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Abstract
As military reforms continue to develop, the battlefield environment is becoming increas-
ingly complex, and traditional single-service combat methods have evolved into integrated 
joint and collaborative information operations that break down service boundaries on land, 
sea, and air. The level of weapon system confrontation has also evolved into a system-
to-system confrontation. Traditional document-based system architecture design methods 
can no longer address the complexity and emergent challenges of weapon system construc-
tion. In this paper, based on model-driven system engineering, an open, integrated, model-
driven weapon equipment interaction system that supports human interaction was con-
structed using the SysML modeling language and Magicdraw modeling tool. The Unreal 
Engine 4 landscape building function was used to construct a virtual battlefield environ-
ment, and a communication server was developed using C# language to perform visual 
simulation of interoperability between weapon systems. Based on model-driven weapon 
equipment interoperability, visual simulation is used to ensure that the function of the 
weapon equipment system meets the requirements of combat and the combat effectiveness 
of the system is maximized.

Keywords  MBSE · Interoperability simulation · UE4 · SysML · MagicDraw

1  Introduction

With the continuous development of military reforms and the increasingly complex battle-
field environment, the traditional warfare pattern has evolved into integrated joint informa-
tion warfare that breaks the boundaries of various services and arms [25]. Future war is not 

 *	 Haigen Yang 
	 yhg@njupt.edu.cn

1	 Engineering Research Center of Wider and Wireless Communication Technology of Ministry 
of Education, Nanjing University of Posts and Telecommunications, Nanjing 21003, 
People’s Republic of China

2	 Chinese People’s Liberation Army No. 61416, Beijing 100089, China
3	 Beijing Electro-Mechanical Engineering Institute, Beijing 100074, China

http://orcid.org/0000-0003-2617-5127
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15950-5&domain=pdf


13464	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

only a confrontation between weapons equipment, which will involve the level of confron-
tation between weapon systems. Therefore, the systematization, informatization and intel-
ligent construction of weapons equipment is particularly important. The weapon system 
architecture is a complex system architecture, and system complexity is a difficult chal-
lenge to overcome in the construction of weapon equipment systems. System complexity is 
composed of functional complexity, subsystem complexity, and interoperability complex-
ity [2, 15, 24]. The system of systems is mainly to study the interdependence and collabo-
ration between the hierarchical structure of the system. For the traditional simple weapon 
equipment system, the relationships between subsystems are not closely connected, and 
it is easy to produce unpredictable functional coupling and functional conflicts, which is 
called the emergence of the system. The traditional document-based architecture design 
method has been unable to solve modern complex weapons equipment. The close associa-
tion between the subsystems of the complex weapon equipment greatly reduces the design 
risk of the emergence of the system. However, due to a series of problems such as the very 
large scale of the weapon equipment system, the complex structure and relationship, high-
technology, and high price, etc. The integration between the weapon equipment system 
and subsystems becomes very difficult, which cannot be guaranteed the interoperability of 
the system. Therefore, it is necessary to fully demonstrate the system before the architec-
ture design to improve the system performance and maximize the combat effectiveness. 
In modern warfare pattern, the traditional document-based architecture design method of 
system of systems is not enough to solve the severe challenges brought by system complex-
ity [3]. In addition, the traditional weapon equipment architecture design based on single 
platform cannot meet the needs of modern combat environment. It is necessary to establish 
an integrated platform for demonstration.

