSO, which makes it easy 
to fall into a local optimum in high-dimensional space and has a slow rate of convergence 
during the iterative process.

Figure  5 shows the results of the ROC curve of the PSO-SVM, GA-SVM, ABC-
SVM, GSVMA, CS-PSO-SVM, GWO-SVM, and GOA-SVM after threshold-offset 
tuning. Figure 5 also shows the effect of the preference factor of optimal threshold-
offset tuning on the AUC area and G-Means. In the case of QPSO-SVM, the opti-
mal ROC curve is around 0.37 with G-Means = 95.14 at the point of threshold-offset 
tuning. In contrast, PSO-SVM achieved ROC (area = 0.84) and 90.03 G-Mean at the 

Fig. 4   ROC curve and G-mean before Threshold-offset tuning of A QPSO-SVM, B PSO-SVM, C GA–
SVM, D ABC-SVM, E GSVMA, F CS-PSO-SVM, G GWO-SVM, H GOA-SVM
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Fig. 4   (continued)

Fig. 5   ROC curve and G-mean after Threshold-offset tuning of A QPSO-SVM, B PSO-SVM, C GA–SVM, 
D ABC-SVM, E GSVMA, F CS-PSO-SVM, G GWO-SVM, H GOA-SVM
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optimal threshold of 0.21. Similarly, ABC-SVM produced 87.59 G-Mean and 0.86 
ROC at a 0.35 threshold. Generally, the QPSO-SVM outperformed all other compet-
ing models in terms of G-Mean and AUC. The ABC-SVM has the worst performance 
in terms of G-Mean and AUC. Generally speaking, the proposed approach takes 
advantage of the QPSO and makes search capabilities more powerful and more stable 
for determining the best threshold values by utilizing the QPSO-SVM algorithm. The 
overall runtimes are not affected by the number of threshold values.

6 � Conclusion and future work

In recent decades, great progress has been made in cardiovascular disease research. 
Although many studies have been conducted to address heart risk detection, most of them 
are ineffective and have many limitations. In this study, a hybrid model, namely, QPSO-
SVM, is proposed to analyze and predict heart disease risk. The QPSO-SVM model com-
bines the benefits of QPSO, SVM algorithms, and an adaptive threshold method. First, 
the data preprocessing were performed by converting nominal data into numerical data 
and applying effective scaling techniques. Second, the SVM parameters are automatically 
adjusted by QPSO. Finally, the proposed QPSO-SVM is used to classify the input data. This 
proposed model was evaluated by tenfold cross-validation over the Cleveland dataset, which 
was divided into two groups: 80% for training and 20% for testing. Furthermore, the exist-
ing state-of-the-art methods, such as PSO-SVM, GA-SVM, ABC-SVM, GSVMA, CS-PSO-
SVM, GWO-SVM, and GOA-SVM, have been used to predict cardiovascular diseases based 
on the Cleveland dataset. Experimental results show that the proposed QPSO-SVM algo-
rithm achieves higher accuracy of 96.31% than existing algorithms. Besides, the proposed 

Fig. 5   (continued)
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model outperforms other heart disease prediction models considered in this research in 
terms of classification accuracy, specificity, precision, G-Mean, F1 score. Furthermore, the 
QPSO-SVM achieved good accuracy and AUC rates compared with related work.
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