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Abstract
With the fast development of unmanned aerial vehicles (UAVs) and the user increas-
ing demand of UAV video transmission, UAV video service is widely used in dynamic 
searching and reconnoitering applications. Video transmissions not only consider the 
complexity and instability of 3D UAV network topology but also ensure reliable quality 
of service (QoS) in flying ad hoc networks (FANETs). We propose hedge transfer learn-
ing routing (HTLR) for dynamic searching and reconnoitering applications to address 
this problem. Compared with the previous transfer learning framework, HTRL has the 
following innovations. First, hedge principle is introduced into transfer learning. Online 
model is continuously trained on the basis of offline model, and their weight factors are 
adjusted in real-time by transfer learning, so as to adapt to the complex 3D FANETs. 
Secondly, distributed multi-hop link state scheme is used to estimate multi-hop link 
states in the whole network, thus enhancing the stability of transmission links. Among 
them, we propose the multiplication rule of multi-hop link states, which is a new idea 
to evaluate link states. Finally, we use packet delivery rate (PDR) and energy efficiency 
rate (EER) as two main evaluation metrics. In the same NS3 experimental scenario, the 
PDR of HTLR is at least 5.11% higher and the EER is at least 1.17 lower than compared 
protocols. Besides, we use Wilcoxon test to compare HTLR with the simplified version 
of HTLR without hedge transfer learning (N-HTLR). The results show that HTRL is 
superior to N-HTRL, effectively ensuring QoS.
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1 Introduction

1.1  Research background

The explosive growth of network bandwidth has enabled the prosperity of videos in various 
fields. More and more fields are updating service contents, especially for video services. Nowa-
days, videos are reshaping the content of wireless services. Video transmissions generate a sub-
stantial fraction of the traffic on the network, and a reliable transmission network depends on a 
routing mechanism [4, 37]. In the past few years, the video service of unmanned aerial vehicles 
(UAVs) has obviously increased in dynamic searching and reconnoitering applications [6, 26], 
such as post-disaster searching, forest-fire spread sensing, tactical reconnaissance, intruder recon-
noitering, and so on. UAVs could transmit video through flying ad hoc networks (FANETs) (also 
called flying self-organizing networks). For instance, UAVs search dynamic moving targets in 
the post-disaster searching scenarios. After the disaster, there are no available fixed communi-
cation infrastructures (e.g., 4G/5G infrastructures). Therefore, UAVs have to transmit the dubi-
ous target videos to the base station through FANETs. Then, users could judge whether these 
dubious target videos contain real moving targets in the base station. Driven by the continually 
updating demands from users, video transmissions through FANETs have become the essential 
service of dynamic searching and reconnoitering applications. Moreover, the multimedia routing 
required in video transmissions is also constantly developing.

The related works could be summarized as a research line from a multimedia routing 
perspective. In wireless multimedia sensor networks (WMSNs), stationary nodes are rela-
tively easy to construct the shortest path and ensure QoS [2, 17, 28, 34]. However, energy-
saving is an enormous obstacle to further improving their performances. In mobile ad-hoc 
networks (MANETs), the recent multimedia routing developments are mainly triggered by 
the robot technology progress and the growing robot applications [1, 5, 12, 29, 33, 38, 43, 
51]. These researches focus on 2D application scenarios. In the past decade, FANET rout-
ing has been a research hotspot [3, 7, 11, 18, 23, 25, 36, 42, 49, 50]. However, the multime-
dia routing research for 3D multimedia FANETs is still in infancy [39, 41, 52]. In recent 5 
or 6 years, the technological development demand of 3D multimedia FANETs is from the 
growing UAV applications. Generally, the new multimedia routing research is necessary to 
satisfy the emerging demand for 3D multimedia FANETs.

1.2  New challenges in 3D multimedia FANETs

To meet users’ demand for video services, 3D multimedia routing in self-organizing UAV 
networks still faces two major challenges [16]. And our research focuses on solving these 
two challenges of 3D multimedia FANETs. Two major challenges include:

• The complexity and instability of 3D network topology. UAVs frequently reduce 
flight altitudes to capture dynamic moving targets or increase flight altitudes to expand 
the field of view in dynamic searching and reconnoitering applications. Due to intro-
ducing the flight-altitude axis, 3D network topology is more complex than 2D network 
topology. On the other hand, the speed of UAVs is unable to compare with the speed 
of ground vehicles. The speed of UAVs leads to the instability of 3D network topology. 
Thus, the complexity and instability of 3D network topology increase obviously in 3D 
multimedia FANETs.
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• The reliable Quality of Service (QoS) of video transmissions. Faced with 3D net-
work topology, the reliable QoS is significant for video transmissions [35]. Packet 
delivery rate (PDR) is a necessary metric of QoS. Meanwhile, the energy efficiency 
performance of 3D multimedia FANETs is another essential metric because of the lim-
ited energies of UAVs.

1.3  Research method and our contributions

To address this research problem, we propose hedge transfer learning routing (HTLR) for 
dynamic searching and reconnoitering applications. A brief introduction to transfer learn-
ing is as follows.

• Transfer learning background. As a new branch of machine learning, transfer learn-
ing is widely used in various fields [20, 22, 31, 32, 44, 45]. The basic idea of trans-
fer learning is to transfer the knowledge learned in the source domain to different but 
related target domains [46]. This idea is consistent with human learning activities. For 
instance, a baby first learns how to distinguish their parents. Then, he could also use 
this existing ability to learn how to distinguish other persons.

• Transfer learning practicality. In transfer learning, the transferred knowledge could 
be classified into models, features, relations, etc. Because transfer learning mainly uses 
the transfer procedure to exchange knowledge information, it has stronger practicality.

Therefore, we use hedge transfer learning as the kernel algorithm of HTLR. The contri-
butions of the proposed HTLR include:

• Hedge transfer learning. There are some communication applications of transfer learning 
[8, 9, 15, 27, 30, 46, 48], as shown in Table 1. Unlike these applications, we introduce hedge 
principle into transfer learning and propose hedge transfer learning. Due to using hedge 
principle, hedge transfer learning is robust to adjust the weight factors for online QoS-
optimizing link state (QLS) and offline QLS models. Additionally, hedge transfer learning 
continuously updates these factors and online QLS model. As far as we know, there is little 
research on using hedge principle in transfer learning for communication applications.

• Distributed multi-hop link-state estimation and its multiplication rule. As a dis-
tributed approach, multi-hop link-state values could estimate link states. UAVs choose 
the next-hop node to forward data packets based on the multi-hop link state. On the 
other hand, a multi-hop link consists of several single-hop links, and we approximately 
regard a multi-hop link state as the multiplication of several single-hop link states. This 
multiplication rule of multi-hop link states is a new idea to evaluate link states. Since 
this distributed estimation approach is based on broadcasting and timeout-period con-
straints, it will not be impacted by the dynamic topology of 3D multimedia FANETs.

• Performance evaluation. Compared with four protocols in NS3 network simulator, HTLR 
outperforms others in terms of PDR and energy efficiency in most cases. The delay and jitter 
results of HTLR could be accepted when considering the real demand of dynamic searching 
and reconnoitering applications. To demonstrate the effectiveness of hedge transfer learning, 
we use Wilcoxon test (i.e., a non-parametric statistical test) to compare HTLR with the sim-
plified version of HTLR without hedge transfer learning. The results of Wilcoxon test prove 
that hedge transfer learning effectively ensures QoS.



7508 Multimedia Tools and Applications (2024) 83:7505–7539

1 3

Ta
bl

e 
1 

 S
um

m
ar

y 
of

 th
e 

ap
pl

ic
at

io
n 

of
 tr

an
sf

er
 le

ar
ni

ng
 in

 c
om

m
un

ic
at

io
n 

ap
pl

ic
at

io
ns

Re
fe

re
nc

e
Re

se
ar

ch
 p

ro
bl

em
Tr

an
sf

er
 le

ar
ni

ng
 fe

at
ur

es
A

dv
an

ta
ge

s a
nd

 d
iff

er
en

ce
s

[4
6]

Su
m

m
ar

iz
e 

th
e 

pr
om

ot
io

n 
of

 6
G

 w
ire

le
ss

 c
om

m
u-

ni
ca

tio
n 

by
 T

L,
 in

cl
ud

in
g 

th
e 

re
ce

nt
 a

dv
an

ce
s a

nd
 

fu
tu

re
 c

ha
lle

ng
es

.

TL
 e

nc
ou

ra
ge

s n
ew

 ta
sk

s t
o 

le
ar

n 
fro

m
 e

xp
er

ie
nc

ed
 

ta
sk

s t
o 

he
lp

 n
ew

 ta
sk

s b
ec

om
e 

eff
ec

tiv
e.

TL
 c

ou
ld

 u
se

 th
e 

co
rr

el
at

io
n 

an
d 

si
m

ila
rit

y 
in

fo
rm

a-
tio

n 
be

tw
ee

n 
di

ffe
re

nt
 ta

sk
s t

o 
he

lp
 sa

ve
 e

ne
rg

y 
an

d 
im

pr
ov

e 
effi

ci
en

cy
.