As an important factor in warfare, the weapon equipment system is becoming more 
and more complex, which shows the character of highly complex functions and interac-
tion modes, relatively independent and closely connected sub-systems, functional coupling 
between systems and unpredictable. Therefore, the construction of complex weapon equip-
ment is a complex system engineering including requirements acquisition and analysis, 
system structure design, implementation, integration, verification, evaluation, and optimi-
zation. In the development early stage of complex weapon equipment, architecture design 
is an effective means to manage its complexity. In recent years, MBSE has been applied in 
the field of complex weapon system architecture design. As early as around 2007, Euro-
pean and American began to apply and promote the MBSE method on a large scale in 
specific industries such as aerospace, military industry, and automobiles. NASA applied 
the MBSE method to MISSE-X and other projects to solve the problems of confusion in 
demand management and difficulty in designing complex weapon systems that appeared 
in the project. The US JPL (Jet Propulsion Laboratory) cooperated with Caltech and suc-
cessfully developed the basic structure of MBSE, including the basic elements of ontology, 
reusable modeling methods, integrated comprehensive modeling methods and developed 
the matching tools are used to generate documents. In China, the China Aerospace Science 
and Industry Corporation and China Aerospace Science and Technology Corporation are 
also stepping up efforts to promote the application of MBSE in aerospace field, and have 
established relevant R&D departments for various research.

In view of the increasingly complex characteristics of equipment architecture design, 
this paper constructs an open, integrated, model-driven and “human-in-loop” visual 
simulation and verification system for weapon equipment interoperability. The sys-
tem uses SysML [5, 9, 19, 22, 23] as the modeling language with MagicDraw [14, 16, 
18] to construction the MBSE [6, 13, 17] model and build a virtual reality battlefield 
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environment with UE4, which developed a plugin of MagicDraw to realize the bidi-
rectional data flow between SysML and UE4 [26]. Through the “human-in-loop” deci-
sion confrontation according to the actual combat process of “Observation, Orientation, 
Decision, Action (OODA)” [4, 8, 11], the model interoperability technology is applied 
to integrate the operation panel to achieve the interoperability simulation and reproduce 
the whole process of the model-driven “human-in-loop” weapon equipment closed-loop 
striking.

2 � Related work

2.1 � MBSE method

The concept of MBSE is a formal modeling methodology based on model expression and 
driven proposed by INCOSE in 2007 [20], which includes three parts: modeling language, 
modeling tools, and modeling methods. MBSE plays an important role in the design field 
of complex weapon equipment, which mainly used to analyze, design, and verify system 
requirements, architecture, and functions. As a specification guide for model-driven prin-
ciples, methods, languages, and tools, MBSE guides the realization of the entire modeling 
process, and specifies various models and views of each model in the system development 
life cycle. As the principle of the entire architecture modeling, MBSE also defines the tim-
ing relationship between model views, which includes the methodologies of DoDAF [1, 7, 
12, 21], OOSEM [10], and Harmony-SE [27]. These methodologies have been accumu-
lated for a long time and summarized in practice under different system modeling back-
grounds. Figure 1 shows the development roadmap of MBSE.
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2.2 � Modeling language

The SysML is one of the most widely used graphical modeling languages in MBSE.At 
present, SysML language has replaced UML language as the standard modeling lan-
guage in the field of systems engineering to realize complex weapon systems design. 
The description analysis and design inspection of the system by using SySML can 
improve the quality of system design and the interactive ability in system engineer-
ing. The SysML language adds demand diagrams and parameter diagrams, with more 
flexible and powerful functions, which can not only promote communication between 
system engineers, but also promote communication and coordination across rules and 
development cycles. At the early stage of complex weapon equipment architecture 
design, SysML language facilitates the visualization of system engineers’ design ideas, 
facilitates communication among all developers, avoids ambiguity, and improves the 
efficiency and accuracy of communication with system engineers in the whole of the 
system development life cycle. The SysML language defines three types of nine basic 
graphics in total. As shown in Fig. 2 Each basic graphics is a visual representation of 
the system structure model.

2.3 � Modeling method

The MBSE method can be defined as a collection of related processes, methods and 
tools used to support the disciplines of systems engineering in a “model-based” envi-
ronment. After MBSE was proposed, many research institutions and scholars began 
to conduct research on MBSE development the methods, such as DoDAF, Harmony, 
OOSEM, etc.

