
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:13463–13482
https://doi.org/10.1007/s11042-023-15950-5

1 3

Research on visual simulation for complex weapon
equipment interoperability based on MBSE

Haigen Yang1  · Zhun Xia1 · Yanqing Chen1 · Linqun Zhu1 · Luohao Dai1 ·
Ruotian Xu1 · GuiYing Sun2 · Hongyang Yu3 · Wenting Xu3

Received: 16 December 2021 / Revised: 14 March 2023 / Accepted: 29 May 2023 /
Published online: 6 July 2023
© The Author(s) 2023

Abstract
As military reforms continue to develop, the battlefield environment is becoming increas-
ingly complex, and traditional single-service combat methods have evolved into integrated
joint and collaborative information operations that break down service boundaries on land,
sea, and air. The level of weapon system confrontation has also evolved into a system-
to-system confrontation. Traditional document-based system architecture design methods
can no longer address the complexity and emergent challenges of weapon system construc-
tion. In this paper, based on model-driven system engineering, an open, integrated, model-
driven weapon equipment interaction system that supports human interaction was con-
structed using the SysML modeling language and Magicdraw modeling tool. The Unreal
Engine 4 landscape building function was used to construct a virtual battlefield environ-
ment, and a communication server was developed using C# language to perform visual
simulation of interoperability between weapon systems. Based on model-driven weapon
equipment interoperability, visual simulation is used to ensure that the function of the
weapon equipment system meets the requirements of combat and the combat effectiveness
of the system is maximized.

Keywords  MBSE · Interoperability simulation · UE4 · SysML · MagicDraw

1  Introduction

With the continuous development of military reforms and the increasingly complex battle-
field environment, the traditional warfare pattern has evolved into integrated joint informa-
tion warfare that breaks the boundaries of various services and arms [25]. Future war is not

 *	 Haigen Yang
	 yhg@njupt.edu.cn

1	 Engineering Research Center of Wider and Wireless Communication Technology of Ministry
of Education, Nanjing University of Posts and Telecommunications, Nanjing 21003,
People’s Republic of China

2	 Chinese People’s Liberation Army No. 61416, Beijing 100089, China
3	 Beijing Electro-Mechanical Engineering Institute, Beijing 100074, China

http://orcid.org/0000-0003-2617-5127
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15950-5&domain=pdf

13464	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

only a confrontation between weapons equipment, which will involve the level of confron-
tation between weapon systems. Therefore, the systematization, informatization and intel-
ligent construction of weapons equipment is particularly important. The weapon system
architecture is a complex system architecture, and system complexity is a difficult chal-
lenge to overcome in the construction of weapon equipment systems. System complexity is
composed of functional complexity, subsystem complexity, and interoperability complex-
ity [2, 15, 24]. The system of systems is mainly to study the interdependence and collabo-
ration between the hierarchical structure of the system. For the traditional simple weapon
equipment system, the relationships between subsystems are not closely connected, and
it is easy to produce unpredictable functional coupling and functional conflicts, which is
called the emergence of the system. The traditional document-based architecture design
method has been unable to solve modern complex weapons equipment. The close associa-
tion between the subsystems of the complex weapon equipment greatly reduces the design
risk of the emergence of the system. However, due to a series of problems such as the very
large scale of the weapon equipment system, the complex structure and relationship, high-
technology, and high price, etc. The integration between the weapon equipment system
and subsystems becomes very difficult, which cannot be guaranteed the interoperability of
the system. Therefore, it is necessary to fully demonstrate the system before the architec-
ture design to improve the system performance and maximize the combat effectiveness.
In modern warfare pattern, the traditional document-based architecture design method of
system of systems is not enough to solve the severe challenges brought by system complex-
ity [3]. In addition, the traditional weapon equipment architecture design based on single
platform cannot meet the needs of modern combat environment. It is necessary to establish
an integrated platform for demonstration.

As an important factor in warfare, the weapon equipment system is becoming more
and more complex, which shows the character of highly complex functions and interac-
tion modes, relatively independent and closely connected sub-systems, functional coupling
between systems and unpredictable. Therefore, the construction of complex weapon equip-
ment is a complex system engineering including requirements acquisition and analysis,
system structure design, implementation, integration, verification, evaluation, and optimi-
zation. In the development early stage of complex weapon equipment, architecture design
is an effective means to manage its complexity. In recent years, MBSE has been applied in
the field of complex weapon system architecture design. As early as around 2007, Euro-
pean and American began to apply and promote the MBSE method on a large scale in
specific industries such as aerospace, military industry, and automobiles. NASA applied
the MBSE method to MISSE-X and other projects to solve the problems of confusion in
demand management and difficulty in designing complex weapon systems that appeared
in the project. The US JPL (Jet Propulsion Laboratory) cooperated with Caltech and suc-
cessfully developed the basic structure of MBSE, including the basic elements of ontology,
reusable modeling methods, integrated comprehensive modeling methods and developed
the matching tools are used to generate documents. In China, the China Aerospace Science
and Industry Corporation and China Aerospace Science and Technology Corporation are
also stepping up efforts to promote the application of MBSE in aerospace field, and have
established relevant R&D departments for various research.

