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Abstract
We propose a novel strategy for the automatic detection of highlight events in user-generated
tricking videos, to the best of our knowledge, the first one specifically tailored for this
complex sport. Most current methods for related sports leverage high-level semantics such
as predefined camera angles or common editing practices, or rely on depth cameras to achieve
automatic detection. However, our approach only relies on the contents (themselves) in the
frames of a given video, and consists in a four stage pipeline. The first stage identifies
foreground key points of interest along with an estimation of their motion in the video
frames. In the second stage, these points are grouped into regions of interest based on their
proximity and motion. Their behavior over time is evaluated in the third stage to generate
an attention map indicating the regions participating in the most relevant events. The fourth
and final stage provides the extracted video sequences where highlights have been identified.
Experimental results attest to the effectiveness of our approach, which shows high recall and
precision values at frame level, with detections that fit well the ground truth events.

Keywords Highlight event detection · Automatic video summary · Temporal
segmentation · Martial arts tricking

1 Introduction

The volume of video data generated has experienced exponential growth over the years [36].
This huge amount of data requires efficient mechanisms, such as automatic video summa-
rization, to create efficient video representations tomake it easier to browse, find, andmanage
digital media content [27]. Automatic video summarization is a process well known to be
very time consuming [14]. Furthermore, it usually requires highly professional tools and
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expert editing skills [9]. Consequently, it is an important and growing research area where
many different techniques have emerged over the past few years [5].

There are many applications for automatic video summarization, ranging from surveil-
lance footage to broadcast events. In this work, we focus on its application specifically for
the purpose of summarizing user-generated tricking videos. This is a relatively new sport that
emerged around 2000 from martial arts exhibitions, when practitioners started incorporating
different flips in their routines [17]. Martial arts tricking is mostly known as just “tricking”,
and it incorporates moves from a mix of several different areas, including taekwondo, gym-
nastics and break dance among others. Players usually perform passes, also referred to as
combinations or combos, in which they combine kicks, transitions, flips and twists in quick
succession (see Fig. 1).

Tricking emerged on social media platforms, and the community primarily uses these
platforms to share videos. In this community samplers are known as highlight reels where
people summarize their progression over an interval of time. Given the nature of the sport,
it is common for tricking practitioners to record their training sessions and competitions for
future highlight reels or for learning purposes. This often results in lengthy video sequences
in which passes represent only a small portion. Here is where automatic highlight detection
algorithms come in handy.

The specific scenario that has been considered for this work has a static recording camera,
which is the most common recording setup. For a scenario such as this, the camera is usually
placed at a certain distance aiming at the center of the training environment and players take
turns to perform their passes while the rest wait their turn in the background while moving
or stretching. Players’ passes stand out from other events in terms of motion [12] as they
execute skills that encourage fast movement and body extension. That is why the focus of this
work is on estimating motion features from the players. Using this information, the proposed
strategy can automatically extract highlights from a given video.

Aswill be further discussed onSection 2, there already is literature onvideo summarization
and highlight detection in the gymnastics and martial arts areas [34, 40]. However, tricking

Fig. 1 Example images of the sport of tricking. Players perform combinations of skills that mainly include
kicks, flips, twists and transitions
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brings new challenges that previous methods do not address, as movement is much more
erratic and does not follow the strict patterns other related sports do. For instance, gymnasts
always perform passes in a straight line while flipping and twisting only in the vertical axis,
making it easier to detect patterns [2, 20]. Something similar happens with most martial
arts, where practitioners try to achieve or hold specific poses that make pattern recognition
an easier task [22, 35]. However, tricking players perform flips and twists in the vertical,
horizontal, diagonal and even off axis, not always following a straight line, and poses are
not nearly as strict as in most other martial arts, encouraging innovation and self-expression.
These arguments show the big difference in complexity there exists between these sports
when dealing with automatic highlight detection.

This paper presents the first strategy for automatic highlight detection in martial arts
tricking, proposing a solution that is not based on deep learning and thus does not require
massive datasets. This approach relies solely on the content of the frames, without the need
for depth cameras or other equipment. In addition, it not only allows identifying events but
modeling their relevance. It should also be noted that our work operates at the frame level,
providing more detailed analysis than at the video segment level. The proposed strategy has
been assessed on three video sequences with a total duration of 53 minutes, obtaining very
high quality results. Overall, our proposed method offers a new and effective solution for
tricking video analysis and has the potential to impact other sports as well.

The paper is organized as follows: Section 2 explores related works. Section 3 presents an
overview of the strategy we propose, while sections 4, 5, 6 and 7 go into further detail about
each step in the pipeline. Experimental results are presented in Sections 8, and 9 concludes
the paper.

2 Related work

Due to the exponential growth in the volume of video data generated in recent years, several
approaches have been developed to automatically generate summaries and detect high-
lights [18, 36]. Many of these approaches focus on the generation of video summaries of
sports events, since their highlights often only account for a small portion of the total video
length (e.g., in soccer [8] and cricket [37]).

Throughout this section the most prominent video summarization strategies for sports
events are described, paying special attention to those most closely related to martial arts
tricking.