1)	 DoDAF

DODAF2.0 was launched on May 28, 2009 by US Army, which includes 8 view-
points: All Viewpoint(AV), Data and Information Viewpoint (DIV), Standards 
Viewpoint(StdV), Capacity Viewpoint(CV), Operational Viewpoint(OV), Services 
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Viewpoint(SvcV), Systems Viewpoint(SV), Project Viewpoint(PV). The general pro-
cess of DoDAF modeling, mainly focusing on the structure and functional decomposi-
tion of the system, which views describe the system from different sides and different 
angles.

2)	 OOSEM

The Object-Oriented Systems Engineering Method (OOSEM) is a top-down, 
model-based system engineering method developed by INCOSE using the SysML 
language. It originated from the cooperation with Lockheed Martin Company in the 
mid-1990s. The OOSEM is mainly used to capture and analyze system requirements, 
integrate software and hardware, and other professional design methods. In addi-
tion, the OOSEM method framework includes software and hardware research and 
development, which is particularly suitable for the research and development of com-
plex weapon equipment. The development flowchart of the OOSEM methodology 
is shown in Fig. 3 OOSEM can be divided into simulation modeling settings, analy-
sis of subjective requirements, analysis of system requirements, definition of logical 
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architecture, steps to build physical architecture, tracking management of require-
ments, and evaluation and optimization of alternatives. The simulation for complex 
weapon equipment interoperability based on MBSE proposed in this paper adopts the 
OOSEM method.

3 � Visual interoperability simulation platform design

3.1 � System schema design

Based on the model-driven visual simulation and verification technology of 
“human-in-loop” weapon equipment interoperability, the maned/unmanned com-
bat unit under the background of information technology is used as the basic 
combat unit to construct an almost real virtual battlefield environment. Through 
f lexible configuration of various conditions of “human-in-loop” simulation sys-
tem conducts virtual combat simulation test to observe the results of the test 
confrontation for the researchers to analyze and evaluate. The system uses vir-
tual reality technology, real-time battlefield interaction simulation technol-
ogy, MBSE technology, etc. to implementation of the test consists of combat 
“human-in-loop” simulation combined with the MagicDraw modeling tool and 
UE4 engine. Figure 4 shows the system schema.

A typical virtual battlefield simulation confrontation system should be com-
posed of red, blue, and white. All members are built in accordance with the dis-
tributed network structure specification design. The “white side” is the designer 
and manager of the entire simulation system act as a referee, which mainly 
responsible for the editing of the mission scenario, configuring each unit node 
in the early stage of the simulation, and the real-time monitoring of the process 
of whole simulation. The “blue side” consists of several aircraft carriers and 
several destroyers. The “red side” consists of serval “human-in-loop” simulation 
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nodes such as drones, early warning aircrafts, fighters, and missile launch vehi-
cles. In general, the deployment configurations of the red and blue parties are 
under the unified management and control of the “white side”. Based on the 
combat background and mission, conduct actual combat simulation, and record 
the simulation result data set by continuously changing the deployment configu-
ration of the red and blue parties to achieve the coordinated combat effect of 
weapons and equipment in multiple real combat simulation.

3.2 � System framework design

This article uses MagicDraw as a weapons equipment architecture modeling tool, 
and mainly uses activity diagrams and state machine diagrams to construct a 
dynamic model of the weapons equipment architecture and a discrete event-driven 
behavior model, combined with the UE4 engine platform as a continuous scene 
visualization analysis tool. The system is driven by various external response 
events through the actual equipment architecture model, which will produce con-
tinuous complex behavior patterns, avoiding the emergence of equipment, mak-
ing the entire equipment interoperability visual simulation process and equipment 
demonstration process are realized under the model interaction mechanism. In 
addition, the physical and behavioral models of weapons are set up in MagicDraw, 
and the structural models of weapons and equipment are quantitatively analyzed 
through the visual analysis tools in the virtual battle scene of UE4. The whole 
process of simulation software platform with the communication server, enables 
bi-directional data interoperability mechanisms. According to system require-
ments and mission scenario analysis, this paper designs a “human-in-loop” visual 
simulation for weapon equipment interoperability based on MBSE, through the 
establishment of 3D and behavior models of weapons including UAVs, early warn-
ing aircraft, fighters and missile launchers and construction of a virtual simulation 
platform based on UE4 to realize the weapon collaborative confrontation process 
and scene simulation, which simulates the interoperability process of the weapons 
and verify the performance requirements of the system. The system framework 
diagram shows in Fig. 5.