In view of the increasingly complex characteristics of equipment architecture design,
this paper constructs an open, integrated, model-driven and “human-in-loop” visual
simulation and verification system for weapon equipment interoperability. The sys-
tem uses SysML [5, 9, 19, 22, 23] as the modeling language with MagicDraw [14, 16,
18] to construction the MBSE [6, 13, 17] model and build a virtual reality battlefield

13465Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

environment with UE4, which developed a plugin of MagicDraw to realize the bidi-
rectional data flow between SysML and UE4 [26]. Through the “human-in-loop” deci-
sion confrontation according to the actual combat process of “Observation, Orientation,
Decision, Action (OODA)” [4, 8, 11], the model interoperability technology is applied
to integrate the operation panel to achieve the interoperability simulation and reproduce
the whole process of the model-driven “human-in-loop” weapon equipment closed-loop
striking.

2 � Related work

2.1 � MBSE method

The concept of MBSE is a formal modeling methodology based on model expression and
driven proposed by INCOSE in 2007 [20], which includes three parts: modeling language,
modeling tools, and modeling methods. MBSE plays an important role in the design field
of complex weapon equipment, which mainly used to analyze, design, and verify system
requirements, architecture, and functions. As a specification guide for model-driven prin-
ciples, methods, languages, and tools, MBSE guides the realization of the entire modeling
process, and specifies various models and views of each model in the system development
life cycle. As the principle of the entire architecture modeling, MBSE also defines the tim-
ing relationship between model views, which includes the methodologies of DoDAF [1, 7,
12, 21], OOSEM [10], and Harmony-SE [27]. These methodologies have been accumu-
lated for a long time and summarized in practice under different system modeling back-
grounds. Figure 1 shows the development roadmap of MBSE.

M
BS

E
m

at
ur

ity

520202020102

Document-centric,
MBSE is a special
way

MBSE has become
an institutionalized
method in academia
and industry

MBSE standards continue to
emerge

Mature MBSE methods and
metrics, integrated system/
hardware/software models

Architectural model is
integrated with simulation,
analysis and visualization

Well-defined MBSE
theory, ontology and
formal system

Distributed, secure,
and multi-domain
model library

Fig. 1   MBSE development roadmap

13466	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

2.2 � Modeling language

The SysML is one of the most widely used graphical modeling languages in MBSE.At
present, SysML language has replaced UML language as the standard modeling lan-
guage in the field of systems engineering to realize complex weapon systems design.
The description analysis and design inspection of the system by using SySML can
improve the quality of system design and the interactive ability in system engineer-
ing. The SysML language adds demand diagrams and parameter diagrams, with more
flexible and powerful functions, which can not only promote communication between
system engineers, but also promote communication and coordination across rules and
development cycles. At the early stage of complex weapon equipment architecture
design, SysML language facilitates the visualization of system engineers’ design ideas,
facilitates communication among all developers, avoids ambiguity, and improves the
efficiency and accuracy of communication with system engineers in the whole of the
system development life cycle. The SysML language defines three types of nine basic
graphics in total. As shown in Fig. 2 Each basic graphics is a visual representation of
the system structure model.

2.3 � Modeling method

The MBSE method can be defined as a collection of related processes, methods and
tools used to support the disciplines of systems engineering in a “model-based” envi-
ronment. After MBSE was proposed, many research institutions and scholars began
to conduct research on MBSE development the methods, such as DoDAF, Harmony,
OOSEM, etc.

1)	 DoDAF

DODAF2.0 was launched on May 28, 2009 by US Army, which includes 8 view-
points: All Viewpoint(AV), Data and Information Viewpoint (DIV), Standards
Viewpoint(StdV), Capacity Viewpoint(CV), Operational Viewpoint(OV), Services

SysML Diagram

Behavior
Diagram

Requirement
Diagram

Structure
Diagram

Activity
Diagram

Sequence
Diagram

State Machine
Diagram

Use Case
Diagram

Block Definition
Diagram

Internal Block
Diagram

Package
Diagram

Parametric
Diagram

Same as UML 2

Modified from UML 2

New diagram type

Fig. 2   SysML structure diagram

13467Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

Viewpoint(SvcV), Systems Viewpoint(SV), Project Viewpoint(PV). The general pro-
cess of DoDAF modeling, mainly focusing on the structure and functional decomposi-
tion of the system, which views describe the system from different sides and different
angles.