Many of the proposed strategies are oriented to the generation of summaries of broadcast
sports, which are typically based on the detection of the high-level semantics resulting from
the video editing, such as the shot sizes, the on-screen graphics, or the wipe transitions [8].
In [11], a strategy to summarize broadcast soccer games is proposed, which is based on
detecting specific elements (e.g., the goal posts) through the utilization of predefined camera
angles in edited videos. The strategy in [26] allows detecting highlights in sports broad-
casts by identifying slow-motion replays. In [41], a high-accuracy framework is proposed
to automatically clip sports video streams using a three-level prediction algorithm based on
YOLO-v3 and OpenPose.

It is also possible to find in the literature a large number of works oriented to the gener-
ation of summaries of user-generated sports videos, which are characterized by the lack of
any standardized editing conventions or universal structure that can be leveraged to extract
high-level semantics. Some of these works focus on reducing the redundancy in long videos
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based on the analysis of low-level features, such as color [21] or significant objects [25].
In [34], an approach to summarize kendo videos is proposed, which detects players’ actions
using a deep neural network-based method that extracts two types of action-related features
to classify video segments as highlights: body joint-based features and holistic features.
In [40], a cross-category video highlight detection strategy is proposed, which addresses
the problem of highlight detection in sports where the annotated videos required to train
the algorithms are not available. The strategy in [3] enables highlight detection using a net-
work that leverages a bimodal attention mechanism to capture the relationship between the
audio and visual components. In [4], a simple contrastive learning framework is proposed
for unsupervised video highlight detection that encodes a video into a vector representation
by learning to pick video clips that help distinguish it from other videos. The strategy in [39]
uses an encoder-decoder network with 3D convolutional neural networks (CNNs) and visual
saliency that learns pixel-level distinctions to improve the detection of interesting segments.
The strategy in [23] proposes a method that addresses the challenges of cross-modal repre-
sentation learning and fine-grained feature discrimination. This method uses intra-modality
encoding and cross-modality co-occurrence encoding to augment features and capture effec-
tive information, and a hard-pairs guided contrastive learning scheme to improve feature
discrimination.

Although most video summarization strategies focus on the sports with the highest pop-
ularity (e.g., soccer, basketball, baseball, and tennis) [30], there is also a significant amount
of algorithms that focus on other sports. In [13], an inter-frame similarity algorithm that
compares each frame with keyframes given by a human is used to summarize gymnastics
and figure skating videos that contain multiple shots, camera motion, and dynamic move-
ments of objects. A strategy to automatically identify trampoline skills with a single camera
using CNN-based pose estimators is proposed in [7]. In [38], an end-to-end CNN capable of
operating a camera motion control system is used to record or broadcast rhythmic gymnastics
highlights. In [19], it is proposed a strategy focused on the analysis of taekwondo. This strat-
egy relies on a Structure Preserving Object Tracker (SPOT) that allows the target player to be
tracked and segmented, feeding frames that fully contain the player’s body to a deep learning
network (PCANet) that predicts the player’s actions. At a later stage, it uses a linear support
vector machine (SVM) to classify techniques into groups of frames rather than individual
frames. The strategy in [28] evaluates the performance of a gymnast on the pommel horse
apparatus utilizing a depth camera. This approach identifies a depth of interest in the RGB-D
frame, localizes the gymnast, detects when the gymnast is performing a certain routine, and
provides an analysis of that routine. In [10] amethod is proposed for the automatic recognition
and scoring of Olympic rhythmic gymnastics. This method extracts detailed velocity field
information from bodymovements and transforms them into spatiotemporal image templates
that are automatically assigned a score by comparing them to a set of stored movements of
the same type that have been assigned scores by expert judges. The work in [42] introduces
a new dataset called AGF-Olympics for athlete performance measurement in sports videos.
This dataset incorporates artistic gymnastic floor routines and provides highly challenging
scenarios with extensive background, viewpoint, and scale variations. To analyze the videos,
this work proposes a discriminative attention module to map the dense feature space into a
sparse representation by disentangling complex associations.

In conclusion, prior work in sports video summarization has largely focused on well-
established sports such as soccer, basketball, and tennis, relying on common editing practices
or predefined camera angles. However, these methods do not work well for tricking, a sport
that presents unique challenges such as rapid movements, constant changes of direction,
and spontaneous and unstructured movement sequences that do not adhere to predetermined
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patterns. Deep learning approaches have shown promising results in video summarization,
but these methods are heavily reliant on large and diverse datasets, which are not readily
available for smaller sports such as tricking. Likewise, approaches based on depth cameras
are not well-suited for tricking, as accurately tracking the body joints becomes challenging
due to the fast and intricatemovements involved. Therefore, novel and customized techniques
are required to handle the challenges specific to tricking (and other smaller sports), such as
the one proposed in this paper.

3 System overview

Highlight events in the sport of martial arts tricking consist in players performing passes.
Passes can have different duration and incorporate a variety of skills, but they all share that
during a pass, a player combines different skills in quick succession. So it is the fast motion of
a player performing which makes a highlight event stand out from other events. We propose
a strategy able to extract such information to automatically identify highlight events from a
given video.

The basic outline of our strategy consists in four processing blocks, as shown in Fig. 2,
each with a well-defined task.