[3
0]

Ex
pa

nd
 th

e 
re

se
ar

ch
 o

f b
as

e 
st

at
io

n 
sw

itc
hi

ng
 o

pe
ra

-
tio

n 
to

 im
pr

ov
e 

th
e 

en
er

gy
 e

ffi
ci

en
cy

 in
 w

ire
le

ss
 

ac
ce

ss
 n

et
w

or
ks

.

TA
C

T 
m

ak
es

 u
se

 o
f t

he
 tr

an
sf

er
re

d 
le

ar
ni

ng
 e

xp
er

-
tis

e 
in

 h
ist

or
ic

al
 p

er
io

ds
 o

r n
ei

gh
bo

rin
g 

re
gi

on
s, 

as
 sh

ow
n 

in
 F

ig
. 1

(a
).

TA
C

T 
fa

ci
lit

at
es

 p
er

fo
rm

an
ce

 ju
m

p 
st

ar
t a

nd
 si

gn
ifi

-
ca

nt
ly

 im
pr

ov
es

 e
ne

rg
y 

effi
ci

en
cy

 a
t t

he
 e

xp
en

se
 o

f 
to

le
ra

bl
e 

de
la

y 
pe

rfo
rm

an
ce

.
[9

]
B

ea
m

fo
rm

in
g 

an
d 

no
n-

or
th

og
on

al
 m

ul
tip

le
 a

cc
es

s 
te

ch
no

lo
gi

es
 a

re
 u

se
d 

to
 re

du
ce

 in
te

rfe
re

nc
e 

in
 5

G
 

m
ill

im
et

er
 w

av
e 

co
m

m
un

ic
at

io
n.

TQ
L 

al
go

rit
hm

s a
re

 p
ro

po
se

d.
Fo

r s
ta

tic
 sc

en
es

, T
Q

L 
co

nv
er

ge
s a

bo
ut

 2
9%

 fa
ste

r 
th

an
 Q

-le
ar

ni
ng

.

[4
8]

W
he

n 
ne

tw
or

k 
co

nfi
gu

ra
tio

n 
ch

an
ge

s, 
effi

ci
en

tly
 

tra
in

 a
 n

ew
 D

R
L 

ag
en

t t
o 

so
lv

e 
th

e 
tra

ffi
c 

en
gi

-
ne

er
in

g 
pr

ob
le

m
 in

 th
e 

ne
w

 n
et

w
or

k 
en

vi
ro

nm
en

t.

Th
e 

A
C

T-
TE

 u
se

s o
ld

 k
no

w
le

dg
e 

di
sti

lle
d 

fro
m

 th
e 

ex
ist

in
g 

ag
en

t a
nd

 n
ew

ly
 c

ol
le

ct
ed

 sa
m

pl
es

, a
s 

sh
ow

n 
in

 F
ig

. 1
(b

).

In
 te

rm
s o

f n
et

w
or

k 
ut

ili
ty

, t
hr

ou
gh

pu
t, 

an
d 

de
la

y,
 

A
C

T-
TE

 is
 o

bv
io

us
ly

 su
pe

rio
r t

o 
th

e 
m

et
ho

d 
of

 
tra

in
in

g 
fro

m
 sc

ra
tc

h 
an

d 
fin

e-
tu

ni
ng

 b
as

ed
 o

n 
an

 
ex

ist
in

g 
D

R
L 

ag
en

t.
[8

]
A

 n
ew

 e
xp

er
ie

nc
e-

dr
iv

en
 m

et
ho

d 
is

 p
ro

po
se

d 
to

 
ha

nd
le

 th
e 

va
ria

tio
n 

of
 n

et
w

or
k 

st
at

e 
an

d 
to

po
lo

gy
 

in
 so

ftw
ar

e-
de

fin
ed

 n
et

w
or

ki
ng

.

Th
e 

TR
L 

al
go

rit
hm

 le
ve

ra
ge

s t
he

 g
en

er
at

iv
e 

ad
ve

r-
sa

ria
l n

et
w

or
k 

to
 le

ar
n 

do
m

ai
n-

in
va

ria
nt

 fe
at

ur
es

 
th

at
 a

re
 su

ita
bl

e 
fo

r D
R

L-
ba

se
d 

ro
ut

in
g 

in
 d

iff
er

-
en

t n
et

w
or

k 
en

vi
ro

nm
en

ts
.

Th
e 

TR
L 

is
 n

ot
 o

nl
y 

su
pe

rio
r t

o 
th

e 
m

os
t a

dv
an

ce
d 

ro
ut

in
g 

fr
am

ew
or

k 
ba

se
d 

on
 D

R
L,

 b
ut

 a
ls

o 
ha

s 
hi

gh
er

 tr
ai

ni
ng

 e
ffi

ci
en

cy
 th

an
 th

e 
na

iv
e 

TL
.

[2
7]

Th
e 

ac
to

r-c
rit

ic
 a

lg
or

ith
m

 o
f M

ar
ko

v 
de

ci
si

on
 

pr
oc

es
se

s w
ith

 p
ol

is
h 

st
at

e 
an

d 
ac

tio
n 

sp
ac

es
 is

 
stu

di
ed

.

Th
e 

cr
iti

c 
us

es
 ti

m
e 

di
ffe

re
nc

e 
le

ar
ni

ng
 w

ith
 li

ne
ar

 
pa

ra
m

et
ric

 a
pp

ro
xi

m
at

io
n 

ar
ch

ite
ct

ur
e,

 a
nd

 th
e 

ac
to

r u
pd

at
es

 in
 th

e 
ap

pr
ox

im
at

e 
gr

ad
ie

nt
 d

ire
c-

tio
n 

ba
se

d 
on

 th
e 

in
fo

rm
at

io
n 

pr
ov

id
ed

 b
y 

th
e 

cr
iti

c.

Th
e 

al
go

rit
hm

 sh
ow

s t
ha

t t
he

 c
rit

ic
’s

 fe
at

ur
es

 sh
ou

ld
 

id
ea

lly
 sp

an
 th

e 
su

bs
pa

ce
 sp

ec
ifi

ed
 b

y 
th

e 
ac

to
r’s

 
pa

ra
m

et
ric

 se
le

ct
io

n.

[1
5]

Se
ve

ra
l s

ta
nd

ar
d 

an
d 

na
tu

ra
l a

ct
or

-c
rit

ic
 a

lg
or

ith
m

s 
ar

e 
re

vi
ew

ed
.

Th
e 

ac
to

r-c
rit

ic
 a

lg
or

ith
m

 c
ou

ld
 w

or
k 

in
 o

nl
in

e 
se

t-
tin

gs
 a

nd
 u

se
 fu

nc
tio

n 
ap

pr
ox

im
at

io
n 

to
 d

ea
l w

ith
 

co
nt

in
uo

us
 st

at
e 

an
d 

ac
tio

n 
sp

ac
e.

Th
e 

po
lic

y-
gr

ad
ie

nt
-b

as
ed

 a
ct

or
-c

rit
ic

 a
lg

or
ith

m
 

co
ul

d 
us

e 
lo

w
 v

ar
ia

nc
e 

gr
ad

ie
nt

 e
sti

m
at

io
n 

to
 

se
ar

ch
 fo

r t
he

 o
pt

im
al

 st
ra

te
gy

.



7509Multimedia Tools and Applications (2024) 83:7505–7539 

1 3

2  Related works

2.1  Multimedia routing

Existing multimedia routing research could be categorized by their focused networks, such 
as WMSNs, MANETs, FANETs, and so on. There are few kinds of research of 3D mul-
timedia FANET routing protocols, as far as we know. It is still difficult to overcome the 
dynamic topology of 3D multimedia FANETs and perform reliable QoS multimedia trans-
mission. Due to the emerging multimedia applications of UAVs, 3D multimedia FANET 
routing protocols are an important research direction.

2.1.1  Wireless multimedia sensor networks

As the earlier research, WMSNs fully investigate multimedia transmission to ensure QoS 
and improve energy efficiency. Adwan and Khaled review a large number of research works 
based on real-time QoS routing protocols for WMSNs [2]. Besides, Hamid and Hussain give 
an overview of the different existing layered and cross-layered schemes in WMSNs [17]. 
Nagalingayya and Mathpati study the maximum energy cooperative route in WMSNs. They 
introduce the recurrent neural network oriented decision-making system to select the appro-
priate cooperative nodes based on energy, reliability, and delay [34]. In addition to improving 
QoS and reducing energy consumption, the transmission security of WMSNs is also worth 
considering. To detect malicious nodes during data transmission, Kumar and Sivagami pre-
sent a fuzzy logic system for calculating the trust score for each sensor node in the WMSNs 
[28]. And then, trust-aware routing is established between the source sensor and destination.

Different from MANETs and FANETs, nodes in WMSNs are usually stationary, while 
the network topology of WMSNs is static. Generally, these researches in WMSNs are the 
foundation for further research on multimedia data transmission in MANETs and FANETs.