2)	 OOSEM

The Object-Oriented Systems Engineering Method (OOSEM) is a top-down,
model-based system engineering method developed by INCOSE using the SysML
language. It originated from the cooperation with Lockheed Martin Company in the
mid-1990s. The OOSEM is mainly used to capture and analyze system requirements,
integrate software and hardware, and other professional design methods. In addi-
tion, the OOSEM method framework includes software and hardware research and
development, which is particularly suitable for the research and development of com-
plex weapon equipment. The development flowchart of the OOSEM methodology
is shown in Fig. 3 OOSEM can be divided into simulation modeling settings, analy-
sis of subjective requirements, analysis of system requirements, definition of logical

Simulation modeling
settings

Analyze subjective
needs

Analyze system
requirements

Requirements
tracking

management

Evaluate optimization
options

Logical architecture
definition

Build a physical
structure

Fig. 3   OOSEM development flow chart

13468	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

architecture, steps to build physical architecture, tracking management of require-
ments, and evaluation and optimization of alternatives. The simulation for complex
weapon equipment interoperability based on MBSE proposed in this paper adopts the
OOSEM method.

3 � Visual interoperability simulation platform design

3.1 � System schema design

Based on the model-driven visual simulation and verification technology of
“human-in-loop” weapon equipment interoperability, the maned/unmanned com-
bat unit under the background of information technology is used as the basic
combat unit to construct an almost real virtual battlefield environment. Through
f lexible configuration of various conditions of “human-in-loop” simulation sys-
tem conducts virtual combat simulation test to observe the results of the test
confrontation for the researchers to analyze and evaluate. The system uses vir-
tual reality technology, real-time battlefield interaction simulation technol-
ogy, MBSE technology, etc. to implementation of the test consists of combat
“human-in-loop” simulation combined with the MagicDraw modeling tool and
UE4 engine. Figure 4 shows the system schema.

A typical virtual battlefield simulation confrontation system should be com-
posed of red, blue, and white. All members are built in accordance with the dis-
tributed network structure specification design. The “white side” is the designer
and manager of the entire simulation system act as a referee, which mainly
responsible for the editing of the mission scenario, configuring each unit node
in the early stage of the simulation, and the real-time monitoring of the process
of whole simulation. The “blue side” consists of several aircraft carriers and
several destroyers. The “red side” consists of serval “human-in-loop” simulation

Drone vision

UAV operation panel

Drone driving handle

Early warning aircraft
vision

Early warning
machine operation

panel Combat aircraft

Fighter piloting scene

Fighter operation
panel

Missile launcher driving
sight glass

Missile launch vehicle
operation panel

Missile launch vehicle
barrel view

Bule side Aircraft Carrier Group
Aircraft carrier

Aircraft carrier 1

Aircraft carrier 1

Aircraft carrier n

...

Destroyer

Destroyer 1

Destroyer 2

Destroyer n

...

Communication server

W
hite side

W
hite ’s unm

anned com
bat test

guidance m
odule

Initialization of
combat scene

Operational Test
Scenario System

Combat process
control

Combat data
collection

Battle result
verdict

C
om

m
unication server

M
agicdraw

Activity diagram

Timing diagram

State machine
diagram

Demand graph

Case diagram

Structure chart

Early warning aircraft
control handle Fighter control handle

Drone Early warning aircraft Combat aircraft Missile launcher

Red side "Human-in-Loop" Simulation Node

Fig. 4   System Schema Diagram

13469Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

nodes such as drones, early warning aircrafts, fighters, and missile launch vehi-
cles. In general, the deployment configurations of the red and blue parties are
under the unified management and control of the “white side”. Based on the
combat background and mission, conduct actual combat simulation, and record
the simulation result data set by continuously changing the deployment configu-
ration of the red and blue parties to achieve the coordinated combat effect of
weapons and equipment in multiple real combat simulation.

3.2 � System framework design

This article uses MagicDraw as a weapons equipment architecture modeling tool,
and mainly uses activity diagrams and state machine diagrams to construct a
dynamic model of the weapons equipment architecture and a discrete event-driven
behavior model, combined with the UE4 engine platform as a continuous scene
visualization analysis tool. The system is driven by various external response
events through the actual equipment architecture model, which will produce con-
tinuous complex behavior patterns, avoiding the emergence of equipment, mak-
ing the entire equipment interoperability visual simulation process and equipment
demonstration process are realized under the model interaction mechanism. In
addition, the physical and behavioral models of weapons are set up in MagicDraw,
and the structural models of weapons and equipment are quantitatively analyzed
through the visual analysis tools in the virtual battle scene of UE4. The whole
process of simulation software platform with the communication server, enables
bi-directional data interoperability mechanisms. According to system require-
ments and mission scenario analysis, this paper designs a “human-in-loop” visual
simulation for weapon equipment interoperability based on MBSE, through the
establishment of 3D and behavior models of weapons including UAVs, early warn-
ing aircraft, fighters and missile launchers and construction of a virtual simulation
platform based on UE4 to realize the weapon collaborative confrontation process
and scene simulation, which simulates the interoperability process of the weapons
and verify the performance requirements of the system. The system framework
diagram shows in Fig. 5.