In the key point extraction and tracking block (Section 4), the most prominent corners, or
key points, of a frame are extracted and filtered fromwell-known background key points. This
filtering is based on a probabilistic model dependent on the location history of the extracted
set of key points, to focus on the region of interest (i.e., the foreground where players are
performing). The resulting foreground key points are tracked from frame to frame to estimate
their motion vectors, and both foreground key points along with their motion vectors will
serve as low-level features that capture players’ motions.

In the region-based analysis block (Section 5), foreground key points along with their
motion vectors are grouped up into regions,which account for the spatial relationship amongst
key points of the same frame, and summarize the information provided by the sparse set of
key points that form them in a more compact way.

The event detection block (Section 6) comes after all frames of the input video have been
analyzed for regions, and it is in charge of identifying the events they participate in. These
will serve to generate an attention map that indicates, for each frame, the region participating
in the most relevant event, under the assumption that the region of a frame participating in
the most relevant event suffices to determine whether or not the entire frame can be classified
as a highlight or not later on.

Finally, the event classification block (Section 7) analyzes the information contained in the
regions spanned by the attention map to perform an initial binary classification at the frame
level, classifying frames as either highlight or not. This initial classification is followed by
a refinement stage in which highlight frames close in time are grouped forming highlight
events, for which wemodel their relevance to produce the final result. The final result consists
in a set of video sequences extracted from the input video where highlight events have been
identified.

Following our proposedmethod,we are able to establish a correspondence between the ini-
tial key points (first system block) and the final events identified. Initial key points exclusively
capture spatial information, while additional higher-level semantics are incorporated through
the processing performed in the following blocks, including essential temporal information,
which is key for the identification of highlights.
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Fig. 2 Block diagram of the proposed strategy. Rectangular blocks denote processing blocks, round-edge
blocks denote data, and diamond blocks denote decision making

4 Key point extraction and tracking

This processing block extracts a set of key points from a frame (subsection 4.1), separating the
key points belonging to the foreground of the scene from those that are part of the background
(subsection 4.2), and tracks the foreground key points from frame to frame (subsection 4.3)
to estimate their motion vectors.

4.1 Key point extraction

Key points are the lowest-level features of the proposed strategy and they serve to identify
locations of interest in an image. For instance, let I n be the current image being analyzed
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at time n, and let (xn, yn) be a pixel with column xn and row yn . Locations of interest are
identified as a set of Kn key points, Qn = {

(xnk , ynk ), 1 ≤ k ≤ Kn
}
, where the pair (xnk , ynk )

represents the coordinates (column and row) of the k-th key point extracted from the current
image, I n . The strategy we propose builds on top of these key points to extrapolate higher-
level semantics.

Many relevant key point extraction methods were evaluated to determine the most suitable
one for our strategy. Such method should be able to extract enough and well distributed key
points from players performing, and these should be stable for tracking purposes. Moreover,
thiswork contemplates video sequenceswhere in addition to the player performing a highlight
pass, there are other people moving in the foreground and the background, and so, the
best fitting method should also be able to extract enough and well distributed key points
over the entire frame. This allows to characterize both the players (i.e., foreground) and the
environment (i.e., background).

Among others, we performed extensive experiments with Shi-Tomasi [31], Harris [15],
SIFT [24], and AKAZE [1] algorithms. Figure 3 illustrates the key points obtained with
these methods after tuning them for the most favorable results possible. Shi-Tomasi provides
a significant amount of key points well distributed throughout the frame and the players, and
these are stable for tracking. Harris provides key points that are well distributed over the
frame (although appearing in dense clusters, adding for some redundancy) but not over the
players. Additionally, these are not stable for tracking, as they cannot be found on players
performing due to their blurriness, which makes corners appear more diffuse. SIFT provides
a stable set of key points, but these are ill-distributed over the frame and the players (e.g.,
ceiling and players’ feet show very few key points). Finally, AKAZE provides a stable set of
key points well-distributed over the players, but not over the frame, and similarly to SIFT, it
also struggles extracting key points from players’ feet.

Thus, the Shi-Tomasi algorithm proved to be the most adequate solution for extracting the
set of key points Qn for our strategy, as it identifies a sufficient quantity of key points that are
well-distributed over the frame and the players.Additionally, these key points are stable across

Fig. 3 Key points detected using different feature extraction methods
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video frames, which facilitates smooth tracking. The algorithm detects the most prominent
corners in a gray-scale representation of the frame by identifying little image patches or
windows that generate significant variations in intensity when moved around.

4.2 Key point filtering

The set of key points Qn is filtered from well-known background (BG) key points, Qn
BG , to

focus on the region of interest (i.e., the players performing). This filtering reduces the data to
process and also prevents matching foreground (FG) key points with well-known BG key
points when tracking them in the next processing step, described in subsection 4.3.

Similar to Sun et al. [32], we use a method to update the probability of each pixel of being
part of the BG, based on the location history of the extracted set of key points, Qn . The
probability of a pixel (xn, yn) at frame I n being part of the BG is computed as

Prn(xn, yn) =
{
Prn−1(xn, yn)λ + (1 − λ), (xn, yn) ∈ Qn

Prn−1(xn, yn)λ, (xn, yn) /∈ Qn (1)

where λ is a learning factor set to 0.95 as suggested in [29]. Following Eq. (1), if a key point
is consistently identified in the same location across frames, the probability of such pixel of
being part of the BG will increase. Therefore, a set of filtered key points is obtained as

Qn
f = {(xn, yn) ∈ Qn | Prn(xn, yn) < T } (2)

where T is a threshold value (set at the empirical value of 0.15) that filters well-known BG
key points. As depicted in Fig. 4, BG key points (in red) can be found on static objects
of the scene as well as on players who stay immobile for a period of time. On the other
hand, the remaining set of key points (in green) can be found on moving objects and, due to
illumination changes, on some static objects. However, as described in subsection 4.3, the
latter will be easily removed.

