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Abstract
The performance of most Face Recognizers tends to degrade when dealing with masked 
faces, making face recognition challenging. Image inpainting, a technique traditionally 
used for restoring old or damaged images, removing objects, or retouching photos, could 
potentially aid in reconstructing masked faces. In this paper, we compared three state-of-
the-art image inpainting models—PatchMatch, a traditional algorithm, and two deep learn-
ing GAN-based models, Edge Connect and Free form image inpainting—to assess their 
performance in regenerating masked faces. The evaluation was conducted using own cre-
ated synthetic datasets MaskedFace-CelebA and MaskedFace-CelebA-HQ, along with a 
synthetic masked dataset created for paired comparisons of masked images with ground 
truth for face verification. The computed results for Image Quality Assessment (IQA) 
between ground truth and reconstructed facial images indicated that the Gated Convolu-
tion model performed better than the other two models. To further validate the results, the 
reconstructed and ground truth images were also subject to VGG16 classifier, a widely 
used benchmark model for image recognition. The classifier outcomes supported the quan-
titative and qualitative assessment based on IQA.

Keywords Generative Adversarial Network · Face reconstruction · Image Inpainting · Face 
inpainting · Deep learning · Masked Face Recognition · Face Recognition

1 Introduction

Face recognition (FR) systems have been widely used for identifying individuals based on 
their facial features, and their performance has been proven to be highly accurate. However, 
the emergence of the Covid-19 pandemic and the widespread adoption of face masks has 
posed a significant challenge to these systems. As a result, there has been a surge of interest 
in research on facial recognition with masked faces, as evident from the increasing number 
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of publications in this area (Fig. 1). While occluded face recognition was not extensively 
studied prior to the pandemic, the focus has now shifted towards developing methods to 
detect, validate, and ensure proper mask-wearing in public areas. Various deep learning 
models, such as transfer learning of VGG16 [37], InceptionV3 [23], Retinamask [21], 
FacemaskNet [19], and small CNN models [34, 35], have been used to develop automated 
face mask detection systems but at the same time recognizing face covered with mask is 
indeed challenging for the face recognition system. This in fact, decreases the accuracy of 
the deep learning models used for face recognition systems, leading to increased false posi-
tives. A suggested solution is the masked face reconstruction to create an unmasked face 
that reveals facial features similar to the ground truth image. This improves the accuracy of 
feature extraction and recognition tasks. This approach is certainly expected to reduce false 
positives and enhance the reliability of the face recognition systems where subjects are 
occluded due to Covid-type face mask.

In our study, we presented our work in two phases: face reconstruction using non-
learning and learning-based image inpainting techniques in the first phase, and utilizing a 
VGG16 classifier to classify reconstructed faces and ground truth images, with decreased 
accuracy in similarity between the reconstructed and original faces in the second phase.

Image inpainting techniques involve synthesizing visually realistic and semantically 
plausible pixels in missing regions of images, which may be distorted due to factors such 
as occlusion, scratches etc. in an image (Fig. 2). These techniques can also be extended 
to tasks such as image un-cropping, rotation, stitching, and super-resolution. In our 
research, we aim to evaluate the effectiveness of various image inpainting techniques for 
reconstructing masked faces, considering the latest advancements in this field. Through a 

Fig. 1  Percentage of Publications on Masked Faces Recognition 

Fig. 2  Applications of Inpainting (a) Original Image (b) Block Distortion (c) Distortion due to Text (d) Dis-
tortion due to Occlusion (e) Distortion due to Scratches
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comprehensive review of existing literature on masked face recognition and image inpaint-
ing, we assess the performance of state-of-the-art methods in this specific context. Masked 
face recognition has emerged as a cutting-edge research topic in computer vision [3, 14, 
31], leading to the adoption of deep learning models in many face recognition systems. 
Additionally, automatic image inpainting has gained significance as a challenging research 
area, thanks to advancements in image processing tools and the flexibility of digital image 
editing. One of the primary challenges in image inpainting is accurately recovering large 
missing areas in an image, as it can be difficult to reconstruct missing regions without com-
plete information about what is missing or hidden. In this paper, our evaluation focuses on 
non-learning and learning-based image inpainting techniques as a means to unmask the 
face by reconstructing the occluded area. We assess the effectiveness of these techniques 
in recovering missing regions and revealing the obscured facial features, aiming to con-
tribute to the understanding of their potential in the context of masked face recognition. As 
shown in Fig. 3, Non-deep learning-based or traditional image inpainting techniques can 
be broadly classified into two categories: patch-based and diffusion-based methods. These 
approaches make use of low-level image features and prior knowledge, such as patch offset 
statistics and low rank estimation, in order to reconstruct the missing regions [5]. However, 
accurately restoring complex details that are specific to the missing area poses challenges 
for these techniques. Some earlier attempts have sought to overcome these limitations by 
employing strategies such as matching and replicating background patches into the holes 
or propagating from hole boundaries, akin to texture synthesis [12]. Although these meth-
ods demonstrate efficacy in background inpainting tasks, they may encounter difficulties in 
scenarios where the missing regions involve intricate and non-repetitive structures, and are 
unable to capture high-level semantics accurately, making them less effective in such cases.

On the other hand, deep learning models, as shown in Fig. 3, are further divided into 
CNN-based and GAN-based image inpainting techniques. These deep learning-based 
methods have formulated inpainting as a conditional image generation problem. These 
techniques have shown remarkable success in generating new content in highly structured 

Fig. 3  Hierarchical representation of image inpainting techniques



896 Multimedia Tools and Applications (2024) 83:893–918

1 3

images such as faces, objects, and natural scenes, and have overcome challenges such as 
boundary distortions, deformed structures, and hazy textures that are common in tradi-
tional CNN approaches. By utilizing learning from data distribution, these methods are 
capable of generating coherent structures [18] in the missing region, which was challeng-
ing for non-learning-based techniques.