3.3 � Communication server design

For the model-driven “human-in-loop” visual simulation and verification for
weapon system interoperability, the communication interface between MagicDraw
and UE4 uses UDP protocol to establish the information delivery between operat-
ing vision and SysML models such as UAVs, early warning aircraft, fighters, and
missile launchers. The combat and status process generated by MagicDraw, through
the communication server to drive the UE4 vision to realize the visual simulation of
equipment in the virtual battlefield. At the same time, the decision result in the vis-
ual scene will be sent to MagicDraw for process judgment through communication
server. The simulation system composed of multiple combat unit nodes is connected
to each other through the UDP/IP network to realize the “human-in-loop” simula-
tion of weapons operation.

Figure 6 shows the UDP communication process diagram of the communica-
tion server. It is developed in C# language to realize socket interface of UDP

13470	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

protocol. First, set and bind the IP address and Port number of the communica-
tion server. The server starts a new thread of ReceiveFrom(), which responsi-
ble for receiving and forwarding the UDP data message between clients. The
clients can be MagicDraw, hardware, control panel, or UE4 virtual combat
environment, which creates a simplified process of establishing a connection
between the server.

3.4 � Visual simulation environment design

The interoperability visual simulation system for complex system equipment is
to place the equipment in a real running environment to achieve simulation mis-
sions. It is necessary to construct a realistic operating scene with comprehensive
expressiveness, generate a virtual operating environment consistent with the real
environment, put the equipment model of the complex system that needs to be
simulated into the environment, and perform simulation verification on various
tasks of the equipment system. The construction of the virtual natural environ-
ment includes terrain, virtual plants, roads, electromagnetics, cloud scenes, etc.
The use of virtual reality technology to build a 3D visualization scene of a com-
plex running environment has important practical significance. Compared with
other virtual engine platforms, UE4 engine has particularly strong data process-
ing capabilities, and the rendering function is also very powerful. UE4 uses blue-
print programming to create scenes that trigger events or actions, without the need

AWACS

driving

operation

panel

Communication

Server

UDP
UDP

UDP

UDP

UE4

Joy

Stick

Joy

Stick

Joy

Stick

UDP

Fig. 5   System framework diagram of the platform

13471Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

to write complex script files, and is compatible with many 3D modeling tools.
For example, objects created by modeling software such as 3DS MAX or Maya
can be imported into the UE4 engine platform for editing. Users can build an
extremely realistic virtual simulation scene, which is super coupled with equip-
ment, characters, entities, and environmental objects. In addition, the UE4 engine
has a very powerful terrain and surface description system, which can process the
detailed attributes of vegetation through the material editor to make it conform to

Socket() Create a streaming
socket and return the socket

number

Bind() Bind the socket to the
local address

SendTo() send Talk

ReceiveFrom()

Client
(Magicdraw UE4)

Communication
server

Socket() Create a streaming
socket and return the socket

number

Bind() Bind the socket to the
local address

New Thread Perform
ReceiveFrom() operation

Talk is“Login”

Deal Request

Update the received message to
ServerForm

SendTo() Send“Online”

Talk is“Logout”

Request

YSE

Response

NO

Close()

Fig. 6   Process of communication server

13472	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

the natural growth law, and quickly generate surface vegetation that conforms to
the natural growth law to achieve lifelikeness in accordance with the actual natu-
ral environment effect. The 3D virtual running environment not only requires the
simulation process to be scientific and reasonable, but also improves the fidelity
of visualization and achieves a high degree of coupling between the scene and the
simulation model. Figure 7 shows the overall framework of the 3D virtual running
environment.

The virtual running simulation environment framework mainly consists of four lay-
ers, including the system resource layer, the system development function extension
layer, the visualization editing layer, and the application layer. The system resource
layer is mainly used for pre-processing some video, image, geographic information,
and other data, which converts the data format to make it compatible with the UE4
engine platform interface. The system development function extension layer is mainly
for the secondary development of the software platform, adding new function mod-
ules and interfaces, etc., to provide various functional interfaces for the visual editing
layer. The visual editing layer is mainly using some editors that come with the UE4