2.1.2  Mobile ad hoc networks

Recently, unmanned ground vehicles and ground robot swarms have been widely used in 
various fields. This promotes the development of multimedia routing in MANETs. Differ-
ent from the early-stage research of maximizing throughput in MANETs, how to establish 
QoS-guarantee multimedia transmission becomes popular. Adam and Hassan present an 
overview of reactive routing protocols for QoS and use the delay as a major metric [1].

Usually, QoS guarantee in multimedia MANETs is more difficult than WMSNs because 
of the mobility of nodes in MANETs. Multicast and multipath routing are widely studied 
because they can cope with network topology changes. Fleury et  al. explain single-path 
and multi-path routing to ensure Quality of Experience (QoE) [12]. Masoudifar presents 
a global view and performance comparison of QoS multicast routing for MANETs [33]. 
Balachandra et  al. consider a novel multiconstrained and multipath QoS aware routing 
protocol [5], which takes care of QoS parameters dynamically and simultaneously along 
with pathfinding. Thus, reliable and energy-efficient paths could be used for data transmis-
sion. Zhang et  al. focus on improving the QoS and QoE in MANETs. They provide the 
QoE-driven multipath TCP-based data delivery model and present hidden Markov model-
based optimal-start multipath routing [51]. Kumari and Sahana combine ACO, PSO, and 
a dynamic queue mechanism to improve QoS constraints and minimize data dropping 
[29]. Palacios Jara et  al. guarantee QoS and the trust level between users who form the 
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forwarding path in the MANETs by modifying the multipath multimedia dynamic source 
routing protocol [38]. Srinivasulu et  al. present a QoS-aware energy-efficient multipath 
routing protocol and use the deep kronecker neural network to determine the optimum 
route [43]. However, multipath transmission transmits single-link data on multiple links, 
and the same data packet arrives at the base station. Although the transmission success rate 
is improved, energy consumption also increases. Moreover, multimedia routing protocols 
in MANETs mainly focus on 2D network scenarios and are not adaptive to 3D scenarios 
because 3D network topology is more complex than 2D network topology.

2.1.3  Flying ad hoc networks

Due to the developments of UAVs, multimedia routing protocols become more and more popu-
lar in FANETs. Jiang and Han present a comprehensive survey of various routing establishment 
protocols for FANETs [23]. There are three kinds of research that consider QoE/QoS guarantee.

2D application scenarios of FANETs. Recent studies focus on 2D application scenarios of 
FANETs. Souza et al. propose an adaptive routing protocol based on the fuzzy system for 
200 m × 200 m area size [42]. And this multimedia routing protocol is assessed by QoS and 
QoE metrics, which is about 35% higher than AODV and OLSR. He et al. propose a utility 
function for the overall QoE and present an intelligent and distributed allocation mecha-
nism to effectively solve the rate allocation problem of UAVs [18]. Considering QoE for 
FANETs, Arnaldo Filho et al. propose a relay placement mechanism (called MobiFANET) 
to establish the ideal relay location and show the effectiveness of MobiFANET that works 
jointly with a routing protocol [11]. Bhardwaj and Kaur propose a secure energy efficient 
dynamic routing protocol, aiming at maximizing the QoS standards and helping the nodes 
save their energy [7]. However, these 2D scenarios still cannot simulate real application 
scenarios. 3D network topology will bring greater challenges to routing.

3D UAV relay placement or location optimization.  Recent studies also consider 3D 
UAV relay placement or location optimization to support downlink transmission. Jiang 
et al. study the proactive caching and UAV relaying techniques to maximize multimedia 
throughput in Internet-of-Things systems [25]. The UAV relay deployment is decomposed 
into vertical & horizontal dimensions, and the probabilistic caching placement is formu-
lated as a concave problem. Niu et  al. jointly optimize UAVs’ 3D location, power, and 
bandwidth allocation and meet the users’ requirements with different statistical delay-
bound QoS in an emergency situation [36]. Zhang and Cheng derive the optimal power 
allocation scheme and introduce the statistical delay-bounded QoS provisioning frame-
work, which could support diverse traffic in the UAV-enabled emergency network [49]. As 
base stations, UAVs are deployed for downlink transmissions, and device-to-device users 
operate in the underlying spectrum sharing mode. Considering cooperative UAVs for the 
downlink transmission of ground rescue vehicles in post-disaster areas, Zhang and Liu pre-
sent a mathematical framework to analyze the coverage probability and average achievable 
rate for a multi-UAV-assisted downlink network, proving that the network performance 
gained [50]. Almeida et al. combine the placement of UAVs with a predictive and central-
ized routing protocol [3]. As a result, QoS provided to the users is improved.

The routing protocols of 3D multimedia FANETs. The routing protocols of 3D multi-
media FANETs that consider 3D dynamic network topology and QoS/QoE guarantee are 
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still in the infancy stage. Based on these challenges, the recent studies of 3D multimedia 
FANETs are reviewed as follows. Rosário et al. propose a link-quality and geographical-
aware beaconless opportunistic routing protocol (named LINGO) for 40  m × 40  m area 
size [41]. Because LINGO focuses on link quality and geography information, it could be 
extended to 3D multimedia FANETs. Pimentel et  al. propose an adaptive context-aware 
beaconless opportunistic routing (CABR) for 3D multimedia FANETs with QoE guarantee 
[39]. CABR comprehensively takes into account multiple types of context information to 
compute dynamic forwarding delay. Zhang et al. propose a three-dimensional Q-learning 
based routing protocol. The protocol predicts link status and makes routing decisions by 
using Q-learning to guarantee the packet delivery ratio and improve the QoS [52]. These 
studies mainly focus on link state, and the link quality is evaluated by location, delay, 
energy, and other metrics. This shows that QoS is closely related to link state in FANETs.

2.2  Transfer learning

2.2.1  Different application fields

As a new promising paradigm of machine learning, transfer learning has received close atten-
tion. In the past five years, there have been a few prominent solutions because of transfer learning 
practicality. Transfer learning has been successfully applied in medical treatment, image recog-
nition, natural language processing, target detection, and other fields. Iskanderani et al. present 
a real-time IoT framework for the early COVID-19 diagnosis by using deep transfer learning, 
which could help radiologists diagnose suspected patients in COVID-19 efficiently [22]. To 
address the control problem of maneuvering target tracking and obstacle avoidance, Li et al. pro-
pose an online path planning method for UAVs based on deep reinforcement learning, which is 
supported by transfer learning to improve the generalization capability of UAV’s control model 
[31]. Lu and Lin study direct edge-to-edge cooperative transfer learning, which further improves 
the accuracy of image recognition [32]. In general, it could be seen that most transfer learning 
research focuses on image processing, signal analysis, and medical care [20, 44, 45].

2.2.2  Present applications in communication

Due to the success of transfer learning in many fields, there is emerging research on trans-
fer learning and communication. Moreover, these interdisciplinary researches are mean-
ingful, which gradually increases as a new research hotspot. Generally, the flexibility and 
practicability of transfer learning are the better-performance root of these problems.

Besides, the application of transfer learning in communication is summarized in Table 1. 
There is little research on transfer learning in the routing protocols of MANETs and FANETs 
to our best knowledge. The present applications of transfer learning in communication include:

• Advances and challenges of transfer learning in promoting wireless communica-
tion. Wang et al. present a comprehensive review of transfer learning used in different 
wireless communication fields and discuss the future research directions between trans-
fer learning and 6G communications [46].

• Energy saving in cellular radio access networks. Li et al. propose transfer actor-critic 
algorithm (TACT) that uses the transferred learning knowledge & reinforcement learn-
ing [30]. And they prove the convergence of TACT.
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• Interference mitigation in 5G millimeter-Wave communications. Elsayed et al. pro-
pose transfer Q-learning (TQL), Q-learning, and best SINR association with density-
based spatial clustering of applications with noise algorithms [9]. TQL outperforms 
others in both mobile and stationary application scenarios.

• Traffic engineering in experience-driven networking. Xu et  al. propose an actor-
critic-based transfer learning framework (ACT-TE) to solve the traffic engineering 
problem [48]. ACT-TE significantly outperforms straightforward & traditional methods 
in terms of network utility, throughput, and delay.

• Dynamic routing in software defined networking. Dong et al. propose a transfer rein-
forcement learning (TRL) algorithm to improve the training efficiency and deal with 
the changes of network state and topology [8]. TRL has high training efficiency and 
outperforms deep reinforcement learning-based routing frameworks.

• Classical frameworks of transfer learning in cellular radio access networks and 5G 
new radio mmWave networks. Konda and Tsitsiklis propose a class of actor-critic algo-
rithms for simulation-based optimization of a Markov decision process [27], which is 
characterized by actor-critic framework. Besides, Grondman et al. present a detailed sur-
vey for several standard and natural actor-critic algorithms [15]. Their focus is an online 
setting and using function approximation to deal with continuous state and action spaces.

3  Network model

3.1  Assumptions

3.1.1  Location and speed

UAVs are equipped with GPSs and altitude gauges. Through these devices, they could 
obtain their 3D locations and speeds.