3.3 � Communication server design

For the model-driven “human-in-loop” visual simulation and verification for 
weapon system interoperability, the communication interface between MagicDraw 
and UE4 uses UDP protocol to establish the information delivery between operat-
ing vision and SysML models such as UAVs, early warning aircraft, fighters, and 
missile launchers. The combat and status process generated by MagicDraw, through 
the communication server to drive the UE4 vision to realize the visual simulation of 
equipment in the virtual battlefield. At the same time, the decision result in the vis-
ual scene will be sent to MagicDraw for process judgment through communication 
server. The simulation system composed of multiple combat unit nodes is connected 
to each other through the UDP/IP network to realize the “human-in-loop” simula-
tion of weapons operation.

Figure 6 shows the UDP communication process diagram of the communica-
tion server. It is developed in C# language to realize socket interface of UDP 
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protocol. First, set and bind the IP address and Port number of the communica-
tion server. The server starts a new thread of ReceiveFrom(), which responsi-
ble for receiving and forwarding the UDP data message between clients. The 
clients can be MagicDraw, hardware, control panel, or UE4 virtual combat 
environment, which creates a simplified process of establishing a connection 
between the server.

3.4 � Visual simulation environment design

The interoperability visual simulation system for complex system equipment is 
to place the equipment in a real running environment to achieve simulation mis-
sions. It is necessary to construct a realistic operating scene with comprehensive 
expressiveness, generate a virtual operating environment consistent with the real 
environment, put the equipment model of the complex system that needs to be 
simulated into the environment, and perform simulation verification on various 
tasks of the equipment system. The construction of the virtual natural environ-
ment includes terrain, virtual plants, roads, electromagnetics, cloud scenes, etc. 
The use of virtual reality technology to build a 3D visualization scene of a com-
plex running environment has important practical significance. Compared with 
other virtual engine platforms, UE4 engine has particularly strong data process-
ing capabilities, and the rendering function is also very powerful. UE4 uses blue-
print programming to create scenes that trigger events or actions, without the need 

AWACS 

driving 

operation 

panel

Communication

Server

UDP
UDP

UDP

UDP

UE4

Joy

Stick

Joy

Stick

Joy

Stick

UDP

Fig. 5   System framework diagram of the platform



13471Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

to write complex script files, and is compatible with many 3D modeling tools. 
For example, objects created by modeling software such as 3DS MAX or Maya 
can be imported into the UE4 engine platform for editing. Users can build an 
extremely realistic virtual simulation scene, which is super coupled with equip-
ment, characters, entities, and environmental objects. In addition, the UE4 engine 
has a very powerful terrain and surface description system, which can process the 
detailed attributes of vegetation through the material editor to make it conform to 
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the natural growth law, and quickly generate surface vegetation that conforms to 
the natural growth law to achieve lifelikeness in accordance with the actual natu-
ral environment effect. The 3D virtual running environment not only requires the 
simulation process to be scientific and reasonable, but also improves the fidelity 
of visualization and achieves a high degree of coupling between the scene and the 
simulation model. Figure 7 shows the overall framework of the 3D virtual running 
environment.