Early warning
aircraft

Drone Fighter

Application

Terrain
visualization

Vegetation
visualization

Time
visualization

Equipment
visualization

Visual editing

Weather
visualization

Vehicle process model
node

Vehicle behavior model
node

Human-computer
interaction model node

Other model nodes

System development and function expansion

Blueprint
visual

programming

Vegetation
editor

Particle
editor

Terrain
editor

Equipment
editor

Material
editor

Environment
editor

Agent
Editor Other

Voice
resources

System resource

Video
resource

Texture
resource

3D model
resources

Particle
resource

Action
resources

General-purpose processing software for data, models,
textures, etc. UE4 engine Script editing

Photo

Raw data

Image data Geographic
information Sound Video Other

Missile launcher

Fig. 7   Virtual running environment framework constructed by UE4

13473Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

platform to process the detailed attributes of the environment objects such as vegeta-
tion, terrain, and equipment in the virtual environment to make them more realistic
and suitable. The application layer mainly includes geometric models and behavior
models of complex system equipment to achieve specific simulations based on task
requirements.

3.5 � Interoperability plug‑in of MagicDraw design

If the modeling tool MagicDraw wants to transmit with UE4 by the communication
server, it must develop a plug-in of MagicDraw to realize UDP protocol. The plug-in
is a bridge between MagicDraw and UE4, which gets the messages, parameters, signals
of the model in MagicDraw and transmits the information to UE4 to drive the weap-
onry entity model. The data message generated in MagicDraw is transmitted to the com-
munication server through the plug-in, and then the data message is forwarded to UE4
through the communication server driving the weapons equipment entity model in UE4
to achieve the corresponding combat mission tasks. After the end, the results of the
task execution are fed back to the MagicDraw by the plug-in in the form of data or mes-
sages, and then transmit to the SysML model in MagicDraw until the simulation is fin-
ished. The MagicDraw plug-in connects MagicDraw with the outside world to receive/
transmit the data as a “bridge”. As shown in Fig. 8, the interoperable plug-in design is
shown.

The development of MagicDraw plug-in uses Java language and Eclipse as IDE.
According to the official MagicDraw secondary development document, it needs
to include the corresponding dependent jar packages and add them to the speci-
fied classpath. The simulation_api.jar package is mainly used to support the Mag-
icDraw interface package for simulation. The plug-in must contain at least one
class derived from the com.nomagic.magicdraw.plugins.Plugin class, the code is
as follows:

Magicdraw
Magicdraw

plug-in

Communicat
ion ServerUE4

Messages, data

Forward

Feedback

Forward

Fe
ed

ba
ck

Forw
ard

Fig. 8   Interoperability plug-in of the MagicDraw

13474	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

package MagicDraw;

import com.nomagic.magicdraw.plugins.Plugin;
public static String serverAddress="192.168.199.243";

public static int serverPort=1110;
private static UDPClient udpClient;

private MyTransactionListener mTransactionListener;

@Override
public void init()

{

initialized = true;
udpClient=new UDPClient(serverAddress,serverPort);

String login="login|MagicDraw";
udpClient.SendMessage(login);

ActionsConfiguratorsManager manager = ActionsConfiguratorsManager.getInstance();

manager.addMainMenuConfigurator(new MainMenuConfigurator(getSubMenuActions()));
mTransactionListener = new MyTransactionListener();

AnyExecutionListener executionlistener = new AnyExecutionListener(udpClient);

SimulationManager.registerExecutionListener(executionlistener);
Application.getInstance().getProjectsManager().addProjectListener(new

ProjectEventListenerAdapter()
{

@SuppressWarnings("deprecation")

@Override
public void projectOpened(Project project){

TransactionManager transactionManager = project.getRepository().getTransactionManager();
transactionManager.addTransactionCommitListener(mTransactionListener);

registerListenerToSmartEventSupport(project);

AnyPropertyChangeListener listener=new AnyPropertyChangeListener(udpClient);
project.addPropertyChangeListener(listener);}

@Override

public void projectClosed(Project project){
project.getRepository().getTransactionManager().removeTransactionCommitListener(mTransacti

onListener); }});
}

@Override

public boolean close()
{

String logout="logout|MagicDraw";
udpClient.SendMessage(logout);

return true;

}

During the simulation process, the state and signal of the SysML model need to be transmit-
ted to the Server and sent to UE4. Therefore, in the process of plug-in development, the state or
filtering operation is performed, and the required data is “talk|MagicDraw|UE4Client|XXXX
“Format to send to UE4, Fig. 9 shows the MagicDraw plug-in developed by Eclipse IDE.