Deep learning techniques, particularly generative adversarial networks (GANs), have 
shown remarkable success in generating visually convincing pixels for missing parts in 
complex images such as faces, objects, and natural scenes, making them suitable for chal-
lenging image inpainting tasks. Traditional non-learning methods struggle with accurately 
reconstructing such complex structures. Several studies have demonstrated the effective-
ness of GANs[45,50] in face completion through image inpainting, particularly for restor-
ing faces after removing facial occlusions [31, 38, 40, 43]. Figure 4 depicts the implemen-
tation of Edge Connect Generative Image Inpainting with adversarial edge learning [29] 
and Free-form Image Inpainting with Gated Convolution [44] models on various natural 
images, including facial and non-facial scene-based images.

As mentioned previously, these cutting-edge models are primarily designed for image 
inpainting to complete missing areas, particularly for facial and non-facial images. In our 
experiment, we aim to unmask masked faces by reconstructing the face using these state-of-
the-art models. However, evaluating the performance of these models requires a large dataset 
with paired masked and unmasked images as ground truth, which is often scarce. To overcome 
this challenge, we created two synthetic masked face datasets, namely MaskedFace-CelebA 
and MaskedFace-CelebA-HQ. These datasets were generated by applying masks on original 
images from well-known benchmark face datasets, CelebA [28] and CelebA-HQ [24], result-
ing in a total of 21,844 masked faces from 25,000 CelebA images and 26,027 masked faces 
from 30,000 CelebA-HQ images. The performance of Edge Connect [29] and Free-Form 
Image Inpainting with Gated Convolution [44] models was then evaluated on these created 
masked datasets, which included male and female celebrity faces with variations in pose, illu-
mination, age, and other factors. The MaskTheFace [2] script was utilized to detect key facial 
features, such as the forehead, eyes, nose, mouth, jawline, and chin, necessary for applying 

Fig. 4  Image Inpainting Models: (a) Edge Connect—Generative Image Inpainting with adversarial edge 
learning [29] (b) Free-form Image Inpainting with Gated Convolution  (Source: Original paper)
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masks in the creation of these datasets. This approach enables us to overcome the scarcity 
of ground truth images and conduct comprehensive evaluations of the performance of these 
models in reconstructing masked faces.

The goal of this research is to use advanced image inpainting techniques to reconstruct the 
obscured portions of faces in masked images, with the aim of improving the performance of 
face recognition systems in masked scenarios. We will evaluate state-of-the-art image inpaint-
ing models, leveraging the VGG16[37] convolutional neural network (CNN) architecture, a 
popular deep learning model for image classification tasks. Our findings may have practical 
implications in enhancing the accuracy and reliability of face recognition systems in real-
world scenarios where masks are commonly worn.

2  Major contributions

As outlined in the introduction section, this study provides an in-depth review of exist-
ing methods while also introducing our own datasets. The noteworthy contributions of this 
research can be summarized as follows:

 (i) Creation of two synthetic masked face datasets, MaskedFace-CelebA and Masked-
Face-CelebA-HQ, using benchmark face datasets CelebA [28] and CelebA-HQ [24]. 
These datasets contain 21,844 and 26,027 masked face images, respectively, along 
with paired ground truth images for face reconstruction. These datasets were used for 
training and evaluating the proposed model for face reconstruction and recognition.

 (ii) Conducting a comparative study of three state-of-the-art image inpainting methods, 
namely PatchMatch [5], EdgeConnect [29], and Free-Form Image Inpainting with 
Gated Convolution [44]. Qualitative and quantitative evaluations were performed 
to assess the effectiveness of traditional and deep learning-based image inpainting 
methods for face reconstruction.

 (iii) Providing a comprehensive review of the performance of image inpainting models 
for reconstructed faces in face recognition, considering the implications and potential 
applications of the reconstructed faces in real-world scenarios.

The rest of the paper is organized into several sections. Section 3 discusses the research 
scope and related work in the field of face reconstruction and recognition. Section 4 summa-
rizes the benchmark datasets used in the study and describes the creation of synthetic masked 
face datasets for training and evaluation. Section 5 demonstrate the models used for masked 
face reconstruction and provides details about the experimental setup. Section 6 presents the 
comparative study of qualitative and quantitative results to evaluate the performance of the 
generated output(s) from the adopted models. Section 7 discusses the implications of recon-
structed faces in face recognition. Finally, Sect. 8 highlights the future scope of research and 
provides a conclusion summarizing the findings and contributions of the study.

3  Related work

This section offers a comprehensive overview of the current research on image inpaint-
ing techniques and their diverse applications across various domains, including face recon-
struction, as illustrated in the organization chart (Fig. 3) of this study. It provides a detailed 
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summary of the existing literature in this field, highlighting the key findings and contribu-
tions of previous research in the area of image inpainting, with a specific focus on its appli-
cations for face reconstruction.

3.1  Image inpainting

Image inpainting, also known as image completion or image hole-filling, is a computa-
tional technique used to fill in missing regions of an image with visually coherent and 
semantically meaningful contents. It has applications in computer vision, graphics, and 
image processing, including tasks such as object removal, image synthesis, image restora-
tion, and video frame interpolation, among others (Fig. 5).