The virtual running simulation environment framework mainly consists of four lay-
ers, including the system resource layer, the system development function extension 
layer, the visualization editing layer, and the application layer. The system resource 
layer is mainly used for pre-processing some video, image, geographic information, 
and other data, which converts the data format to make it compatible with the UE4 
engine platform interface. The system development function extension layer is mainly 
for the secondary development of the software platform, adding new function mod-
ules and interfaces, etc., to provide various functional interfaces for the visual editing 
layer. The visual editing layer is mainly using some editors that come with the UE4 
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platform to process the detailed attributes of the environment objects such as vegeta-
tion, terrain, and equipment in the virtual environment to make them more realistic 
and suitable. The application layer mainly includes geometric models and behavior 
models of complex system equipment to achieve specific simulations based on task 
requirements.

3.5 � Interoperability plug‑in of MagicDraw design

If the modeling tool MagicDraw wants to transmit with UE4 by the communication 
server, it must develop a plug-in of MagicDraw to realize UDP protocol. The plug-in 
is a bridge between MagicDraw and UE4, which gets the messages, parameters, signals 
of the model in MagicDraw and transmits the information to UE4 to drive the weap-
onry entity model. The data message generated in MagicDraw is transmitted to the com-
munication server through the plug-in, and then the data message is forwarded to UE4 
through the communication server driving the weapons equipment entity model in UE4 
to achieve the corresponding combat mission tasks. After the end, the results of the 
task execution are fed back to the MagicDraw by the plug-in in the form of data or mes-
sages, and then transmit to the SysML model in MagicDraw until the simulation is fin-
ished. The MagicDraw plug-in connects MagicDraw with the outside world to receive/ 
transmit the data as a “bridge”. As shown in Fig. 8, the interoperable plug-in design is 
shown.

The development of MagicDraw plug-in uses Java language and Eclipse as IDE. 
According to the official MagicDraw secondary development document, it needs 
to include the corresponding dependent jar packages and add them to the speci-
fied classpath. The simulation_api.jar package is mainly used to support the Mag-
icDraw interface package for simulation. The plug-in must contain at least one 
class derived from the com.nomagic.magicdraw.plugins.Plugin class, the code is 
as follows:
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package MagicDraw;

import com.nomagic.magicdraw.plugins.Plugin;
public static String serverAddress="192.168.199.243";

public static int serverPort=1110;
private static UDPClient udpClient;

private MyTransactionListener mTransactionListener;

@Override
public void init()

{

initialized = true;
udpClient=new UDPClient(serverAddress,serverPort);

String login="login|MagicDraw";
udpClient.SendMessage(login);

ActionsConfiguratorsManager manager = ActionsConfiguratorsManager.getInstance();

manager.addMainMenuConfigurator(new MainMenuConfigurator(getSubMenuActions()));
mTransactionListener = new MyTransactionListener();

AnyExecutionListener executionlistener = new AnyExecutionListener(udpClient);

SimulationManager.registerExecutionListener(executionlistener);
Application.getInstance().getProjectsManager().addProjectListener(new 

ProjectEventListenerAdapter()
{

@SuppressWarnings("deprecation")

@Override
public void projectOpened(Project project){

TransactionManager transactionManager = project.getRepository().getTransactionManager();
transactionManager.addTransactionCommitListener(mTransactionListener);

registerListenerToSmartEventSupport(project);

AnyPropertyChangeListener listener=new AnyPropertyChangeListener(udpClient);
project.addPropertyChangeListener(listener);}

@Override

public void projectClosed(Project project){
project.getRepository().getTransactionManager().removeTransactionCommitListener(mTransacti

onListener); }});
}

@Override

public boolean close()
{

String logout="logout|MagicDraw";
udpClient.SendMessage(logout);

return true;

}

During the simulation process, the state and signal of the SysML model need to be transmit-
ted to the Server and sent to UE4. Therefore, in the process of plug-in development, the state or 
filtering operation is performed, and the required data is “talk|MagicDraw|UE4Client|XXXX 
“Format to send to UE4, Fig. 9 shows the MagicDraw plug-in developed by Eclipse IDE.