3.6 � Communication and blueprint design

As part of the visual simulation, the model of UE4 needs to be driven according to the
MagicDraw message forwarded by the communication server. Therefore, UE4 also needs

13475Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

to develop UDP communication module in order to receive or forwarded messages to Com-
munication Server. First, add a C + + class named UDPClient in the project file browser of
UE4, and select its parent type as Actor. After the addition is completed, the corresponding
.h and .cpp file will be automatically added to the project source file. The Sockets module
of UE4 encapsulates the socket work flow. First, Sockets.h is included in the UDPClient.h
file to call the Sockets module. The UDP communication function required by this project
is realized by writing a constructor. The specific constructor’s name and function method
are as follows:

1)	 BeginPlay(): Used to obtain the IP and Port number ofthe server and client.
2)	 InitSocket(): Used to bind the IP and Port of the UE4 client, then set the buffer size to

check the buffer interval, and bind the callback function for receiving messages.
3)	 OnUdpDataReady(): Used for data reception and judgment. Define a data receiver

ReceiveData to determine the received data to judge the message whether the well
or fault defined communication structure, then receive the data and copy to the
receiver.

4)	 SendToServer(): The message can be sent to Communication Server according to the
Ip and Port of the Communication Server.

5)	 EndClient(): Send the message of “logout|UE4Client” to Communication Server, which
means that UE4 client login out of the Server and ends UDP communication.

After completing the development of the UDPClient class, it needs to use the UDP
communication function in the scene. Here we create an Actor named MyUDPClient and
use the blueprint to inherit the methods in the UDPClient class. At the beginning of the
event, call the InitSocket() function to bind the address of the UE4 client, and then send
“login|UE4Client” to the Communication Server through SendToServer() waiting for the
communication between UE4 and the Server is established. The specific development logic
is shown in Fig. 10.

Fig. 9   MagicDraw Plug-in developed by Eclipse IDE

13476	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

After the blueprint of communication is realized, the received message needs to be
processed and useful instructions are extracted. According to the data format of server
forwarding to client: “talk|MagicDraw|UE4Client|CommandMessage”, the received
message is processed. The content of CommandMessage is put into the data receiver
and forward to call the corresponding blueprint to act the interactive operations, which
shows in Fig. 11.

Fig. 10   Blueprint communication of UDPClient

Fig. 11   Blueprint of Interactive call interactive operations

13477Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

4 � Visual simulation for complex weapon equipment interoperability

4.1 � Mission scenario

Taking the island chain conflict that may occur in the future as a task background of this
paper, weighing various combat plans, and based on the intelligence of all parties. Based
on the coordinated operations of reconnaissance satellites, communication satellites, early
warning aircraft, fighters, missiles, unmanned aerial vehicles, and joint command centers,
the goal is to break through the enemy’s aircraft carrier fleet air defense system and destroy
the enemy’s aircraft carrier formation. The process is decomposed and sampled, and the
simplified diagram of the battlefield situation is shown in Fig. 12.

4.2 � Model of the system

The system model of the complex weapon equipment includes variety behaviors, states,
flows used to describe the equipment’s driving, strike, flight, reconnaissance, etc., which
can be established by using the activity diagram, state machine diagram, and sequence dia-
gram of the modeling tool MagicDraw. The models usually describe a series of discrete
state behaviors of the dynamic system models of complex weapon equipment. For exam-
ple, activity diagrams describe a series of discrete behavior activities triggered by the com-
plex weapon equipment in order to realize the corresponding functions, which is a simula-
tion result at a critical time point, and the progress of the sequence of activity execution.
The state machine diagram describes the state transition process of the key time node in
a certain simulation operation process, which is atomic and consistent. The behavior dia-
gram is equivalent to the task scenario logic diagram of the equipment unit to express the
behavior of complex weapon equipment. Figure 13 shows the SysML model of the entire
combat scene, reflecting the coordination and signal interaction between all levels of weap-
onry and equipment, which is the most intuitive display of the coordinated operation of the
entire weapon equipment and the core part of the weapon equipment architecture design
framework.

As shown in Fig. 14, this article established a UI interface diagram of a simulated
command center in order to simulate the process of human control in loop and make the

Fig. 12   Schematic diagram of coordinated attack combat situation

13478	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

simulation demonstration more in line with the operational process. The operator simu-
lates the control of virtual equipment by clicking on the signal buttons on the UI interface,
such as alert aircraft launch, unmanned aircraft launch, fighter aircraft launch, and missile
launch, in order to execute specific behaviors and make corresponding decisions based on
the results of the simulation screen.

4.3 � Visual simulation

Through the SysML model in Magicdraw, data messages are transmitted through the com-
munication server to drive the equipment entity model in UE4 for visual simulation of
coordinated weapons operations. The real-time calculation of the position change and atti-
tude data of weapon equipment by UE4, and Magicdraw controls the state parameters of
weapon equipment, analyzes the demonstration work of weapon equipment system struc-
ture, and further improves the design index of the systems design according to the analysis
results. Figure 15 shows the simulation operation diagram of MagicDraw.