Traditional approaches to image inpainting [62,63] rely on diffusion-based or patch-
based methods that use low-level features for patch matching and filling in missing regions. 
However, these methods may struggle with complex inpainting scenarios or generating 
semantically meaningful contents. In recent years, deep learning-based approaches, par-
ticularly using convolutional neural networks (CNNs), have gained prominence for image 
inpainting. These approaches leverage the power of CNNs to learn complex patterns and 
structures from large training datasets, enabling them to generate realistic and high-quality 
inpainted images.

The use of image inpainting has been extended to various applications, including object 
removal in images, image synthesis for graphics and virtual reality, image restoration in 
medical imaging, video processing, multimedia editing, and more. The ability to generate 
visually coherent and semantically meaningful contents in missing regions of images has 
opened up new possibilities for image manipulation, editing, and enhancement in diverse 
domains.

3.2  Non‑learning based image inpainting methods

Traditional image inpainting methods rely on searching for similar image patches either 
from the image itself or a large dataset and pasting them into the missing regions [13]. This 
search process can be time-consuming and typically involves hand-crafted distance meas-
ure metrics [11]. Traditional methods can be categorized into diffusion-based and patch-
based methods.

Diffusion-based methods propagate neighbouring information into the missing regions 
using differential operators, but they are limited to locally available information and may 
struggle to recover meaningful structures in large missing regions [4, 7]. On the other hand, 
patch-based approaches, initially introduced by Criminisi et al. [11] in 2004, used texture 

Fig. 5  Examples of Inpainting (a) Scaling up (b) removing scratches (c) Filling the missing block
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generation techniques to fill in large missing areas by copying and pasting nearby patches 
from a source image into the destination image [13]. Patch similarity computation for each 
target-source pair can be computationally intensive, but fast algorithms like PatchMatch 
proposed by Barnes et al. [5] in 2009 have been developed to address this issue and shown 
practical values in various image editing applications, including inpainting.

To minimize discontinuities, blending of source and target regions has been proposed 
by Huang et al. in 2014 [42]. However, these methods can be computationally expensive 
due to the computation of similarity scores for each target-source pair, which limits their 
practical applications. Patch-based algorithms have been used for tasks such as image 
stitching, image denoising, super-resolution, object detection, and tracking [6, 8, 16, 32]. 
These methods are most effective in natural scene images that require image retargeting, 
completion, and shuffling. However, they may struggle to fill in holes with semantic or 
novel content as they rely solely on low-level features for patch matching.

Overall, traditional image inpainting methods have limitations in handling complex 
inpainting scenarios and generating semantically meaningful contents. Deep learning-
based approaches, such as convolutional neural networks (CNNs), have emerged as a 
promising paradigm for high-quality image completion, as they can learn complex patterns 
and structures from large training datasets, enabling them to generate realistic and visually 
appealing inpainted images.

3.3  Deep learning based image inpainting

Deep learning-based techniques for image inpainting have gained popularity due to their 
ability to generate visually plausible results with good global consistency and local fine 
textures. Jain V.et.al. [20] initially designed architecture for image denoising using CNN 
and XIe et.al [39]. used sparse coding and deep neural network as denoising auto-encoder 
extended to image inpainting using CNN on their inhouse images dataset.

Recent researches show the popularity of GAN based techniques to achieve realistic 
inpainting results.One early approach was the Context Encoder proposed by Pathak et al.
[30] in 2016, which used an encoder-decoder network trained to handle 64 × 64-sized 
holes. However, the output images often had over-smoothed or blurry regions due to the 
information bottleneck in the fully connected layer. To address this, Yang et al.[40] pro-
posed an improved version of Context Encoder in 2017 that used a multi-scale neural patch 
synthesis technique to enhance texture details. However, this approach had limitations in 
filling missing parts in complicated scenes and required higher training time for real-time 
performance. Iizuka et  al.[18] introduced global and local discriminators as adversarial 
losses in 2017, along with dilated convolution layers to replace the fully connected layer 
and handle input images of various sizes. This approach showed promising results, but the 
use of large dilation factors resulted in increased training time. Zeng et al.[46] developed 
a controlled image inpainting system by integrating a deep generative model with global 
matching based on closest neighbours, but this approach had limitations in generalizing to 
masks of any shape, size, or position.

Liu et  al.[26] proposed partial convolution in 2018, where convolution weights were 
normalized by the mask area of the window to prevent capturing too many zeros in incom-
plete regions. This approach was the first to handle irregular holes and showed improved 
results. Wang et  al. [26] suggested an image inpainting method based on the attention 
mechanism and partial convolution to achieve more realistic outcomes. Zheng et  al.[45] 
introduced a pluralistic image inpainting approach to achieve various inpainting results.
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To capture long-range spatial dependencies, Yu et al. [43] proposed a contextual attention 
module in 2018 and integrated it into networks to borrow information from distant spatial 
locations. They also used WGAN adversarial loss and weighted L1 loss to improve training 
stability. However, their model mainly trained on large rectangular masks and did not gen-
eralize well on free-form masks. For free-form image inpainting, Yu et al. [44] extended 
their work in 2019 with DeepFill v2, a generative image inpainting system based on gated 
convolutions and a patch-based GAN loss.