3.6 � Communication and blueprint design

As part of the visual simulation, the model of UE4 needs to be driven according to the 
MagicDraw message forwarded by the communication server. Therefore, UE4 also needs 
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to develop UDP communication module in order to receive or forwarded messages to Com-
munication Server. First, add a C + + class named UDPClient in the project file browser of 
UE4, and select its parent type as Actor. After the addition is completed, the corresponding 
.h and .cpp file will be automatically added to the project source file. The Sockets module 
of UE4 encapsulates the socket work flow. First, Sockets.h is included in the UDPClient.h 
file to call the Sockets module. The UDP communication function required by this project 
is realized by writing a constructor. The specific constructor’s name and function method 
are as follows:

1)	 BeginPlay(): Used to obtain the IP and Port number ofthe server and client.
2)	 InitSocket(): Used to bind the IP and Port of the UE4 client, then set the buffer size to 

check the buffer interval, and bind the callback function for receiving messages.
3)	 OnUdpDataReady(): Used for data reception and judgment. Define a data receiver 

ReceiveData to determine the received data to judge the message whether the well 
or fault defined communication structure, then receive the data and copy to the 
receiver.

4)	 SendToServer(): The message can be sent to Communication Server according to the 
Ip and Port of the Communication Server.

5)	 EndClient(): Send the message of “logout|UE4Client” to Communication Server, which 
means that UE4 client login out of the Server and ends UDP communication.

After completing the development of the UDPClient class, it needs to use the UDP 
communication function in the scene. Here we create an Actor named MyUDPClient and 
use the blueprint to inherit the methods in the UDPClient class. At the beginning of the 
event, call the InitSocket() function to bind the address of the UE4 client, and then send 
“login|UE4Client” to the Communication Server through SendToServer() waiting for the 
communication between UE4 and the Server is established. The specific development logic 
is shown in Fig. 10.

Fig. 9   MagicDraw Plug-in developed by Eclipse IDE
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After the blueprint of communication is realized, the received message needs to be 
processed and useful instructions are extracted. According to the data format of server 
forwarding to client: “talk|MagicDraw|UE4Client|CommandMessage”, the received 
message is processed. The content of CommandMessage is put into the data receiver 
and forward to call the corresponding blueprint to act the interactive operations, which 
shows in Fig. 11.

Fig. 10   Blueprint communication of UDPClient

Fig. 11   Blueprint of Interactive call interactive operations
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4 � Visual simulation for complex weapon equipment interoperability

4.1 � Mission scenario

Taking the island chain conflict that may occur in the future as a task background of this 
paper, weighing various combat plans, and based on the intelligence of all parties. Based 
on the coordinated operations of reconnaissance satellites, communication satellites, early 
warning aircraft, fighters, missiles, unmanned aerial vehicles, and joint command centers, 
the goal is to break through the enemy’s aircraft carrier fleet air defense system and destroy 
the enemy’s aircraft carrier formation. The process is decomposed and sampled, and the 
simplified diagram of the battlefield situation is shown in Fig. 12.

4.2 � Model of the system

The system model of the complex weapon equipment includes variety behaviors, states, 
flows used to describe the equipment’s driving, strike, flight, reconnaissance, etc., which 
can be established by using the activity diagram, state machine diagram, and sequence dia-
gram of the modeling tool MagicDraw. The models usually describe a series of discrete 
state behaviors of the dynamic system models of complex weapon equipment. For exam-
ple, activity diagrams describe a series of discrete behavior activities triggered by the com-
plex weapon equipment in order to realize the corresponding functions, which is a simula-
tion result at a critical time point, and the progress of the sequence of activity execution. 
The state machine diagram describes the state transition process of the key time node in 
a certain simulation operation process, which is atomic and consistent. The behavior dia-
gram is equivalent to the task scenario logic diagram of the equipment unit to express the 
behavior of complex weapon equipment. Figure 13 shows the SysML model of the entire 
combat scene, reflecting the coordination and signal interaction between all levels of weap-
onry and equipment, which is the most intuitive display of the coordinated operation of the 
entire weapon equipment and the core part of the weapon equipment architecture design 
framework.