Fig. 13   Framework diagram of SysML model construction

Fig. 14   UI interface diagram

13479Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

As shown in Fig. 16, there is a simulation scene of some weapons equipment in the UE4
environment and related data messages of the communication server. The whole process
is that the weapon units at all levels cooperate with each other according to the task back-
ground to attack the target at the critical time. By analyzing the simulation results including
position information, speed, fuel thrust, etc., and comparing them with the requirements,
the design parameters are modified and optimized to achieve the seamless connection
between the design and the requirements.

Through co-simulation, the environmental factors in UE4 are constantly changed,
including weather, day and night, wind speed, magnetic field, etc., Operators can par-
ticipate in battlefield decision-making by simulating the battlefield commander using the
UI interface diagram drawn by MagicDraw, as shown in Fig. 16. When the warning air-
craft, unmanned aircraft, and combat aircraft deployment buttons are pressed, the simula-
tion screen switches to the corresponding aircraft type taking off from the aircraft carrier
and going to execute the mission. When the missile launch button is pressed, the screen
switches to the coastal battlefield, where multiple missile launch vehicles launch missiles
towards the target, to achieve interoperable and cooperative combat simulation of weap-
ons and equipment in different environments. According to the analysis of simulation
results at key time points, such as the amount of fuel at a certain moment, flight distance,
strike acceleration, strike distance, etc., the goal of model-driven “human-in-loop” weapon
equipment system demonstration is realized ultimately.

5 � Conclusion

This paper proposes a model-driven human-in-loop architecture design method for
weapon equipment based on the challenges and difficulties brought by system complex-
ity and emergence that cannot be solved by traditional document-based architecture design
methods. By studying the interoperability mechanism between Magicdraw and UE4, a

Fig. 15   MagicDraw simulation

13480	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

new weapon equipment architecture design method is proposed, which drives the SysML
model of Magicdraw and the equipment entity model in UE4. The Harmony-SE frame-
work, which is used for complex system structure design, is studied and its model-driven
design concept is applied to military architecture design. In order to address the difficulties
faced by the Chinese military’s weapon equipment verification work and the complexity
and emergence of modern weapon equipment architecture design that cannot be solved by
traditional document-based architecture design methods, a complete architecture modeling
process framework is established. The framework clearly illustrates the workflow and anal-
ysis process of weapon equipment architecture modeling. The Magicdraw modeling tool
and the Unreal Engine 4 are used for integrated platform simulation to visualize the collab-
orative combat of weapon equipment, and to optimize and improve the blueprint logic of
the SysML parameter model in Magicdraw and the equipment entity model in UE4 based
on the analysis results. The goal is to conduct a comprehensive platform demonstration
of the model-driven human-in-loop architecture design of weapon equipment systems, to

Fig. 16   UE4 simulation scene

13481Multimedia Tools and Applications (2024) 83:13463–13482	

1 3

ensure that the weapon equipment system meets the combat requirements and maximizes
the combat effectiveness of the system.

Declarations 

Conflict of interest  The authors declare that they have no conflicts of interest to report regarding the present
study.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aghamohammadpour A, Mahdipour E, Attarzadeh I (2022) Architecting threat hunting system based
on the DODAF framework[J]. J Supercomputing 79(4):4215–4242

	 2.	 Anyanhun A, Adejokun AP, Hause M (2022) An MBSE architectural framework for inter-satellite
communication in a multiorbit disaggregated system[J]. INCOSE International Symposium, vol 32,
issue 1, pp 665–685

	 3.	 DeLaurentis DA, Crossley WA, Mane M (2011) Taxonomy to guide systems-of-systems decision-
making in air transportation problems. J Aircr 48(3):760–770

	 4.	 Good MR, Sturtevant GH (2020) Technology insertion OODA loop strategy for future flexible surface
warship acquisition and sustainment, vol 132, issue 2, pp 59–77

	 5.	 Graves H, Bijan Y (2011) Using formal methods with SysML in aerospace design and engineering.
Ann Math Artif Intell 63(1):53–102

	 6.	 Gregory H, Berthoud L, Tryfonas T, Rossignol A (2020) The long and winding road: MBSE adop-
tion for functional avionics of spacecraft. J Syst Softw 160:110453. https://​doi.​org/​10.​1016/j.​jss.​2019.​
110453

	 7.	 Hongxing Z et al (2021) The on-orbit mission analysis of OTV based on DoDAF[J]. Aircr Eng Aerosp
Technol 93(6):937–945

	 8.	 Huang YY (2015) Modeling and simulation method of the emergency response systems based on
OODA. Knowl Based Syst 89:527–540. https://​doi.​org/​10.​1016/j.​knosys.​2015.​08.​020

	 9.	 Jacobs J, Simpson A (2017) On the formal interpretation and behavioural consistency checking of
SysML blocks. Softw Syst Model 16(4):1145–1178