Fig. 4 Example of well-known BG key points filtering. Red represents well-known BG key points while
green represents the remaining set of key points
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4.3 Tracking

The set of filtered key points, Qn
f , is matched against the set Qn−1

f , corresponding to the
previous frame, to estimate the motion vectors associated to each key point in Qn

f , by making
use of the iterative Lucas-Kanade method with pyramids [6].

Key points presenting very small motion vector magnitudes (e.g., less than 2 pixels) are
filtered tomitigate illumination changes previouslymentioned in subsection 4.2. This filtering
prevents static key points frombeing interpreted asmovingdue to changes in illumination, and
results in the set of FG key points, Qn

FG . Figure 5 shows an example of the results obtained
following this method. The interesting region of the scene (i.e., the player performing) is
captured by the set of FG key points along with their motion vectors. It can be seen that
after filtering key points with little motion associated, all key points that were incorrectly
classified as part of the FG in the previous stage have been discarded.

5 Region-based analysis

FG key points, Qn
FG , along with their associated motion vectors, are grouped up by vicinity

forming a set of regions. The underlying idea is that the motion of these regions can pro-
vide more robust and reliable information than that provided by the sparse key points that
form them, allowing to identify and characterize interesting regions of the scene. It is worth
noting that players are neither rigid nor always present the same orientation. Therefore, it
is not feasible to establish durable key point correspondences throughout a sequence, which
motivates the proposed region-based approach.

For this purpose I n is tessellated into a grid of non-overlapped uniform cells C{W ,H}
(e.g., a grid of 15 × 10 cells), where W and H represent a cell location, column and row,
respectively. Cells are sized large enough to represent a region but small enough to provide
local information. The set of FG key points, Qn

FG , is mapped onto these cells revealing
which ones are active (i.e., cells containing at least 1 FG key point).

Fig. 5 Example of motions estimated using a pyramidal implementation of the Lucas-Kanade algorithm. In
green the set of motion vectors associated to FG key points, in blue those with very small magnitudes, and in
red well-known BG key points
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Fig. 6 Example of identified regions using the proposed method. Foreground key points are mapped to their
corresponding cells and four regions of different sizes are identified (enumerated from 1 to 4 from left to right)

Active cells in the grid are grouped up by vicinity following a connected-component
labelling approach [16], resulting in a set of Jn regions, Rn = {rnj , 1 ≤ j ≤ Jn}, where
rnj represents the j-th region of the n-th frame. Regions are characterized by the cells that
form them (C{W ,H}), by the number of FG key points that fall within them (N ) along with
the sum of their associated motion vectors magnitudes (S), and by their normalized motion
(M = S/N ). When taking motion into account we do not consider its direction but only its
magnitude, as this suffices to represent the overall motion present in a region.

Intuitively, fast-moving objects are commonly blurrier than objects moving slower. There-
fore, it is likely that less key pointswill be extracted from them in the first place (see subsection
4.1), and these are likely to present larger motions. The normalized motion of a region, M ,
allows to compare the amplitude of the motion between regions irrespective of the number
of detected key points.

In the example of Fig. 6 we can distinguish four regions that correspond, from left to right,
to a person moving an object, the waving of a hand of another person, a person performing a
pass, and two people walking together. The information each region contains is summarized
in Table 1. Regarding N and S, regions 3 and 4 are much more relevant than the other two
regions. This alone manifests the capability of this method to identify foreground regions of
interest and characterize them. In addition, M shows its usefulness for differentiating regions
more relevant in terms of motion. Region 3 having half as many points as region 4, but an
overall motion twice as large, presents a normalized motion almost four times greater.

5.1 Region filtering

Regions can be further filtered at this processing block in order to save some computational
cost at later blocks, storing only regions of interest that are good candidates to be a part of a

Table 1 Regions description. rnj : j-th region of the n-th frame.C{W ,H}: active cells. N : number of key points.

S: sum f associated motion vectors magnitudes (pixels). M : normalized motion (pixels/key point)

rnj C{W ,H} N S M

rn1 C{3,4}, C{3,5} 4 22.55 5.64

rn2 C{5,6} 3 11.70 3.90

rn3 C{7,6}, C{7,7}, C{8,6}, C{8,7}, C{9,5}, C{9,6}, C{9,7} 26 273.11 10.50

rn4 C{12,5}, C{12,6}, C{12,7}, C{13,5}, C{13,6}, C{13,7} 46 130.40 2.83
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highlight. This is done under two simple assumptions: (1) good candidate regions are at least
of a certain size and (2) are likely to be located around the same area than a good candidate
region of the previous frame.