Jiang et al.[22] proposed a novel image inpainting approach based on Wasserstein GAN 
with skip-connections and autoencoders in 2020. The skip-connections enhanced the pre-
diction ability of the generator and prevented gradient vanishing, resulting in improved 
image quality. Cai et al.[9] proposed PiiGAN in the same year, which added a new style 
extractor in the GAN to generate diverse results with plausible content for a single input 
image with missing regions. This model showed efficient results in art restoration, facial 
micro shaping, and image augmentation, but had limitations in handling large irregular 
missing areas. Liu et al.[27] proposed PD-GAN in 2020, a probabilistic diverse GAN for 
image inpainting. This model generates multiple inpainting results with diverse and visu-
ally realistic content for a given input image with arbitrary hole regions. Spatially probabil-
istic diversity normalization (SPDNorm) is proposed inside the modulation to control the 
diversity of generated images. Further research and advancements are reported in order to 
give improved image quality using deep learning algorithms.

Yang et  al. [41] presented a contextual feature constrained DCGAN with paired dis-
criminator for face completion. They used a pre-trained VGG network to extract features 
and introduced a paired feature matching loss to stabilize training. Experimental results 
showed promising outcomes with improved texture and semantic consistency. The pro-
posed work by chen et.al. [10] introduces a two-stage framework for face image inpainting 
using latent feature reconstruction and mask awareness. It includes a pre-trained StyleGAN 
generator for preliminary restoration with a latent cosine similarity loss, and a hierarchical 
attention mechanism between the encoder and decoder.A recent work proposed by the Yao.
et.al. [42] introduces a second order generative image inpainting model that combines edge 
and feature self-arrangement modules. The edge repair network effectively reconstructs 
structural information in the broken area, while the image inpainting network uses the gen-
erated edge map as prior conditions for decoding. A feature self-arrangement module is 
also incorporated to fill the broken area with effective information at the feature level. The 
proposed model demonstrates the ability to generate content with similar semantics, valid 
structure, and clear texture features as the original image. Overall, deep learning-based 
image inpainting techniques have shown significant progress in recent years, but there are 
still challenges in handling complex scenes, irregular holes, and large missing areas.

4  Dataset Generation

A masked face dataset is constructed using a computer vision script MaskTheFace[2] on 
the benchmark face datasets CelebA[28] and CelebA-HQ[24] to assess the suggested state-
of-the-art image inpainting techniques for face reconstruction. This tool applies the user-
selected mask by identifying variations such as face tilt, angle, and position, among other 
things, and employs a dlib based facial landmarks detector to determine the face tilt, which 
is one of the six critical aspects of the face required for precisely fitting the mask on the 
face (Fig. 6).
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Due to the blending of the face boundary with the background, the tool failed to 
detect facial points for applying the correct mask location in some circumstances. Fig-
ures 7 and 8 show the failure of tool where faces are with extreme facial tilt, wide open 
mouth, or heavy face occlusion.

The MasktheFace tool supports multiple mask types, mask variations, supports both 
single & multi-face images, face angle coverage and bulk masking on the huge dataset. 
MaskTheFace is used to convert the Faces dataset into a masked face dataset such as 
MaskedFace-CelebA and MaskedFace-CelebA-HQ in our case. A mask was chosen at 
random from cloth, surgical-green, surgical-blue, and N95 for each image in the col-
lection. In addition, the original unmasked image was included in the collection with 
masked images. This was done to ensure that the trained network performs equally well 
on masked and unmasked images.

5  Experimental setup—image inpainting models

In this section we will discuss the image inpainting models used here for reconstructing 
the face in detail and the process performed for the evaluation of models. As mentioned 
in Sect. 4 we have created our own synthetic masked datasets namely MaskedFace-Cel-
ebA and MaskedFace-CelebA-HQ based on applying face mask on the face images of 
benchmark datasets CelebA[28] and CelebA-HQ[24]. Before applying the face masks 
all the images were resized to 256 × 256 as per the requirement for input to the mod-
els. In this study we have performed experiment with Patch Match[5] as non-learning 
model, EdgeConnect[29] and Gated Convolution[44] as deep learning models. These 
three models accept masked face and segmented binary map as input and gives recon-
structed face as output. For this purpose we have also created a binary map for the 
occluded area of all the images which are covered with synthetic face mask.

Fig. 6  Masking the face using Mask-the-face-tool

Fig. 7  Failure cases of mask application (MaskedFace-CelebA dataset)
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5.1  Face reconstruction

Any missing parts of the face should be estimated and reconstructed after unmasking to 
conduct the identity matching procedure and make the recognition decision, i.e., recog-
nized or unrecognized identity. Deep learning methods have addressed such challenges in 
order to recover the missing part in the facial image. In this section we are discussing the 
experimental result of three image inpainting models: Patch Match (Non-learning based), 
Edge Connect [29] method and free form with gated convolution[44] which are deep learn-
ing based models.

5.1.1  Patch match model

Patch-based methods, such as PatchMatch [5], employ a copy-paste approach to fill in 
missing regions by copying information from similar regions within the same image or a 
collection of images. PatchMatch is commonly used for structural image editing, utilizing a 
nearest neighbor field (NNF) framework. The algorithm relies on the assumption that good 
matches can be found through random sampling, and color coherence allows for quick 
propagation of matching patches to surrounding regions.Despite its success in tasks such as 
retargeting, hole completion, and content reshuffling, PatchMatch may not be suitable for 
reconstructing masked facial features, as demonstrated in Fig. 9 of the paper. Specifically, 
PatchMatch’s reliance on picking matching pixels from the NNF for filling the missing 
region may result in inaccurate reconstruction of facial features, particularly in complex 
and detailed areas like faces.Notably, the experimental results discussed in the paper per-
tain specifically to the MaskedFace-CelebA-HQ dataset, and PatchMatch may still perform 
effectively in other image editing tasks or datasets. However, the limitations of PatchMatch 
in reconstructing masked facial features highlight the potential need for more advanced, 

Fig. 8  Failure cases of mask application (MaskedFace-CelebA-HQ dataset)
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learning-based methods that can better capture the nuances of facial structures and textures 
for improved accuracy and visual quality.