3.1.2  Mobility model

NS3 is a network simulator commonly used for MANETs’ and FANETs’ simulations. In 
dynamic searching and reconnoitering applications, UAVs fly randomly according to task 
positions in 3D space, and the base station does not move around on the ground. Therefore, 
in our simulations, we use the 3D random waypoint model of NS3 as the mobility model of 
UAVs. In this mobility model, UAVs exist in the form of nodes. Besides, we assume that 
the base station in NS3 is fixed at the center of the simulation area. We explain the 3D ran-
dom waypoint model of NS3 as follows.

• Movement procedure. The node moves forward to the task position at a fixed speed. 
When the node reaches the task position, it does not stop for a while. This node selects 
a new random destination, uses a new random speed, and continues to move.

• Speed change. When each node reaches its destination, then it will select a new ran-
dom speed. The speed of each node changes from the minimum value (i.e., the setting 
parameter) to the maximum value (i.e., another setting parameter). We use the average 
value of the minimum and the maximum values to express the actual speed of each 
node for different simulation results in this paper.
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3.1.3  Device and energy

UAVs are homogeneous in respect of hardware. Due to UAV mobility, they have limited 
energy. Besides, the base station is located on the ground, which has unlimited energy. We 
use the simple radio energy dissipation model [19] as the energy consumption model for 
UAVs and the base station. The free space or multipath fading channel model is selected 
according to the distance between the sending and receiving nodes. Moreover, the energy 
consumption of radio hardware is considered. The transmitter energy consumption Etx and 
receiver energy consumption Erx of the model are given by

where k is the number of bits and Eelec is the consumed energy for receiving or sending a 
bit. d is the distance from the transmitter to the receiver. As a distance threshold, d0 is equal 
to (εfs/εmp)0.5. If d ≤ d0, it uses the free space channel for calculation; Otherwise, it uses the 
multipath fading channel. εfs and εmp are the amplification coefficients for the free space 
and multipath fading channel models, respectively.

3.1.4  Multimedia transmission

UAVs search and reconnoiter dynamic moving targets, while simultaneously transmitting 
videos to the base station. Considering the actual scenarios of dynamic searching and rec-
onnoitering applications, we assume that there are 10% UAVs as video sources in the mul-
timedia transmission period.

3.2  Communication links

3.2.1  Air‑to‑air links among UAVs

UAVs use three-dimensional omnidirectional antennas to expand the communication 
range. In other words, the links among UAVs are bidirectional. If UAV A could send data 
packets to UAV B, UAV B could also transmit data packets to UAV A. The communication 
boundary of each UAV is a sphere centered on itself in the air.

3.2.2  Air‑to‑ground links between UAVs and base station

Air-to-ground links between UAVs and the base station are in accord with actual com-
munication links, which are constrained by communication radius and UAV height. UAVs 
form a cone to mark the communication regions on the ground.

4  Hedge transfer learning routing

Transfer learning has strong applicability and can cope with the complexity and instability 
of 3D network topology. In addition, the introduction of hedge principle could enhance the 
robustness of transfer learning. To ensure PDR and energy efficiency, HTLR uses hedge 

(1)Etx =

{
k × Eelec + k × 𝜀fs × d2 d ≤ d0
k × Eelec + k × 𝜀mp × d4 d > d0

(2)Erx = k × Eelec
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transfer learning and the multi-hop link scheme to fight against the topology changes of 3D 
multimedia FANETs.

4.1  Hedge transfer learning

Different from TACT [30], TQL [9], ACT-TE [48], and TRL [8], the hedge framework of 
hedge transfer learning is based on hedge principle. In general, hedge principle is the cor-
nerstone to support the operation of this online learning. Moreover, we discuss the rational-
ity of hedge principle in Section 4.1.1.2.

In this paper, hedge transfer learning belongs to model-based transfer learning. It is 
worth noting that the real-time performance of HTLR is only related to the online parts of 
hedge transfer learning in Sections 4.1.1.2 and 4.1.4, which could satisfy the practicability 
requirement of HTLR.

4.1.1  Online learning in the base station

When UAV transmits video, the 3D network topology of FANETs is always chang-
ing. However, in the adjacent time periods, the transmission features of 3D multimedia 
FANETs are similar to each other, such as nine input parameters (x1, x2, ..., x9) in Sec-
tion 4.1.2. Therefore, based on the transmission-feature similarity in the adjacent time peri-
ods, online learning is chosen to improve the adaptability of hedge transfer learning to 3D 
dynamic topology of FANETs.

Hedge framework As shown in Fig. 2, the base station runs hedge transfer learning that 
includes:

• Offline domain. Offline domain is the source domain of transfer learning [46]. As 
shown in Section 4.1.3, offline domain consists of offline data collection, offline large-
scale dataset, and offline training. The output of offline domain is offline QLS model.

• Online domain. Online domain is the task domain of transfer learning [46]. As shown 
in Section 4.1.4, online domain consists of online data collection, online small-scale 
dataset, and online training. The input of online domain is transferred QLS model from 
offline domain, which is used to initialize online QLS model. And the output of online 
domain is online QLS model. The real-time requirements of HTLR are different for 
offline with online domains. Offline domain need not consider the real-time require-
ment of HTLR. On the contrary, online domain should satisfy the real-time require-
ment of HTLR. Therefore, this paper uses both offline domain and online domain. 
Moreover, offline domain and online domain are independent to each other.

• Hedge transfer learning. Hedge transfer learning adjusts online and offline weight fac-
tors Fon and Foff for online and offline QLS models. It is worth noting that·the collected 
online data are continuously updated to adapt to the dynamic topology of networks. 
Then, online QLS model, Foff, and Fon are also constantly adjusted.

Hedge principle UAVs apply online QLS model, Fon, and Foff to build single-hop link 
state scheme in Fig. 3. It is worth noting that online QLS model, Fon, and Foff in Fig. 2 are 
continuously updated by using broadcasting packets from the base station. And offline QLS 
model is fixed to the program memory of UAVs in advance. These will be explained in 
Section 4.2.
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Hedge transfer learning to obtain Fon and Foff. Hedge transfer learning procedure is 
based on hedge principle to adjust Fon and Foff [13]. Algorithm  1 depicts the procedure 
of hedge transfer learning. As the main part of Algorithm 1, hedge principle corresponds 
to lines 6 ~ 15. Hedge principle means that the better QLS model (offline or online QLS 
model) will have a relatively greater contribution to single-hop link state. For each item of 
online data, the update strategy of Fon and Foff is given in Eqs. 4–7. The explanations are as 
follows.

• Determine the decay degree. Ψ(x) is the loss function with decay factor β to determine 
the decay degree. The output-value errors of offline and online QLS models are |Y1-Q1| 
and |Y1-Q2|. Then, loss values are Ψ(|Y1-Q1|) and Ψ(|Y1-Q2|). Greater error, greater 
loss value Ψ(x), and greater decay.

• Update weight factors. After obtaining these decay values, it uses multiplication to 
update weight factors in Eqs. 4 and 5. That is, it penalizes the weight factors this time.

• Normalized weight factors. Redistribute two weight factors through normalization in 
Eqs. 6 and 7. This shows that we give more weight to models that perform better.

Algorithm 1  The procedure of hedge transfer learning to obtain Fon and Foff
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The reliability of hedge principle to adjust Fon and Foff. Due to robustness, hedge princi-
ple is widely used in different fields, such as hedge funds. In this paper, hedge principle could 
adjust Fon and Foff in a reliable mode. Offline and online QLS models are regarded as two 
experts in hedge principle. Offline QLS model trained by using a large number of data items 
is a common-skill expert, while online QLS model is a special skill expert that continuously 
learns from the present small-scale network data. When evaluating single-hop link states, 
we ask two experts for their advice. Moreover, our goal is to combine this advice so that the 
expected losses are not much worse than the best expert. We define the contribution weights 
Fon and Foff of two experts to realize this goal. Then, we do the procedure of hedge transfer 
learning in Algorithm 1. Through this reliable hedge procedure, single-hop link state is flex-
ible enough to maintain a satisfactory evaluating-link capability in the entire network lifecycle.

The computational complexity of hedging transfer learning.  The computational 
complexity of hedge transfer learning is critical to the real-time performance of HTLR. 
Algorithm 1 includes initialization and hedge procedure. The computational complexity of 
initialization is O(3) + O(2) + O(9 × Nd), and the computational complexity of hedge pro-
cedure is O(3 × Nd) + O(3 × Nd) + O(2 × Nd). Thus, the computational complexity of Algo-
rithm 1 is approximately equal to O(Nd). This means that the computational complexity 
of Algorithm 1 depends on the data-item number of online small-scale dataset Nd. When 
Nd = Nmax = 6000, the running time of hedge transfer learning once is about 0.013 seconds 
in Linux system with Intel (R) Xeon (R) CPU ×5670 @ 2.93GHz and 128G memory. 
Because the running time of hedge transfer learning once (i.e., 0.013  seconds) is much 
less than transfer period (transfer period = 20s), the procedure of hedging transfer learning 
could satisfy the real-time requirement of HTLR.

4.1.2  QLS model

From a QoS perspective, QLS model is defined to evaluate link states. The dynamicity of 
3D multimedia FANETs is complicated over time. Therefore, to make QLS model more 
flexible, we choose artificial neural network as our QLS model. We train offline and online 
QLS models by using offline and online data.