The first assumption is easy to interpret. A region of interest must contain at least a
minimum number of cells, as these are dimensioned large enough so that they can represent
a region but not so large that they can be of interest by themselves. Regions too small to
feature a person (e.g., 2 cells or less) are discarded as they surely do not represent a good
candidate region to be a part of a highlight, which usually entails long motion vectors that
involve several different cells.

The second assumption is based on the underlying idea that regions of interest will
smoothly evolve along frames, so it is highly unlikely for a region to appear at a location in a
frame and in the next one be at a completely different location. This allows removing regions
that appear sporadically over frames by seeking neighboring cells with regions of interest
identified in the previous frame and discarding those which do not share neighbors.

6 Event detection

This processing block is executed after all frames of the input video have been analyzed for
regions (see Section 5), and it is in charge of identifying the events they participate in. These
will serve to generate an attention map that indicates, for each frame, the region participating
in the most relevant event. This is done under the assumption that the region of a frame
participating in the most relevant event suffices to determine whether or not the entire frame
can be considered as part of a highlight (see Section 7).

The region-based analysis described in Section 5 summarizes the foreground motion
information of each frame in a set of regions uniquely identified. To reveal possible events,
regions of contiguous frames which share neighboring cells are first linked as depicted in
Fig. 7 to analyze their evolution over frames: how they appear, disappear, displace, split, or
merge.

Frame n+2 Frame n+3 Frame n+4 Frame n+5 Frame n+6 Frame n+7Frame n Frame n+1

r n+1
1

r n
1

r n+1
2

r n+2
1

r n+3
1

r n+4
1

r n+4
2

r n+5
1

r n+5
2

r n+6
1

r n+6
2

r n+7
1

Fig. 7 Example of a set of linked regions. In blue are represented the active cells that form each region. Purple
displays the neighborhood around each region. Green overlays the regions’ locations of the previous frame.
The bottom graph represents the regions that are linked
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Fig. 8 All possible events identified among the linked regions of the original sequence of Fig. 7 following
a DAG approach. Four events are identified, enumerated from E1 to E4 from top to bottom. Bottom figures
illustrate the paths followed from start to end nodes. Top figures illustrate the regions associated to each of
those paths

All these possible events can be revealed following a directed acyclic graph (DAG1)
approach. Each node represents a region that is directed to other nodes (regions) of the
following frame. Start nodes are those regions that do not have any links with the previous
frame, whereas end nodes are those that do not have them with the following one.

Taking into account all start and end nodes we can define all series of unique events Ei

as depicted in Fig. 8. Events consist in a set of linked regions which represent how a region
evolves through frames from its appearance to its disappearance, and are characterized by
the motion features contained in the regions they span. Different events can overlap in frames

1 A graph consisting of nodes that are directed from one to another such that following those directions will
never form a closed loop.
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and share one or several regions, but there cannot be two identical events with the same set
of linked regions. Additionally, very short events (e.g., less than 1 second) are removed at
this processing block, similarly to what we did in subsection 5.1, as they are not likely to
represent a highlight event.

6.1 Attentionmap

Under previous assumptions, the best candidate region of a frame to be a part of a highlight
event would be that with the largest normalizedmotion. But temporal information plays a key
role when assessing motion and has to be accounted for too. For this reason, we generate an
attentionmap that indicates, for each frame, the region participating in the event that averages
the largest normalized motion along the regions it spans. This allows selecting those regions
participating in the most significant events, even when these regions do not show the largest
normalized motion for a particular frame. This will serve as a cue to detect the start and end
of a highlight event as will be further explained in Section 7.

The output of this processing block can be formulated as an attention map that indicates,
at each frame, where the region more likely of being a part of a highlight event is, as depicted
in Fig. 9. Comparing this figure with previous Fig. 8, it can be appreciated that when multiple
events concur at a frame, the selected region is that which participates in the event that
averages the largest normalized motion. For instance, let the average normalized motion of
E1 be the largest of the four events. For frame n + 1, where the four events concur, region
rn+1
2 is selected over rn+1

1 as it participates in the most relevant event. In frame n + 7 only
two events concur, E2 and E4, and both share the same region, so rn+7

1 is selected for that
frame.

7 Event classification

Event classification constitutes the last processing block of the proposed strategy. It performs
after each frame of the input video has been assigned a single region (or no region if none
was identified) that participates in the most relevant event, as indicated by the attention map
obtained in subsection 6.1. The motion information these regions contain is used to perform
an initial binary classification at the frame level, classifying frames as either highlight or not.
Highlight frames that are close in time are grouped together to form highlight events during a
subsequent refinement stage, for which we model their relevance to produce the final result.
The final result consists in a set of video sequences extracted from the input video where
highlight events have been identified.