5.1.2  Edge connect

Edge-Connect technique proposed by Yu, J. et.al [43]. works on the concept of ‘Lines first, 
color next’, is inspired by artists’ work. The major contribution of the work is an edge gen-
erator that is capable of hallucinating edges in missing regions given edges and grayscale 
pixel intensities of the rest of the image. An image completion network is also proposed 
that combines edges in the missing regions with color and texture information to fill the 
missing region. The original work of authors of this model is to fill in missing regions 
demonstrating fine details an end-to-end trainable network is proposed that combines edge 
generation and image completion. We have used the same architecture for the purpose of 
reconstructing the face using the pre-trained celebA dataset which is trained using irregular 
form of mask.

The detailed architecture is shown in Fig.  10 which demonstrates an edge-to-image 
two-stage network i.e. two generators and two discriminators. To obtain the overall image 
structure, the first generator is in task of predicting the edges of the missing regions. The 
predicted edge map is a binary map that depicts an image’s skeleton. The second generator 
is based on the predicted edge map and is in responsibility of filling in the missing texture 
details in the missing regions.

The first generator G1 produces a predicted edge map using the mask image, masked 
edge image, and masked grayscale image as input. The conventional adversarial loss and 
the feature matching loss are used to train this generator. The second generator G2 takes 
the expected edge map and the masked RGB image as input and generates a finished RGB 
image. The style loss, perceptual loss, L1 reconstruction loss, and conventional adversarial 
loss are all used to train this generator.

As per the requirement of network architecture an 8-bit binary mask and 24-bit over-
layed mask image of 256 × 256 resolution is given as input and the completed image is 
given as output by the system. As obvious the model shown better result on MaskedFace-
CelebA dataset as compare to MaskedFace-CelebA-HQ face dataset as the model is trained 
on CelebA face datasets (Fig. 11).

Fig.9  Reconstructed face using PatchMatch [5] model on MakedFace-CelebA (left) and MaskedFace-Cel-
ebA-HQ (right) dataset (a) Ground Truth (b) Masked Image (c)Image with Mask Overlay (d) Reconstructed 
Face using Patchmatch[5]
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As per results mentioned in Table 1 in terms of PSNR,SSIM, FID and MAE, our work 
shows better values for image quality metrics except FID in comparison to results taken 
from original EdgeConnect[29] paper.

5.1.3  Free form image inpainting with gated convolution

Yu. Jiahui et.al [44]. proposed a generative image inpainting system to complete 
images with a free-form mask and guidance. It is a blending of the Contextual Atten-
tion (CA) layer proposed [43] in DeepFill v1, the concept of user guidance (optional 
user sketch input) introduced in EdgeConnect, and Partial Convolution (PConv) modi-
fied to Gated Convolution (GConv), in which rule-based mask update is formulated as 
a learnable gating to the next convolution layer as shown in Fig. 12. The model uses 
a coarse-to-fine network structure in two stages. The coarse reconstruction is man-
aged by the first generator network, while the refinement of the coarse filled picture 

Fig. 10  Network Architecture—Edge Connect. Incomplete grayscale image and edge map, and mask are 
the inputs of G1 to inputs of G1 to predict the full edge map. Predicted edge map and incomplete color 
image are passed to G2 to perform the inpainting task. (Architecture from original paper, Image from own 
experiment)

Fig. 11  Face reconstruction (A) Edge Connect[29] model evaluated on CelebA masked-face dataset (a) 
Ground Truth (b) Masked Image (c) Image with Mask Overlay (d) Image Mask (e) Reconstructed Face (B) 
Gated Convolution [44] model evaluated on CelebA-HQ masked-face dataset (a) Ground Truth (b) Masked 
Image (c) Image with Mask Overlay (d) Image Mask (e) Reconstructed Face
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is performed by the second generator network. The network is trained using only the 
two most common loss terms, the L1 loss and the GAN loss. This is one of the paper’s 
assertions, as other state-of-the-art inpainting papers train their networks with up to 6 
loss terms.

For a coarse reconstruction of the missing regions, the coarse generator uses the 
masked image, mask image, and an optional user sketch image as input. A standard 
convolutional layer followed by a sigmoid activation function is used for updating 
the mask instead of a rule-based mask update in Partial Convolution and learning for 
Gated Convolution. The same architecture as shown in Fig. 9 is used for reconstructing 
the faces after removing the mask from face. The model is evaluated on the masked-
face dataset of 9621 images (MaskedFace-CelebA faces) and 9883 images (Masked-
Face-CelebA-HQ faces) and the result shows better performance on MaskedFace-Cel-
ebA-HQ dataset (Fig. 13,14) as the pre-trained model trained on CelebA-HQ is used 
for experiment.

6  Results and discussion

We evaluate the models discussed above on the masked-face datasets MaskedFace-Cel-
ebA, and MaskedFace-CelebA-HQ. The result is reported in terms of qualitative and 
quantitative results in sub-sections of this section.