Structure The structure of QLS model includes one input layer with nine neurons, three hid-
den layers with nine neurons, and one output layer with one neuron. Based on the multi-layer 
structure, QLS model could provide the flexible functionality to choose a rational next-hop 
data-forwarding UAV. Besides, the activation function is sigmoid, and the learning rate is 0.5.

Input parameters Nine input parameters (x1, x2, ..., x9) are defined, focusing on network 
mobility and multimedia transmission features. These inputs translate mobility scenarios 
and multimedia transmission requirements into the following formulas.

Three mobility inputs (x1, x2, x3) could mirror the UAV-neighbor topology changes. 
These mobility inputs pay attention to the relative positions and speeds of transmitting 
UAVs, neighbor UAVs, and the base station. x1, x2, and x3 are given by

(8)x1 = min
(
1,Dsd∕R

)
= min

(
1, ||Ps − Pd

||∕R
)

(9)x2 = Dfw∕2R =
(
Dsd − Dnd + R

)
∕2R
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where Dsd is the present distance between the transmitting-UAV position and the predicted 
base-station position, Ps is the present position of transmitting UAV from GPS. Pd is the 
predicted base station position. R is the communication radius in Eq. 8. Dfw is the forward 
distance. Dnd is the present distance between the predicted neighbor-UAV position and the 
predicted base-station position in Eq. 9. ��⃗Vre is the relative speed between UAV and neigh-
bor UAV. ��⃗Vs and ��⃗Vn are the speeds of transmitting and neighbor UAVs. Vmax is the normal-
ized maximum speed in Eq. 10.

Six multimedia transmission inputs (x4, ..., x9) with low computation costs are consid-
ered, which are given by

where Tthr is a cut-off delay threshold that is equal to 50 ms in this paper. Ts is the single-
hop delay for neighbor UAVs in Eq.  11. Cd is the congestion degree in one period. Cfw 
is the count of forwarding packets. Cmax is the normalized maximum count, which corre-
sponds to the length of one period in Eq. 12. Qr is the size of the remaining buffer queue. 
Qmax is the maximum length of buffer queue in Eq. 13. Nfr is the number of forward nodes 
that are close to the base station. Nbw is the number of backward nodes that are far from 
base station. Nmax is the normalized maximum number of nodes in Eq. 14 and Eq. 15. Er 
is the residual energy of each neighbor UAV. Emax is the initial energy of UAVs in Eq. 16.

Output parameters We abstract three key parameters: forward distance Dfw, energy con-
sumption Ec in one period, and single-hop delay Ts. These parameters are formulated as the 
output Y1(x1, ..., x9) of QLS model. Y1(x1, ..., x9) is given by

where q1, q2, and q3 are three components. Tthr is a cut-off delay threshold, and Emax is the 
initial energy of UAVs. When collecting offline or online data (x1, ..., x9) and (q1, q2, q3) 

(10)x3 =
��⃗Vre∕Vmax =

|||��⃗Vs −
��⃗Vn

|||∕Vmax

(11)x4 = min
(
1, Ts∕Tthr

)

(12)x5 = Cd = Cfw∕Cmax

(13)x6 = Qr∕Qmax

(14)x7 = Nfr∕Nmax

(15)x8 = Nbw∕Nmax

(16)x9 = Er∕Emax

(17)Y1
(
x1,⋯ , x9

)
=

{
0.5 + 0.5

(
0.4 × q1 + 0.4 × q2 + 0.2 × q3

)
success

0 failure

(18)

⎧⎪⎨⎪⎩

q
1
=
�
Dfw + R

�
∕2R

q
2
= 1 − Ec∕Emax

q
3
=

�
1 − Ts∕Tthr Ts < Tthr
0 otherwise
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are also collected. For each UAV, if the transmission of data packet is failed, then Y1(x1, ..., 
x9) = 0. This means that this neighbor UAV should not be chosen to forward data packets. 
Otherwise, this neighbor UAV could be chosen.

In this paper, we use PDR and energy efficiency as QoS metrics. These QoS metrics 
are realized by the weights of q1 and q2 being greater than that of q3, as shown in Eq. 17. 
Greater Y1(x1, ..., x9) value means a greater probability to ensure QoS. According to dif-
ferent Y1(x1, ..., x9) values for neighborhood UAVs, transmitting UAVs could distinguish 
available neighborhood UAVs from unavailable neighborhood UAVs. To further explain 
Y1(x1, ..., x9), the principle discussions of q1, q2, and q3 are as follows.

• q1 uses the forward distance Dfw to a single-hop UAV neighbor. This means shorten-
ing the distance between the present data-packet position and the base station. Gen-
erally speaking, shorter Dfw means closer to the base station and a higher probability 
of successful transmission. Thus, q1 corresponds to improving PDR.

• q2 is defined by using the energy consumption of the neighbor UAV in one period. 
With q1 guaranteed, choosing a UAV with less energy consumption is effective in 
balancing the energy consumption of UAVs in the neighborhood. Smaller Ec means 
better energy efficiency in most cases. Thus, q2 corresponds to energy efficiency.

• q3 expresses the delay of a single-hop link, which is used to improve the delay per-
formance of HTLR.

Discussions In HTLR, the input and output parameters of QLS model (x1, ..., x9, q1, q2, q3) 
are inserted into data packets. In practice, the base station could collect these parameters 
through data packets. This means that QLS model could be used in practice. The specific 
analysis is as follows.

• How to obtain the input parameters of QLS model in practice? UAVs are 
equipped with GPSs and altitude gauges for three mobility inputs (x1, x2, x3), which 
insert these mobility inputs into data packets. When the base station receives data 
packets, it unpacks data packets to obtain these input parameters. Besides, six multi-
media transmission inputs (x4, ..., x9) could also be obtained by using this approach.

• How to obtain the output parameters of QLS model in practice? The collection 
procedure of three output parameters (q1, q2, q3) is similar to input parameters.

4.1.3  Offline training for offline QLS model

Offline training time.  Offline QLS model is trained by using offline large-scale data-
set. Because training offline large-scale dataset does not need to occupy online time, the 
offline-QLS-model training time does not affect the online running time of HTLR. The 
training time of offline QLS model is 16.07 seconds in Linux system with Intel (R) Xeon 
(R) CPU ×5670 @ 2.93GHz and 128G memory.

Offline data collection. We collect offline large-scale dataset in NS3 network simulator. In 
our simulation, 3D space size is 1000 m × 1000 m × 1000 m, mobility model is 3D random 
waypoint mobility, node speed randomly changes from 0 m/s to 50 m/s, and base station is 
located in the center of the ground. In this paper, 20,000 items of offline training data have 
been collected.
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Offline training procedure.  The training method of offline QLS model is RProp [40]. 
RProp does not consider the magnitude of the gradient. It only determines the adjustment 
direction of the connection strength in terms of the direction of the gradient. The same 
learning abilities in each layer are not affected by the distance from it to the output layer. 
This computation process is simple. Therefore, it could quicken the converging speed and 
overcome the local minimum problem. In terms of offline training parameters, the maxi-
mum number of training iterations is 500, and the expected error is 0.005. The stop condi-
tion of offline training is that the present number of training iterations is 500 or the training 
error is less than the expected error.

4.1.4  Online training for online QLS model

The offline QLS model under offline training could not cope with the real-time changes of 
3D network topology, so the online QLS model under online training is introduced. The 
details of online training time, data collection and training procedure are as follows.

Online training time.  In the base station, online QLS model is trained by using online 
small-scale dataset. As online learning algorithms, the training and running times of online 
QLS model are critical to the real-time performance of HTLR. The training time of online 
QLS model for online small-scale dataset is short. In this paper, the training and running 
times of online QLS model is about 2.55  seconds and 4.67e-6  seconds in Linux system 
with Intel (R) Xeon (R) CPU ×5670 @ 2.93GHz and 128G memory. These times are 
much less than transfer period (transfer period = 20s).

Online data collection. HTLR uses base station to collect online data and realize online 
training. Online data are collected by the base station from the real-running simulation of 
HTLR. These data include the training data of successful transmission and the training 
data of failure transmission in the last transmission. It is worth noting that UAVs add this 
failure-transmission information to the present data packet. If the base station receives this 
packet, it could unpack the failure-transmission information as online training data.

Online training procedure and its computational complexity.  Algorithm  2 demon-
strates how to train online QLS model by using RProp and online small-scale data. After 
calculating the pseudo-code of RProp, the computational complexity of RProp is O(Nd) 
(Nd is online data and its item number). Therefore, the computational complexity of Algo-
rithm 2 is O(Nd). Specifically, there are two start and one stop conditions of online training 
as follows.

• The first start condition. The time interval from the last training time to the pre-
sent time exceeds transfer period. Moreover, the number of online training data items 
is greater than or equal to the minimum number of online training data items Nmin 
(Nmin = 4000).

• The second start condition. The number of online training data items is greater than 
or equal to the maximum number of online training data items Nmax (Nmax = 6000).