Figure 10 illustrates the motion information contained in the regions indicated by the
attention map, where the three curves represent the values of S, N , and M over frames. In
blue are represented the instantaneous values at each frame, which correspond to those of
the region indicated by the attention map for that frame. It can be appreciated that these

Frame n+2 Frame n+3 Frame n+4 Frame n+5 Frame n+6 Frame n+7Frame n Frame n+1

Fig. 9 Example of generated attention map, which indicates, for each frame, the region participating in the
event that averages the largest normalized motion
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Fig. 10 Summary of the motion information stored in the regions of the attention map. The three graphics
correspond to the variables S, N and M , respectively. The current values at each frame, which correspond to
those of the region selected for that frame, are represented in blue. In red and green their rolling averages for
a short and medium time windows, respectively

Fig. 11 Initial binary classification of frames. Frameswhere the short-term average normalizedmotion exceeds
the long-term (i.e., red line above green line) are initially classified as highlights, represented as green bars.
Red bars correspond to frames classified as not a highlight
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Fig. 12 Grouping of highlight frames that are close in time, and thus, are likely part of the same highlight
event. Top bar represents the classified frames before the closing operation, whereas the bottom bar represents
the results after the operation, the highlight events

values remain zero for many frames, for which no regions of interest have been identified on
previous blocks. In red and green are represented the rolling averages of these values for short
and medium time windows (1 and 10 seconds) respectively, which will serve to measure how
much a short event centered at a particular frame stands out from its surroundings.

7.1 Initial classification

An initial binary classification is performed at the frame level, classifying frames where
the short-term average normalized motion exceeds the long-term (i.e., red line above green
line) as highlight, or as non-highlight otherwise (see Fig. 11). Thus, frames are classified as
highlights if a short event (1 second) centered around them stands out from its surroundings
(10 seconds) in terms of normalized motion.

7.2 Classification refinement

The initial classification is first refined by extracting the set of identified highlight events
from the grouping of highlight frames that are close in time (e.g., less than 1 sec-
ond apart) and therefore are likely to belong to the same highlight event, as shown in
Fig. 12.

The relevance of identified highlight events is modeled using the area enclosed between
the short-term average normalized motion and the long-term, as depicted in Fig. 13.
This area serves as a measure of how much identified highlight events stand out from
their surrounding, making it possible to characterize their relevance. The relevance mod-
elling of the identified highlight events constitutes an addition to their previous detection,
making it possible to compare, order, or filter identified highlight events based on their
relevance.

The final refinement step consists in the filtering of identified highlight events that are
poor candidates, either because of their short duration (e.g., less than a second2) or because
of their low relevance. To better illustrate this process, Fig. 14 shows the highlight events
obtained after filtering poor candidates, along with the ground truth annotations, which will
be covered in subsection 8.1. The final result produced by the proposed strategy is a set of

2 Note that even though events of less than a second were filtered in Section 6, highlight events of shorter
duration can appear in the initial frame classification performed in subsection 7.1.
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Fig. 13 a Short- and long-term average normalized motions for a short and a medium time windows where
highlight events have been identified. b Enclosed area. c Events after modelling their probability of being a
highlight

video sequences comprised of frames from the input video where highlight events have been
identified.

8 Results

8.1 Dataset

No publicly available dataset regarding tricking exists as of today and so, along this work a
dataset was created from scratch. This dataset consists in three video sequences that represent

Fig. 14 Final result of the proposed strategy after filtering poor candidate highlight events. The top bar
represents the ground truth events, whereas the bottom bar corresponds to the identified highlight events. Red
indicates not a highlight, green indicates a highlight and blue indicates uncertainty
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Table 2 Description of the three videos chosen to best represent the most common scenarios found in tricking

Video Duration Num. Highlights Background
(min.) people

V1 21 7 Short duration, slow paced Mostly static

V2 22 6 Medium duration, fast paced Mostly static

V3 10 12 Long duration, fast paced Highly dynamic

the most common scenarios found in tricking. Additionally, ground truth events have been
manually annotated frame by frame3 by an expert in tricking. These annotations include
3 different categories: highlight (HL), non-highlight (NHL), and uncertainty (UN). Only
highlight events of a minimum duration of one second have been annotated, since events of
shorter duration can hardly be considered a highlight.

The existence of uncertainty as a ground truth event is due to the nature of the sport, which
makes it challenging to determine the exact frames where a highlight event starts or ends
(even for an expert). Determining the start of a pass is usually easier as the player starts in
a static position before performing, whereas the end of a pass is more difficult to establish
as the player is usually carried by his momentum even after finishing the pass. This is why
the ground truth was manually labeled using 0.5 and 1 seconds of uncertainty before and
after every highlight event. Uncertainty serves as a margin of error in the manual labeling of
ground truth events and will not penalize the results obtained.

The main characteristics of the three videos in the dataset are summarized in Table 2. The
first two videos show normal training sessions with limited participants, the main difference
between them being that in the first scenario highlights are mainly composed of single
skills performed slowly (a common scenario when practicing new or specific skills), while
in the second scenario, highlights involve longer duration and more motion, which is a
common scenario for practicing new or specific skills (e.g., preparing performances for
future competitions). The third scenario corresponds to a small gathering, where the number
of people present is greater and players perform their best combinations of skills in quick
succession.

Table 3 summarizes the ground truth events of the three videos. It can be easily noticed
that highlight events only constitute a small fraction of the videos, around 10-23%, which
manifests the necessity of algorithms that can automatically identify highlight events. For the
first two videos, which show less number of people and where players performmore relaxed,
highlights correspond to only around 10-15% of the videos and the average duration of these
events is around 3 seconds. For the third video, which shows a significant increase in the
number of people and in movement, highlight events constitute 23% of the entire video and
the average duration of these highlights is longer.