Table 1  Comparison of Image 
Quality metrics with state-of-
the-art EdgeConenct[29] with 
our work

Metrics Original Work EC[29] Our Work 
using EC[29]

PSNR 25.28 27.68
SSIM 0.846 0.962
FID 2.82 4.32
MAE 0.846 0.0298

Fig. 12  Network Architecture: Free form Image Inpainting with Gated Convolution (As per Original litera-
ture)
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6.1  Qualitative results

The masked face datasets were evaluated using three different methods: PatchMatch [5] as 
a traditional or non-learning based method, and two deep learning based methods, Edge  
Connect [29] and Gated Convolution [44], with the same architecture and pre-trained models  
for reconstructing the face. The results are shown in Figs. 15 and 16 for the MaskedFace-
CelebA masked face dataset, and in Fig. 17 for the MaskedFace-CelebA-HQ masked face 
dataset.

The results indicate that PatchMatch [5] fails to accurately fill in the missing pix-
els with predicted facial features, whereas the learning-based methods show improved 
results. PatchMatch [5] also did not perform well on the MaskedFace-CelebA-HQ data-
set compared to the MaskedFace-CelebA dataset. It is worth noting that image inpainting 
techniques may not yield promising results when used for face generation after remov-
ing a large occlusion such as a mask. The experiments demonstrate that PatchMatch [5] 
may not be suitable for the purpose of regenerating masked facial features, and the deep 
learning-based methods Edge Connect [29] and Gated Convolution [44] show better 
performance in this task.Fig. 19Failure cases: Reconstructed faces from Edge Connect 
Model (MaskedFace-CelebA-HQ Dataset)Fig. 19Failure cases: Reconstructed faces from 
Edge Connect Model (MaskedFace-CelebA-HQ Dataset)Fig.  19Failure cases: Recon-
structed faces from Edge Connect Model (MaskedFace-CelebA-HQ Dataset)

The performance of the generated faces is generally better on the model for which they 
are trained, resulting in images that are close to the ground truth. However, there are still 

Fig. 13  Face reconstruction using Gated Convolution[44] model evaluated on MaskedFace-CelebA
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cases where the reconstructed faces may not be well-generated, especially in scenarios 
such as illumination changes, improper face detection, or merging of the face with the 
background. These issues are illustrated in Figs. 17, 18, 19 and 20, showing examples of 
images where the generated faces may not be accurately reconstructed.

6.2  Quantitative results

We compare the results of the experiments performed over three models: Patch Match [5], 
Edge Connect [29] and Gated Convolution [44] in terms of reconstructed face image qual-
ity. The quantitative result of these models is reported in terms of image quality assessment 
metrics as given below:

1. Peak signal-to-noise ratio (PSNR)[36]: PSNR is a full reference metrics and measures 
the quality of the generated image by comparing it to the ground truth image in terms 
of the signal-to-noise ratio. It quantifies the amount of noise or distortion present in the 
generated image compared to the original image. Higher PSNR values indicate lower 
distortion and better image quality, indicating a closer resemblance to the ground truth. 
The original image matrix and the degraded image matrix must have the same dimen-
sions. The following is a definition:

Fig. 14  Gated Convolution[44] model evaluated on MaskedFace- CelebA-HQ masked-face dataset
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Fig. 15  Comparison of qualitative results with existing models on CelebA dataset (a) Ground Truth Image from 
CelebA Dataset. (b) Image with mask (c) PatchMatch [5] (d) Edge Connect [29]. (e) Gated Convolution [44]
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Fig. 16  Comparison of qualitative results with existing models on CelebA-HQ dataset (a) Ground Truth 
Image from CelebA-HQ Dataset. (b) Image with mask (c) Edge Connect [29]. (d) Gated Convolution [44]

Fig. 17  Failure cases: Reconstructed faces from Edge Connect Model (MaskedFace-CelebA Dataset)
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where MAXf is the maximum signal value that exists in the original image, and mean 
squared error (MSE) is calculated as follows:

where f represents the matrix data of the original image, g represents the matrix data of the 
degraded image, m denotes the numbers of pixel rows of the image, i denotes the index of 
each row, n represents the number of pixel columns of the image, and j represents the index 
of each column.

2. Structural SIMilarity (SSIM)[1]: SSIM is a full reference metric and a measure of how 
similar the structure of the generated image is to the ground truth image. It considers the 
luminance, contrast, and structural similarities between the two images. Higher SSIM 
values indicate a higher degree of similarity, indicating better quality of the generated 
image in terms of structural consistency with the ground truth. It can be defined as 
follows:where µ denotes the mean value of a given image and σ is the standard deviation 
of the image; x and y represent the two images being compared; c1 and c2 are constants 
to guarantee stability when the divisor becomes 0.

3. Mean Absolute Error (MAE): MAE measures the average absolute pixel-wise differ-
ence between the generated image and the ground truth image. It provides a quantitative 

(1)PSNR = 20 log10
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Fig. 18  Failure cases: Reconstructed faces from Gated Convolution Model (MaskedFace-CelebA Dataset)

Fig. 19  Failure cases: Reconstructed faces from Edge Connect Model (MaskedFace-CelebA-HQ Dataset)
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measure of the overall pixel-level accuracy of the generated image. Lower MAE values 
indicate less discrepancy between the generated image and the ground truth, indicat-
ing higher image quality and better reconstruction.where r and g are the real and fake 
embeddings, and µr and µg are the magnitudes of the vectors r and g. Tr is the trace of 
the matrix, and ∑r and ∑g represent the covariance matrix of vectors [72].

4. Fréchet Inception Distance (FID)[17]: FID is a measure of the dissimilarity between 
the distribution of feature representations from the generated image and the ground truth 
image, as extracted from a pre-trained Inception-v3 model[23]. Lower FID values indi-
cate a smaller distance between the distributions, indicating a higher level of similarity 
between the generated image and the ground truth, and hence better image quality in 
terms of distributional similarity.The following is a definition:where r and g are the real 
and fake embeddings, and µr and µg are the magnitudes of the vectors r and g. Tr is the 
trace of the matrix, and ∑r and ∑g represent the covariance matrix of vectors [72].