• The stop condition. Due to the small size of online data items, the maximum number 
of training iterations is set to 200, and the expected error is 0.001. This could ensure 
generalization ability and the training time of online QLS model.
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Online training enables HTLR to better adapt to topology changes. Although the 
network topology is dynamic, this approximately periodic training could reflect the pre-
sent network changes. Moreover, as a continuous updating component of HTLR, the output 
value of online QLS model is more suitable to evaluate the present links.

4.1.5  Differences and limitations

Compared with other transfer learning algorithms, the differences and limitations of hedge 
transfer learning include:

• On research problem. We focus on 3D multimedia FANETs, which is different from 
the focused communication networks of [8, 9, 30, 48].

• On transfer learning frameworks. Compared with TACT [30], TQL [9], ACT-TE 
[48], and TRL [8], hedge framework does not use the actor-critic algorithm, Q-learn-
ing, and reinforcement learning. This is a difference between hedge framework and 
these union frameworks [8, 9, 30, 48], as shown in Figs. 1 and 2. There is little research 
that uses hedge principle in transfer learning, as far as we know.

• On advantages. Hedging transfer learning has better sensitiveness and robustness.

– The online data sensitiveness is able to ensure mirroring time-varying network 
states. Online data that base station collects is changing with time-varying net-
work states. Moreover, online data are sensitive to the changes of network states, 
such as available residual-link-communication time. For instance, if the speeds of 
UAVs increase, then available residual-link-communication time decreases. At this 
moment, the collected online data could record what kinds of links are more suit-
able for transmitting data packets. In other words, the collected online data could 
record the speed-increase influence on all communication links. Then, when train-
ing online QLS model, these online data with the present network states could 
strengthen the online-QLS-model capability for the speed increase of UAVs.

– Combining offline large-scale dataset training with online small-scale dataset 
training improves the robustness. Offline QLS model is trained by using offline 
large-scale dataset. Due to the large size of offline data items, offline QLS model 
usually has better adaptability for various network scenarios. However, offline QLS 
model does not combine with the present online-target network states. Online small-
scale dataset could mirror the present online-target network states used to train 

Algorithm 2  Training online QLS model by using online data
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online QLS model. Based on the online data beforehand calibration and hedge prin-
ciple, Fon and Foff are adjusted dynamically over time.

• On limitations. Hedge transfer learning has some limitations. Due to hedge frame-
work, online and offline QLS models must be homogeneous.

4.2  Routing procedure

The routing procedure includes two parts: transfer routing and data forwarding.

4.2.1  Transfer routing

The objective of transfer routing is to transmit online QLS model, Fon, and Foff from the 
base station to UAVs, as shown in Fig. 4. Detailed explanations of transfer routing are as 
follows.

(a)

(b)
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• The left side of Fig. 4 shows the operation procedure of the base station, such as running 
hedge transfer learning and broadcasting online QLS model, Fon, and Foff to UAVs. The 
contents of broadcast packages could be obtained from Section 4.1.1.2. If UAVs receive 
these broadcasting packets, they will update their corresponding parameters and continue 
to broadcast. In most cases, all UAVs could receive these broadcasting packets. It is worth 
noting that offline QLS model is fixed to the program memory of UAVs in advance. This 
also means that the base station is not required to transmit offline QLS model to UAVs.

• The right side of Fig. 4 gives the procedure of data forwarding. It also explains the rela-
tionship between multi-hop link state and data forwarding.

4.2.2  Data forwarding

Because data forwarding procedure determines how to choose the next-hop data forward-
ing node, this is the kernel routing part of HTLR.

the procedure of

hedge transfer learning 

(see Section 4.1.1.2)

online domain (see Section 4.1.2 and 4.1.4)

scale dataset

online small-
online 

training

output

collect 

online data

offline domain (see Section 4.1.2 and 4.1.3)

scale dataset

offline large-
offline 

training outputcollect 

offline data

transfer

offline QLS model 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fon

Foff

hedge transfer learning

online QLS model 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2  Online learning in the base station

Fig. 3  Applying online QLS 
model, Fon, and Foff to single-hop 
link state scheme in UAVs



7523Multimedia Tools and Applications (2024) 83:7505–7539 

1 3

Algorithm  3 explains the routing procedure that UAVs forward data packets, such as 
timeout updating, early-warning updating, choosing a neighbor UAV as the next-hop for-
ward node, and so on. When each transmitting UAV chooses data forwarding node from its 
neighbor UAVs, it will select the unexpired & unwarned neighbor with the maximum value 
of multi-hop link state as the next-hop data forwarding node. Discussions for Algorithm 3 
are as follows.

• The computational complexity of data forwarding procedure. The computational 
complexity of Algorithm 3 is mainly in cycling through the NHR table. The computa-
tional complexity of traversing the NHR table is O(NNHR) (NNHR is the number of UAV 
IDs in the NHR table).

• A limit of HTLR. To improve PDR, HTLR takes advantage of the timeout period and 
early warning UAV-ID list to avoid using the unstable links in Algorithm 3. However, 
this may lead to the failure of data forwarding in some cases. For example, one UAV 
has fewer neighbor UAVs.

start

base station memory

online

QLS model

approximately

periodic broadcast

base station UAV

collecting data

hedge transfer learning

online 

weight factor Fon

offline

weight factor Foff

UAV memory

the next-hop 

routing table

UAV ID

multi-hop 

link state value

updated time

output

Base station broadcast broadcasting packets and UAVs continue to 
broadcast. Broadcasting  packet includes online QLS model, Fon, and Foff.

start
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QLS model

online 

weight factor Fon

offline

weight factor Foff

compute single-hop 

link state value

update multi-hop 

link state value 

update the related 

parameters and 

online QLS model 

of single-hop link 

state

Note:
Offline QLS model is fixed 
that do not need updating.

data forwarding

according to multi-

hop link state value 

Fig. 4  The transfer routing procedure of HTLR
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Focusing on multi-hop link states, Fig. 5 explains the routing design of data forward-
ing. For instance, the multi-hop link state of UAV B is greater than the multi-hop link 
state of UAV C (i.e., MLSB > MLSC). This means the multi-hop links of UAV B have a 
greater probability of successfully transmitting data packets than the multi-hop links of 
UAV C. Therefore, UAV A compares MLSB with MLSC in its next-hop routing table. Due 
to MLSB > MLSC, UAV A chooses UAV B as the next-hop forward node. Similarly, the link 
state of base station is greater than the multi-hop link state of UAV D (i.e., MLSBS > MLSD), 
and MLSBS is always equal to 1 in this paper. Because of MLSBS > MLSD in the next-hop 
routing table of UAV B, UAV B directly forwards data packet to base station.

Next, multi-hop link state that is the key point of data forwarding, and we explain 
this key point as follows. Multi-hop link state scheme is a distributed approach to esti-
mate multi-hop link states. Because single-hop link state scheme in Section 0 is the basis 
of multi-hop link state scheme in Section 4.2.2.2. Thus, we first introduce the single-hop 
link state scheme in Section 4.2.2.1 and then present the multi-hop link state scheme in 
Section 4.2.2.2.

Single‑hop link state scheme Single-hop link state scheme could evaluate the single-hop 
link states of neighbor UAVs, which includes online QLS model, Fon, offline QLS model, 
and Foff. In the single-hop link state scheme, offline QLS model is fixed in the program 

Algorithm 3  Data forwarding procedure
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memory of each UAV beforehand. Besides, online QLS model, Fon, and Foff are continu-
ously updated from received broadcasting packets.

The input and output of single-hop link state. In the routing procedure, the input of 
the single-hop link state scheme is the present input (x1, ..., x9), as shown in Fig. 3. These 
present inputs are the real-time information that is obtained from neighbor UAV broad-
casting information. The single-hop link state value could express the probability of suc-
cessfully forwarding data packets to this neighbor UAV. The output value of single-hop 
link state is from 0 to 1. From a single-hop perspective, greater single-hop link state, bet-
ter capability to ensure QoS. Transmitting UAV could compute single-hop link states of 
neighbor UAV links. The output of single-hop link state SLS(A → B) is given by

where SLS(A → B) represents the function of transmitting data packet from UAV A to 
UAV B, which returns the probability of successfully forwarding data packets to UAV B. 
SY1(x1, ..., x9) and DY1(x1, ..., x9) are the outputs of offline and online QLS models.

An example of single-hop link state. For instance, when UAV A receives the broad-
casted information of its neighbor UAV B, UAV A could obtain 9 input parameters (x1, 
..., x9) of UAV B. According to this information, UAV A could obtain SY1(x1, ..., x9) and 
DY1(x1, ..., x9) for the single-hop link between UAV A and its neighbor UAV B. UAV A 
uses Eq. 19 and obtains the single-hop link state SLS(UAV A → UAV B). Similarly, based 
on the broadcasted information of neighbor UAVs, UAV A could obtain all single-hop link 
states between UAV A and neighbor UAVs.

Multi‑hop link state scheme Multi-hop link state scheme could evaluate the multi-hop 
link states from transmitting UAV to base station. This scheme is a distributed approach of 
updating multi-hop link state value.