8.2 Experiments

The results obtained from the final classification described in Section 7.2 have been divided
into frame-level and event-level results. Frame-level results consist in the recall, precision, and
F-score obtained from the comparison at the frame level between the identified events and the
ground truth. These results provide an indication of the overall performance of the proposed

3 The dataset and its ground truth are available at www.gti.ssr.upm.es/data.
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Table 3 Ground truth events of the three chosen videos

Video Event type Avg. event Total event % of
duration (sec.) duration (min.) the video

V1 HL 2.93 3.12 14.97 %

NHL 14.88 16.13 77.35 %

UN 0.75 1.60 7.68 %

V2 HL 2.69 2.29 10.43 %

NHL 21.16 18.34 83.74 %

UN 0.75 1.28 5.83 %

V3 HL 3.02 2.31 23.08 %

NHL 8.55 6.56 65.43 %

UN 0.75 1.15 11.49 %

strategy. However, they do not account for how identified events relate to their corresponding
ground truth events (e.g., how many ground truth highlight events were correctly detected?).
For that purpose, event-level results are provided.

Figure 15 summarizes frame-level results obtained for the three videos in the dataset. Their
average values are: recall of 94.05%, precision of 74.03%, and F-score of 82.84%. Video 1
gives the best results (F-score of 85.48%), as it displays less movement and highlight events
stand out more. Videos 2 and 3 present similar results (F-score above 80%), showing slightly
less precision as a result of the increase in movement displayed in these videos, which makes
more difficult to detect the start and end of events.

Event-level results obtained for the three videos in the dataset are summarized in Table 4.
The total number of ground truth highlight events is 161. From the 171 highlight events iden-
tified, 158 are true positives (TPs), and 13 correspond to false positives (FPs). Additionally,
there are only 3 false negatives (FNs). These results yield and average F-score of 95.18%.
Out of the 13 FPs, 3 correspond to people crossing in front of the camera, 6 correspond
to people crossing the scene at a fast pace after a long period of time without any highlight
events, 3 correspond to players feinting a skill, and 1 corresponds to a celebration of a player’s

95.12%

77.60%
85.48%

93.35%

71.30%
80.85%

93.69%

73.19%
82.18%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Recall Precision F-score

Video 1 Video 2 Video 3

Fig. 15 Frame-level results consisting in recall, precision, and F-score obtained at frame level for the three
different videos
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Table 4 Event-level results
obtained for the three different
videos

Video GT Detected TP FP FN F-score
highlights highlights

V1 64 67 64 3 0 97.71 %

V2 51 54 50 4 1 95.24 %

V3 46 50 44 6 2 91.67 %

Total 161 171 158 13 3 95.18 %

performance by the other players. The 3 FNs correspond to 2 single-skill performances that
were very short and occurred around much more relevant highlight events, and to 1 attempt
to start a performance by a player that was interrupted to be executed again (the second time
being correctly identified as a highlight event).

Additionally, the relevance modelling of highlight events described in Section 7.2 allows
us to analyze the results obtained when sorting the identified highlight events by order of
relevance4. Table 5 summarizes some of the event-level results obtained for different sets
of the most relevant events identified. The top 100% corresponds to the results obtained
when taking all identified events into consideration, and match those of Table 4. The lower
percentages correspond to the results obtained for smaller sets of identified events, after
discarding the less relevant ones. It can be appreciated that most FPs correspond to less
relevant events, as for the 80% most relevant events identified only 2 correspond to FP
events. The best F-score achieved is of 96.91% for the 95% most relevant events identified,
which indicates that removing the 5% least relevant events identified could lead to better
results, as this is where most erroneous detections occur.

The same results of Table 5 are illustrated in Fig. 16, where it is easier to appreciate
that, as we expected, smaller sets of more relevant highlight events identified show higher
precision but lower recall. Recall steadily increases as more identified highlight events are
taken into consideration. However, precision slightly drops in the 84-100% range, as most
FPs correspond to less relevant highlight events identified. As stated earlier, the best F-score
is achieved for the 95% most relevant events, and past this point it drops as a consequence
of the FPs introduced by the least relevant highlight events identified.

Figure 17 illustrates some images corresponding to highlight events that have been cor-
rectly detected (TPs), while Figs. 18 and 19 illustrate some images that correspond to FP and
FN events, respectively.

8.3 Comparison with other strategies

As stated in Section 2, no prior research has been conducted with the specific objective of
detecting highlights in martial arts tricking. However, there are some strategies that focus on
the detection of highlights in similar sports. Among these strategies, the recently proposed
Dual-Learner-based Video Highlight Detection (DL-VHD) strategy [40] is the only one that
can be applied to the detection of highlights in martial arts tricking, since it allows extracting
highlights from a target video category by transferring the highlight knowledge acquired
from a source category. This avoids the need to have a large amount of annotated videos of
the same type as those to be analyzed.