	10.	 Leserf P, De SSP, Hugues J (2019) Trade-off analysis for SysML models using decision points and
CSPs. Softw Syst Model 18(6):3265–3281

	11.	 Ling MF, Moon T, Kruzins E (2005) Proposed network centric warfare metrics: from connectivity to
the OODA cycle. Mil Oper Res 10(1):5–13

	12.	 Liu B, Wu XY (2012) Mission reliability analysis of missile defense system based on DODAF and
Bayesian networks. Information 15(12B):5659–5666

	13.	 Lu JZ, Wang GX, Torngren M (2020) Design ontology in a case study for cosimulation in a model-
based systems engineering tool-chain. IEEE Syst J 14(1):1297–1308

	14.	 Mazeika D, Butleris R (2020) Integrating security requirements engineering into MBSE: profile and
guidelines. Secur Commun Netw. https://​doi.​org/​10.​1155/​2020/​51376​25

	15.	 Pandey M (2022) A generic hierarchical System of Systems Engineering (SOS) approach for model
based system Engineering (MBSE) Projects[J]. INCOSE International Symposium, vol 32, issue 1,
pp 737–766

	16.	 Planas E, Cabot J (2020) How are UML class diagrams built in practice? A usability study of two
UML tools: Magicdraw and Papyrus. Comput Standards Interfaces 67:103363. https://​doi.​org/​10.​
1016/j.​csi.​2019.​103363

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2019.110453
https://doi.org/10.1016/j.jss.2019.110453
https://doi.org/10.1016/j.knosys.2015.08.020
https://doi.org/10.1155/2020/5137625
https://doi.org/10.1016/j.csi.2019.103363
https://doi.org/10.1016/j.csi.2019.103363

13482	 Multimedia Tools and Applications (2024) 83:13463–13482

1 3

	17.	 Rogers EB, Mitchell SW (2021) MBSE delivers significant return on investment in evolutionary devel-
opment of complex SoS. Syst Eng. https://​doi.​org/​10.​1002/​sys.​21592

	18.	 Silingas D, Butleris R (2009) Towards implementing a framework for modeling software requirements
in MagicDraw UML. Inform Technol Control 38(2):153–164

	19.	 Sprock T, Bock C (2020) SysML models for discrete event logistics systems. J Res Natl Inst Stand
Technol 124:125023. https://​doi.​org/​10.​6028/​jres.​125.​023

	20.	 Squires A, Cloutier R (2010) Evolving the INCOSE reference curriculum for a graduate program in
systems engineering. Syst Eng 13(4):381–388

	21.	 Tao ZG, Luo YF, Chen CX, Wang MZ, Ni F (2017) Enterprise application architecture development
based on DoDAF and TOGAF. Enterp Inform Syst 11(5):627–651

	22.	 Wan W, Cheong HM, Li W, Zeng Y, Iorio F (2016) Automated transformation of design text ROM
diagram into SysML models. Adv Eng Inform 30(3):585–603

	23.	 Wolny S, Mazak A, Carpella C, Geist V (2020) Thirteen years of SysML: a systematic mapping study.
Softw Syst Model 19(1):111–169

	24.	 Yang HG, Fu X, Zhan ZH, Xin WG (2020) Parameterization dynamics visual design platform for mis-
sile launching system. Adv Mech Eng 11(2). https://​doi.​org/​10.​1177/​16878​14019​827129

	25.	 Yang HG, Li LY, Chen JX et al (2021) Visual dynamics simulation for adapters separation of missile
launching. AIP Adv 11(2):025001. https://​doi.​org/​10.​1063/5.​00434​94

	26.	 Zhang L (2019) Application research of automatic generation technology for 3D animation based on
UE4 engine in marine animation. J Coast Res 93:652–658. https://​doi.​org/​10.​2112/​SI93-​088.1

	27.	 Zhang TT, Wu JM, Qi L, Xu HY (2012) Architecture analysis and design language & harmony
system engineering process. 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC),
Williamsburg, VA

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1002/sys.21592
https://doi.org/10.6028/jres.125.023
https://doi.org/10.1177/1687814019827129
https://doi.org/10.1063/5.0043494
https://doi.org/10.2112/SI93-088.1

	Research on visual simulation for complex weapon equipment interoperability based on MBSE
	Abstract
	1 Introduction
	2 Related work
	2.1 MBSE method
	2.2 Modeling language
	2.3 Modeling method

	3 Visual interoperability simulation platform design
	3.1 System schema design
	3.2 System framework design
	3.3 Communication server design
	3.4 Visual simulation environment design
	3.5 Interoperability plug-in of MagicDraw design
	3.6 Communication and blueprint design

	4 Visual simulation for complex weapon equipment interoperability
	4.1 Mission scenario
	4.2 Model of the system
	4.3 Visual simulation

	5 Conclusion
	References