The meaning of multi-hop link state and its computational complexity. From a 
multi-hop perspective, greater multi-hop link state value, greater probability of success-
fully transmitting data packets to base station. Each UAV has its own multi-hop link state 
value that is proportional to its best QoS capability to transmit data packets. Algorithm 4 
gives the procedure of updating multi-hop link state. Because Algorithm 4 is only a process 

(19)SLS(A → B) = Foff × SY1

(
x1,⋯ , x9

)
+ Fon × DY1

(
x1,⋯ , x9

)

UAV B UAV A

UAV CUAV D

base station
MLSB

>MLSC
MLSBS
> MLSD

data packet data packet

Fig. 5  The example of data forwarding through multi-hop link state
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of constantly judging and updating, its computational complexity is very low. Thus, we 
needn’t consider its computational complexity.

Mathematically, we define multi-hop link state by using multiplication and maximum-
value rules. Meanwhile, each UAV uses the maximum value of multi-hop link states as its 
multi-hop link state value. Figures 6 and 7 further explain these rules of multi-hop link 
state as follows.

Multiplication rule. The multi-hop link state of each UAV could be approximately 
regarded as the multiplication factor of several single-hop link states. Generally speaking, 
multi-hop links consist of several single-hop links. Due to multiplication rule, the poor 
single-hop links with the low single-hop link state values will greatly decrease the multi-
hop link state value. Therefore, multiplication rule is a reasonable choice to avoid choos-
ing multi-hop links with poor single-hop links. By choosing these better multi-hop links, 
UAVs could improve PDR. To simplify the problem, we suppose that there are only base 
station, UAV A, and UAV B. Figure  6 gives this simplest example: two-hop links from 
base station to UAV A and from UAV A to UAV B. Through the broadcasting information 

Algorithm 4  The procedure of updating multi-hop link state



7527Multimedia Tools and Applications (2024) 83:7505–7539 

1 3

of base station, UAV A could obtain the single-hop link state from base station to UAV A 
by using Eq. 19. Because base station only receives data packets and does not need for-
warding data packets, the multi-hop link state value of base station (i.e., MLSBS) is always 
equal to 1. Then, UAV A could compute its multi-hop link state MLSA by using Eq. 20. 
Similarly, UAV B could obtain its multi-hop link state MLSB by using Eq. 21.

where SLS(base station→UAV A) is the single-hop link state from base station to UAV A. 
SLS(UAV A → UAV B) is the single-hop link state from UAV A to UAV B. This multipli-
cation rule is a new idea to evaluate link states.

Maximum-value rule. Each UAV uses the maximum value of the multi-hop link states 
of all neighbor-UAV links as its multi-hop link state. Because the single-hop link state 
value is from 0 to 1, the multi-hop link state is also from 0 to 1 through Eq. 21. Accord-
ing to the multiplication-rule meaning, the maximum value of multi-hop link states of all 
neighbor-UAV links means the best multi-hop link state to ensure QoS. To simplify the 
problem, we suppose that there are only UAV B, UAV C, and UAV D in the neighbor 
of UAV A. Figure  7 gives this star-topology example. UAV A could receive three val-
ues of multi-hop link states from UAV B, UAV C, and UAV D. Then, UAV A could also 
obtain three values of single-hop link states for three links (i.e., SLS(UAV B → UAV A), 
SLS(UAV C → UAV A), and SLS(UAV D → UAV A)) by using Eq. 19. For this star-topol-
ogy situation, UAV A could obtain its multi-hop link state MLSA by using

(20)MLSA = MLSBS × SLS(base station → UAV A)

(21)

MLS
B
= MLS

A
× SLS(UAV A → UAV B) = MLS

BS
× SLS(base station → UAV A)

× SLS(UAV A → UAV B)

Fig. 6  An example to demonstrate the multiplication rule of multi-hop link state scheme

Fig. 7  An example to demon-
strate the maximum-value rule of 
multi-hop link state scheme
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where max() returns the maximum value.

4.2.3  Computational complexity

Base station program The base station runs Algorithm 1 to perform hedge transfer learn-
ing, and the computational complexity of Algorithm 1 is O(Nd) (Nd is the data-item num-
ber of online small-scale dataset). For details, please refer to the last paragraph of Sec-
tion  4.1.1.2. The base station runs Algorithm  2 to train the online QLS model, and the 
computational complexity of Algorithm 2 is O(Nd). For details, please refer to the fourth 
paragraph of Section 4.1.4. Therefore, the computational complexity of base station pro-
gram is O(Nd) + O(Nd), which is approximately O(Nd).

UAV node program UAV node runs Algorithm 3 to forward data, and the computational 
complexity of Algorithm 3 is O(NNHR) (NNHR is the number of UAV IDs in the NHR table). 
For details, please refer to the third paragraph of Section  4.2.2. UAV node runs Algo-
rithm 4 to update multi-hop link state, and the computational complexity of Algorithm 4 
need not be considered. For details, please refer to the second paragraph of Section 4.2.2.2. 
Therefore, the computational complexity of UAV node program is O(NNHR).

5  Simulation results and discussions

Compared protocols and experimental objectives To demonstrate the performance of 
HTLR and the effectiveness of hedge transfer learning, GPSR_3D [14], SP_GMRF [21], 
GGFGD [24], 3DPBARP [10], and N-HTLR are used as compared protocols. Five com-
pared protocols are divided into two groups:

• The first group to demonstrate the performance of HTLR. The first group 
includes GPSR_3D, SP_GMRF, GGFGD, and 3DPBARP. (1) GPSR_3D is an 
extended routing protocol of greedy perimeter stateless routing algorithm (GPSR) in 
three-dimensional space, including two packet forwarding modes of greedy forward-
ing mode and surface forwarding mode, with high reliability, energy saving, and 
storage efficiency. (2) SP_GMRF is a 3D multicast geographic routing protocol for 
FANETs, which improves the scalability when nodes move frequently by using local 
information to construct a group multicast routing tree structure. (3) GGFGD is a 
geographic multipath routing for 3D underwater wireless sensor networks based on 
geospatial division. In GGFGD, a greedy geo-forwarding multipath strategy based 
on geospatial division is proposed by considering the characteristics of 3D topology 
and propagation delay. (4) 3DPBARP is a geographical 3D position-based routing 
protocol with mobility prediction. It adds a stable decision considering node mobil-
ity, while simultaneously using the change of geographical information, direction, 
and speed to determine the node’s transmissions.

• The second group to demonstrate the effectiveness of hedge transfer learning. The 
second group includes N-HTLR. N-HTLR is a simplified version of HTLR without 

(22)
MLS

A
= max

(
MLS

B
× SLS(UAV B → UAV A),MLS

C
× SLS(UAV C → UAV A),MLS

D
× SLS(UAV D → UAV A)

)
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hedge transfer learning. In other words, the single-hop link state scheme in N-HTLR 
only uses offline QLS model and Foff = 1, which does not include online QLS model, 
Fon, and the procedure of hedge transfer learning in Algorithm 1.

Parameter setting We program five compared protocols and HTLR by using C/C++ 
in NS3 network simulator. The network parameters setting is shown in Table 2. We 
set the data transmission rate as 320 kbps, which belongs to the multimedia transmis-
sion rate range [47]. Besides, we set UAVs to send videos to the base station every 
10  seconds, and the period of multimedia transmission is 10  seconds in this paper. 
Each run of our simulations uses the newly generated mobility scenario to evaluate 
these protocols.

Evaluation metrics Except for PDR, delay, and jitter, we define the energy efficiency ratio 
EER as an energy-saving criterion in Eq.  23. Lower EER, better energy-saving perfor-
mance. UAVs’ energy consumption includes the energy consumption of sending data pack-
ets, receiving data packets, and broadcasting in the simulation. We set PDR and EER as the 
evaluation metrics of QoS. The higher PDR and lower EER mean the better QoS.

5.1  Comparison of general performance

3D multimedia routing protocols should consider PDR, EER, delay, and jitter to ensure 
multimedia QoS transmissions. To test these general performances of HTLR, the first 
group of compared protocols is used. Figure 8 presents the general results when node num-
ber = 100, the average speed of node = 25 m/s, and simulation time = 50 ~ 400 s. The expla-
nations are as follows.

• Figure  8(a) shows the variation trend of PDR with the increase of simulation time. 
HTLR has better PDR than others. For instance, the PDR gap between HTLR and SP_
GMRF is approximately 6%. This indicates that data forwarding is effective through 
multi-hop link states in HTLR. Besides, this also means that hedge transfer learning 
could correctly adjust online QLS model, Fon, and Foff. Moreover, these results could 
demonstrate that hedge transfer learning is robust in most cases.

• Figure 8(b) shows the variation trend of EER with the increase of simulation time. 
The EER result of HTLR is the best in all protocols. Lower EER means better per-
formance of saving energy. When simultaneously considering PDR and EER for the 
first group and HTLR, the comprehensive performance of PDR and EER for HTLR is 
also the best. This means that HTLR realizes our objective of ensuring the PDR and 
EER metrics.