4 Although ground truth highlight events are not characterized by a relevance value (as it would be highly
subjective), we can still sort the identified highlight events by order of relevance to analyze if the events that
were assigned a higher value are indeed more likely to correspond to a ground truth highlight.
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Table 5 Event-level results for different relevance ranges

Top % of the most Detected TP FP FN F-score
relevant events identified highlights

80 % 137 135 2 26 90.60 %

90 % 154 149 5 12 94.60 %

95 % 163 157 6 4 96.91 %

99 % 170 158 12 3 95.47 %

100 % 171 158 13 3 95.18 %

84%

86%

88%

90%

92%

94%

96%

98%

100%

80% 82% 84% 86% 88% 90% 92% 94% 96% 98% 100%
Top most relevant highlight events iden�fied (%)

Recall Precision F-score

Fig. 16 Event-level results obtained for different sets of the most relevant events identified

Fig. 17 Example images corresponding to TP highlight events identified
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Fig. 18 Example images corresponding to FP highlight events identified

One of the primary discrepancies between our work and the DL-VHD strategy is in the
annotation methodology. Whereas we provide frame-level annotations, the videos in the
database used in DL-VHD have been annotated on a segment level [33]. Specifically, each
video segment contains 100 frames and overlaps the previous segment by 50%. Using this
overlap poses difficulties for the generation of a final video summary, since a significant
number of frames can potentially belong to two video segments classified differently (i.e.,
one as HL and the other as NHL).

In an effort to compare our results with those obtained with the DL-VHD strategy, we
have converted our frame-level annotations to the segment-level annotations (similar to those
in [33]) required by the neural network architecture proposed in [40]: each segment has been
assigned the label (HL, NHL, or UN) that appears most frequently within the 100 frames
that constitute it.

In [40], the dataset used for the experiments is composed of different categories of videos
manually annotated [33]. Among these categories, we have selected the two that share the
most characteristics with martial arts tricking: gymnastics and parkour. Table 6 summarizes
the mean average Precision (mAP), which is the metric used in the DL-VHD strategy, for
different combinations of source and target categories. The upper part of the table shows
that when the combined categories are gymnastics and parkour, the obtained mAP values
are around 0.7. However, the results at the bottom of the table show that when the target
category is tricking, the mAP values are much lower. This is mainly due to typical challenges

Fig. 19 Example images corresponding to FN highlight events
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Table 6 Results provided by the
strategy in [40] for different
source and target categories

Source category Target Category mAP

gymnastics parkour 0.660

parkour gymnastics 0.704

gymnastics tricking 0.256

parkour tricking 0.305

in martial arts tricking videos that are not present in other sports, and also due to the highlight
detection based on video segments, which is very dependent on the length of such highlights.
It should be noted that the results corresponding to the martial arts tricking videos have been
obtained only on the video V1, since the videos V2 and V3 haven been used for training
the neural network (along with the corresponding gymnastics and parkour categories), and
therefore it would not be fair to use them to extract results.

Figure 20 details the result of the classification provided by the DL-VHD strategy for the
first 2500 frames of the sequence V1 (same range of frames illustrated in Fig. 14). These
results have been obtained manually selecting the threshold that yields the highest F-Score.
The top of this figure shows the original ground truth at the frame level (Fig. 20a) and
the ground truth at the level of the partially overlapping segments (Fig. 20b). In Fig. 20c
and e the results of the classification provided by the DL-VHD strategy have been repre-
sented when the gymnastics and parkour categories are used as a source, respectively. In
addition, the result of converting these segment-level classifications to frame-level clas-
sifications is also illustrated (Fig. 20d and f). For this, all the frames with more than
one label have been classified as UN (i.e., those classified as HL in one segment, but
as NHL in another). This detailed representation shows that classification at the level of
partially overlapping video segments is not suitable for detecting the highlights in this
video.

Finally, Table 7 summarizes the recall, precision, and F-score frame-level values for
sequence V1. These results show that the proposed strategy clearly outperforms the strategy
in [40]. Furthermore, it is important to mention that unlike the strategy in [40], ours is capable
of prioritizing the highlights detected by their relevance values.

Fig. 20 Summary of the comparison process with [40]. a Original ground truth at frame level. b Ground
truth adapted to a video segment level. c DL-VHD results when extrapolating highlights from gymnastics
to tricking. d Same results as (c) but at the frame level. e DL-VHD results when extrapolating highlights
from parkour to tricking. f Same results as (e) but at the frame level. Blue circles and vertical lines represent,
respectively, the center and the limits of video segments. Green, red, and blue slices represent, respectively,
HL, NHL, and UN events

123



Multimedia Tools and Applications (2024) 83:17109–17133 17131

Table 7 Results obtained in V1 with the strategy in [40] and with the proposed strategy. The best results are
highlighted in bold

Method Source category Target Category Recall Precision F_score

DL-VHD gymnastics tricking 0.722 0.273 0.396

DL-VHD parkour tricking 0.319 0.519 0.398

Ours — tricking 0.951 0.776 0.855

9 Conclusions

This paper proposes a novel strategy for the automatic detection of highlight events in user-
generated tricking videos, the first one tailored for this complex sport. This strategy is built
around players’ motion features and consists of a four-stage pipeline that automatically
identifies foreground key points of interest, estimates their motion in the video frames, groups
them in regions of interest, evaluates their behavior over time to generate an attention map
indicating the regions participating in the most relevant events, and finally provides the
extracted video sequences where highlights have been identified. The strategy we propose
relies only on the content of the frames of an input video. It uses very low-level features to
extrapolate high-level semantics and, unlike emerging deep learning approaches, offers great
explicability, making it easier to adapt to new environments. Experimental results verify the
effectiveness of our approach, which shows very high recall and precision at the frame level,
with detections that fit well the ground truth highlight events.
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