As shown in Fig.  14, this article established a UI interface diagram of a simulated 
command center in order to simulate the process of human control in loop and make the 

Fig. 12   Schematic diagram of coordinated attack combat situation
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simulation demonstration more in line with the operational process. The operator simu-
lates the control of virtual equipment by clicking on the signal buttons on the UI interface, 
such as alert aircraft launch, unmanned aircraft launch, fighter aircraft launch, and missile 
launch, in order to execute specific behaviors and make corresponding decisions based on 
the results of the simulation screen.

4.3 � Visual simulation

Through the SysML model in Magicdraw, data messages are transmitted through the com-
munication server to drive the equipment entity model in UE4 for visual simulation of 
coordinated weapons operations. The real-time calculation of the position change and atti-
tude data of weapon equipment by UE4, and Magicdraw controls the state parameters of 
weapon equipment, analyzes the demonstration work of weapon equipment system struc-
ture, and further improves the design index of the systems design according to the analysis 
results. Figure 15 shows the simulation operation diagram of MagicDraw.

Fig. 13   Framework diagram of SysML model construction

Fig. 14   UI interface diagram
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As shown in Fig. 16, there is a simulation scene of some weapons equipment in the UE4 
environment and related data messages of the communication server. The whole process 
is that the weapon units at all levels cooperate with each other according to the task back-
ground to attack the target at the critical time. By analyzing the simulation results including 
position information, speed, fuel thrust, etc., and comparing them with the requirements, 
the design parameters are modified and optimized to achieve the seamless connection 
between the design and the requirements.

Through co-simulation, the environmental factors in UE4 are constantly changed, 
including weather, day and night, wind speed, magnetic field, etc., Operators can par-
ticipate in battlefield decision-making by simulating the battlefield commander using the 
UI interface diagram drawn by MagicDraw, as shown in Fig. 16. When the warning air-
craft, unmanned aircraft, and combat aircraft deployment buttons are pressed, the simula-
tion screen switches to the corresponding aircraft type taking off from the aircraft carrier 
and going to execute the mission. When the missile launch button is pressed, the screen 
switches to the coastal battlefield, where multiple missile launch vehicles launch missiles 
towards the target, to achieve interoperable and cooperative combat simulation of weap-
ons and equipment in different environments. According to the analysis of simulation 
results at key time points, such as the amount of fuel at a certain moment, flight distance, 
strike acceleration, strike distance, etc., the goal of model-driven “human-in-loop” weapon 
equipment system demonstration is realized ultimately.

5 � Conclusion

This paper proposes a model-driven human-in-loop architecture design method for 
weapon equipment based on the challenges and difficulties brought by system complex-
ity and emergence that cannot be solved by traditional document-based architecture design 
methods. By studying the interoperability mechanism between Magicdraw and UE4, a 

Fig. 15   MagicDraw simulation
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new weapon equipment architecture design method is proposed, which drives the SysML 
model of Magicdraw and the equipment entity model in UE4. The Harmony-SE frame-
work, which is used for complex system structure design, is studied and its model-driven 
design concept is applied to military architecture design. In order to address the difficulties 
faced by the Chinese military’s weapon equipment verification work and the complexity 
and emergence of modern weapon equipment architecture design that cannot be solved by 
traditional document-based architecture design methods, a complete architecture modeling 
process framework is established. The framework clearly illustrates the workflow and anal-
ysis process of weapon equipment architecture modeling. The Magicdraw modeling tool 
and the Unreal Engine 4 are used for integrated platform simulation to visualize the collab-
orative combat of weapon equipment, and to optimize and improve the blueprint logic of 
the SysML parameter model in Magicdraw and the equipment entity model in UE4 based 
on the analysis results. The goal is to conduct a comprehensive platform demonstration 
of the model-driven human-in-loop architecture design of weapon equipment systems, to 

Fig. 16   UE4 simulation scene
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ensure that the weapon equipment system meets the combat requirements and maximizes 
the combat effectiveness of the system.
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