• Figure 8(c) and (d) provide the results of delay and jitter change with the increase of 
simulation time. Naturally, HTLR is not good enough. From a delay perspective, HTLR 
is about the third best. From a jitter perspective, HTLR is about the second or third 
best. The reason is that HTLR must use more hops to improve PDR. Thus, more hops 
mean longer delay and more unstable jitter in most cases.

(23)EER = energy consumption ×
the number of failed forwarding frames

the number of successful forwarding frames
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Generally, HTLR improves PDR and reduces EER even when facing the complexity 
and instability of 3D network topology. In 3D multimedia FANETs, PDR and EER are 
more important than delay and jitter for dynamic searching and reconnoitering applica-
tions. Moreover, these delay and jitter results could be acceptable in most searching and 
reconnoitering applications.

5.2  Effect of network mobility

More links become unstable due to network mobility. Therefore, it is necessary to test the 
practicality of HTLR for different node-speed scenarios. Besides, compared with the first 
group of compared protocols, it is also compared with the second group (i.e., N-HTLR) to 
demonstrate the effectiveness of hedge transfer learning. Figure 9 presents the results when 
node number = 100, the average speed of node = 10 ~ 40 m/s, and simulation time = 200 s. 
Details are as follows.

• With the average speed of node increasing in Fig.  9(a) and (b), HTLR outperforms 
the first group in terms of PDR and EER. Moreover, with the average speed of node 
increasing, the advantage of HTLR is more obvious.
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Fig. 8  The general comparison when node number = 100, the average speed of node = 25 m/s, and simula-
tion time = 50 ~ 400 s. a Packet delivery rate. b Energy efficiency ratio. c Delay. d Jitter
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– Comparing the average speed of node = 40  m/s with the average speed of 
node = 10 m/s, the gap between other protocols and HTLR gradually becomes great. 
Thus, we could conclude that the multi-hop link state scheme accurately estimates 
the time-varying link states. Meanwhile, this also indicates that deleting the expired 
links from the next-hop routing table is effective in improving the probability of 
successfully choosing forwarding nodes.

– Compared with N-HTLR, hedge transfer learning could improve the PDR results of 
HTLR 2.67% ~ 4.18% and reduce the EER results of HTLR 0.39 ~ 5.97. Moreover, 
these two trends are always stable in the whole node-speed-change range.

• With the average speed of node increasing in Fig.  9(c) and (d), the delay and jitter 
results of HTLR are still not good enough. However, with the average speed of node 
increasing, the delay and jitter results of HTLR change little. Briefly summarizing, the 
node-speed impact on the delay and jitter results of HTLR is limited.

To further demonstrate the effectiveness of hedge transfer learning, Wilcoxon test is 
used to compare N-HTLR with HTLR mainly. Generally, when the average speed of node 
changes, these results still indicate that HTLR could ensure QoS. The explanations are as 
follows.
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• As a nonparametric statistical test, Wilcoxon test is widely used in various fields, which 
could compare two paired group datasets and computes the difference with significance 
level. In this paper, the significance level of Wilcoxon test is 0.05. When the p value result of 
Wilcoxon test is less than significance level, these two datasets are statistically significant.

• As shown in Tables 3 and 4, the symbols of (+), (≈), and (−) indicate that HTLR is 
superior to, approximately equivalent to, and inferior to one compared protocol, respec-
tively. According to 20-run PDR (or EER) data for various node-speed scenarios (the 
average speed of node = 10 m/s, 15 m/s, 20 m/s, 25 m/s, 30 m/s, 35 m/s, 40 m/s), we 
compare HTLR with the first group of compared protocols by using Wilcoxon test. 
HTLR is superior to the first group in all cases. On the other hand, compared with 
N-HTLR, HTLR is also superior to N-HTLR in all cases. These results prove that 
hedge transfer learning effectively improves PDR and reduces EER.

5.3  Effect of node number

Different scale searching and reconnoitering applications require different node num-
bers. The node-number changes lead to a series of topology changes. The node-number 
increase leads to more complex topology and more frequent topology changes. On the 
other hand, the node-number decrease results in fewer available links. Thus, it is neces-
sary to demonstrate the node-number change effect on HTLR.

Figure  10 presents the network performances when node number = 50 ~ 150, the 
average speed of node = 25 m/s, and simulation time = 200 s. With the increase of node 
number in Fig. 10(a) and (b), the PDR and EER performances of HTLR are better than 
other algorithms. Additionally, with the increase of node number in Fig. 10(a) and (b), 
the delay and jitter results of HTLR are similar to Fig. 9(c) and (d). When deploying 
fewer or more nodes, the stability of 3D network topology decreases, which is a seri-
ous challenge to HTLR. However, HTLR still obtains satisfactory results, as shown in 
Fig. 10. This means that HTLR effectively ensures the stability of 3D network topology 
and QoS, no matter for node number = 50 or node number = 150.

Table 2  Parameter setting Parameter Value

WiFi protocol IEEE 802.11b
data transmission rate 320 kbps
data packet size 2048 bytes
packet generation rate 20 packets/s
video transmission period 10 s
communication radius R 225 m
node initial energy E0 100 J
Eelec 50 nJ/bit
εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

3D space size 1000 m × 1000 m × 1000 m
UAV mobility model 3D random waypoint mobility model
base station location center of the ground (500, 500, 0)
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To further demonstrate the effectiveness of hedge transfer learning, Wilcoxon test is 
also used for the node-number network changes. The significance level is also 0.05. As 
shown in Tables 5 and 6, when compared with N-HTLR and other protocols for differ-
ent node-number scenarios (node number = 50, 75, 100, 125, and 150), HTLR is supe-
rior to N-HTLR and other protocols in all cases. This also proves that hedge transfer 
learning is still effective when node number changes.

Table 3  Wilcoxon results for PDRs in 20 runs between one compared algorithm and HTLR

Algorithm The average speed of node (m/s) Sum(+) Sum(≈) Sum(−)

10 15 20 25 30 35 40

GPSR_3D + + + + + + + 7 0 0
SP_GMRF + + + + + + + 7 0 0
GGFGD + + + + + + + 7 0 0
3DPBARP + + + + + + + 7 0 0
N-HTLR + + + + + + + 7 0 0
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speed of node = 25  m/s, and simulation time = 200  s. a Packet delivery rate. b Energy efficiency ratio. c 
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6  Conclusion

To ensure QoS in 3D multimedia F ANETs, HTLR mainly uses hedge transfer learning 
and the multi-hop link state scheme for dynamic searching and reconnoitering applications. 
There are two kinds of concluding remarks as follows.

• The expansibility of hedge transfer learning. Online data in the adjacent transfer 
periods is similar to each other. Because the received input information of online QLS 
model in the last transfer period is similar to the present received input information, 
online QLS model is suitable for estimating the link states in most cases. According to 
this kind of adjacent data similarity, the hedge principle is robust to adjust Fon and Foff 
for online and offline QLS models. On the other hand, compared N-HTLR with HTLR, 
the hedge principle improves the adaptability of hedge transfer learning. Moreover, the 
hedge principle could support hedge transfer learning to extend its application scope. 
Additionally, the hedge framework of hedge transfer learning could replace artificial 
neural networks with other models, such as support vector machines, extreme learning 
machines, deep neural networks, broad learning systems, and so on.

• The practicality of the multi-hop link state scheme. Experimental results demon-
strate that the multi-hop link state scheme is feasible to evaluate the multi-hop link 
states even in a distributed manner. This distributed approach is interesting to estimate 
link states against the unstable topology of 3D multimedia FANETs.

Generally, the structure of hedge transfer learning framework is important to ensure its 
good adaptability to dynamic networks and expansibility to other learning methods. The 
multi-hop link state scheme can indeed evaluate different link paths and reflect impacts on 
QoS. Therefore, HTLR can effectively overcome the instability of network topology during 
3D UAV video transmission and ensure QoS.

Table 4  Wilcoxon results for EERs in 20 runs between one compared algorithm and HTLR

Algorithm The average speed of node (m/s) Sum(+) Sum(≈) Sum(−)

10 15 20 25 30 35 40

GPSR_3D + + + + + + + 7 0 0
SP_GMRF + + + + + + + 7 0 0
GGFGD + + + + + + + 7 0 0
3DPBARP + + + + + + + 7 0 0
N-HTLR + + + + + + + 7 0 0

Table 5  Wilcoxon results for 
PDRs in 20 runs between one 
compared algorithm and HTLR

Algorithm Node number Sum(+) Sum(≈) Sum(−)

50 75 100 125 150

GPSR_3D + + + + + 5 0 0
SP_GMRF + + + + + 5 0 0
GGFGD + + + + + 5 0 0
3DPBARP + + + + + 5 0 0
N-HTLR + + + + + 5 0 0
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Hedge transfer learning has proven to be an effective mechanism for integrating online 
and offline models. However, the current hedge framework sets weights to score each 
model, lacking consideration for uncertainty. In the future, we will study the new hedge 
transfer learning framework with at least three models to explore the heterogeneous hedge 
principles. Meanwhile, we should also consider various factors to adjust this new hedge 
framework. On the other hand, there are interesting issues that should be investigated in 
3D multimedia FANETs, such as detecting link failure in complex network topology and 
developing a mechanism to tolerate network failure, and so on.
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