Note that the Table 2 report our evaluation in terms of Peak signal-to-noise ratio PSNR, 
structural similarity index (SSIM),Mean absolute error MAE and FID on two masked-
face datasets namely MaskedFace-CelebA and MaskedFace-CelebA-HQ separately using 
three models Patch Match [5], Edge Connect [29] and Gated Convolution [44]. Recent 
researches [19, 34, 35] have shown that metrics based on deep features are closer to those 
based on human perception.

The results from the Table 2 indicate that the GC[44] model generally performs better 
in terms of face reconstruction accuracy compared to the PM[5] and EC[29] models when 
evaluated on the MaskedFace-CelebA and MaskedFace-CelebA-HQ masked-face data-
sets. GC[44] has higher PSNR and SSIM values, which indicate better image quality and 
structural similarity, and lower MAE and FID values, which indicate lower error and better 
similarity to ground truth images. These results suggest that GC[44] may be a promising 
choice for face reconstruction tasks, as it demonstrates superior performance in multiple 
evaluation metrics. However, this is only a preliminary study which needs to be corrobo-
rated with further investigations. Therefore, these datasets are also subject to face recogni-
tion to match the reconstructed face with its ground truth using efficient face recognition 
algorithm. Which is reported in Sect. 6.
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Fig. 20  Failure cases: Reconstructed faces from Gated Convolution Model (MaskedFace-CelebA-HQ Data-
set)
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7  Face recognition

In this sub-section, we report our work in terms of face recognition, where we classify the 
faces as ground truth or reconstructed images. For this task, we utilized the VGG16[37] 
convolutional neural network (CNN) architecture pretrained on Imagenet dataset[33], 
which is a popular deep learning model for image classification tasks. We trained the clas-
sifier model using 80% of the input data and tested it on the remaining 20% of the input 
data, following an 80–20% split for both the Masked-Face-CelebA and Masked-Face-Cel-
ebA-HQ datasets. We provide a brief introduction to the VGG16 classifier model, which 
is used in our work to carry out classification between the ground truth images and the 
reconstructed image sets.

7.1  The VGG16 model

We employed the VGG16 convolutional neural network (CNN) architecture, which is a 
widely-used deep learning model for image classification tasks. The VGG16 model com-
prises 16 weight layers, including 13 convolutional layers and 3 fully connected layers. It is 
known for its deep architecture, which allows it to capture complex features from images.
To adapt the VGG16 model for our specific classification task, we removed the last fully 
connected layers of the original model and replaced them with custom layers. The modi-
fied VGG16 model was then fine-tuned on our dataset, which consisted of ground truth and 
reconstructed face images.

The input images were resized to the required input shape of the VGG16 model, typi-
cally 224 × 224 pixels, and were passed through the convolutional layers to extract high-
level features. The ReLU activation function was applied after each convolutional layer 
to introduce non-linearity. Global average pooling was then applied to reduce the spatial 
dimensions of the features, resulting in a fixed-size vector. This vector was fed into custom 
fully connected layers with appropriate activation functions and output units for the final 
classification.

During training, we used a batch size of 100 and performed 30 epochs of training. 
We employed the Adam optimizer with a learning rate of 0.001 for gradient descent. To 
enhance the model’s robustness to different variations in the input images, we applied 
data augmentation techniques such as rotation, horizontal flip, and zoom. The trained 

Table 2  Quantitative results over MaskedFace-CelebA and MaskedFace-CelebA-HQ with models: Patch 
Match (PM) [5], Free-Form Image Inpainting with Gated Convolution (GC) [44], Edge Connect—Genera-
tive Image Inpainting with Adversarial Edge Learning (EC) [29]. The best result of each boldfaced Lower is 
better. *Higher is better

Models MaskedFace-CelebA
dataset

MaskedFace-CelebA-HQ
dataset

PM[5] EC[29] GC[44] PM[5] EC[29] GC[44]

PSNR* 25.76 27.68 26.77 18.02 26.53 28.1843
SSIM* 0.90 0.950 0.971 0.7891 0.943 0.9390
Mean absolute error (MAE) 0.0197 0.0298 0.0198 0.0559 0.049 0.0168
Fréchet Inception Distance (FID) 18.7186 4.3297 10.3297 10.0352 8.012 2.012
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VGG16 model achieved an accuracy as shown in Table  3 on our validation set for 
the tested models Edge Connect and Gated Convolution on MaskedFace-CelebA and 
MaskedFace-CelebA-HQ datasets, respectively. These results demonstrate the effective-
ness of our VGG16-based approach in classifying ground truth and reconstructed face 
images in our specific context.

As with any classifier model, the performance of the VGG16 classifier in the pre-
sent paper’s face recognition system was evaluated using several commonly used per-
formance metrics, including Accuracy, Precision, Recall, and F1 score and their brief 
description is given below:

Accuracy Accuracy is a widely used metric for evaluating the performance of classifier 
models. It gauges the ability of the classifier to correctly identify both positive and negative 
samples in the dataset. The accuracy of the model is calculated as the ratio of the number 
of correct predictions (i.e., true positives and true negatives) to the total number of samples 
in the dataset. The formula for calculating accuracy is:

This metric provides an overall assessment of the model’s performance in accurately 
classifying ground truth and reconstructed face images in the context of face recogni-
tion. It is an important evaluation metric that reflects the VGG16 classifier’s ability to 
accurately classify samples in the dataset.

Precision Precision is a useful metric to consider when the consequences of false positives 
are significant. It evaluates the accuracy of the classifier in avoiding mislabelling negative 
samples as positive. Precision measures how precise the model is in terms of the propor-
tion of predicted positives that are truly positive. It is calculated as:

A higher precision value indicates that the classifier is making fewer false positive 
predictions, which can be crucial in  situations where misclassification costs are high. 
This metric provides insights into the classifier’s ability to minimize false positives, 
where the model incorrectly identifies a negative sample as positive.

Recall Recall, also known as sensitivity or true positive rate, measures the ability of the 
classifier to correctly capture actual positives by labelling them as positive (true positives). 
Recall is a relevant metric to consider when the cost of false negatives is high, as it reflects 
the classifier’s capacity to identify all positive samples. Recall is calculated as:

A higher recall value indicates that the classifier is able to capture more true posi-
tives, which can be crucial in situations where missing positive samples is costly. This 

Table 3  Face recognition VGG16 classifier for Ground Truth & Reconstructed Images

Dataset Model Accuracy (%) Precision (%) Recall (%) F1 score (%)

MaskedFace-CelebA EC[29] 56.56 56.56 1.0 72.25
MaskedFace-CelebA GC[44] 48.82 48.82 1.0 65.61
MaskedFace-CelebA-HQ EC[29] 49.75 49.45 92.6 66.15
MaskedFace-CelebA-HQ GC[44] 47.25 47.25 1.0 64.18
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metric provides insights into the classifier’s ability to minimize false negatives, where 
the model incorrectly identifies a positive sample as negative.

The F1‑Score Also known as the F-Score, is a metric used to evaluate the accuracy of a 
model on a binary classification dataset. It measures how well the model performs in clas-
sifying examples into ’positive’ and ’negative’ categories. The F-Score is calculated as the 
harmonic mean of the model’s Precision and Recall, and it provides a way to combine both 
Precision and Recall into a single value. A perfect F1-Score is 1.0, indicating perfect Preci-
sion and Recall, while a value of 0 indicates that either Precision or Recall is zero.

The Accuracy, Precision, Recall, and F1-Score are comprehensive performance metrics 
for evaluating face recognition systems. They are used to correctly identify reconstructed 
faces as distinct from the ground truth faces. In our experiments, the set of parameters used 
for image quality assessment (IQA), including PSNR, SSIM, FID, and MAE, may behave 
inversely with respect to the four classifier parameters. Table 4 presents the compiled val-
ues generated by the VGG16 classifier, with results separately reported for EdgeConnect 
[29] and Gated Convolution [44] models. It’s important to note that Patch Match [5] was 
found inadequate in the initial part of our work, and thus the VGG16 classifier was not 
tested on Patch Match results.

VGG16 is widely used as a powerful image classifier in applications such as object 
recognition, scene classification, emotion recognition, and disease diagnosis. Its deep 
architecture and ability to learn complex features from images make it highly effective in 
accurately categorizing images. It finds applications in healthcare for classifying medical 
images, automotive industry for object recognition in autonomous vehicles, and entertain-
ment industry for scene classification in video processing. VGG16’s versatility as a clas-
sifier has made it a popular choice among researchers and practitioners in various fields 
where accurate image classification is essential. The results mentioned in Table  3 are 
clearly contrary to its performance as stated above. For MaskedFace-CelebA dataset gives 
56.56% and 48.62% recognition accuracy for EC [29] and GC [44] respectively whereas 

(6)Accuracy =
(True Positive + True Negative)

(True positive + False Positive + True Negative + False Negative)

Precision =
True Positive

True Positive + False Positive

(7)=
True Positive

True Predicted Positive

(8)Recall =
True Positive

True Positive + False Negative

=
True Positive

True Actual Positive

(9)F1 Score = 2x
Precision ∗ Recall

Precision + Recall
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the accuracy recorded for MaskedFace-CelebA-HQ is 49.75% and 47.25% for EC [29] and 
GC [44] respectively. The lower accuracy of the VGG16 classifier in classifying between 
ground truth and reconstructed facial images suggests that the distinction between these 
two sets may not be clear. This could be due to the fact that when ground truth and recon-
structed faces are visually similar, classifiers may struggle to differentiate between them. 
This implies that the reconstructed facial images generated by EC [29] and GC [40] models 
may closely resemble their ground truth counterparts, as the classifier is unable to accu-
rately distinguish between them. This is because, the recognition accuracy is poor in both 
these cases. Therefore, the computed quantitative metrics – PSNR (dB) and SSIM out-
comes must also corroborate with classifier outcomes. So far as PSNR (dB) is concerned, 
the computed values are in the vicinity of 25–28 dB. On the other hand, the SSIM com-
puted value is 0.971 & 0.974 respectively.

The high SSIM value indicates that the ground truth and reconstructed facial images are 
visually similar, as SSIM measures image quality or correlation with values ranging from 
0 to 1, where 1 represents higher image quality. On the other hand, PSNR does not indicate 
the same, as it is dependent on MSE and amplifies errors between images. The computed 
PSNR values in the present work are within the range of 25–28 dB, which suggests that the 
ground truth and reconstructed images are distinct. However, PSNR is not considered as 
a robust Image Quality Assessment (IQA) metric due to its dependence on MSE and has 
been debated in the research community. SSIM, being a structural property-based metric, 
is considered more robust for IQA.

Based on the analysis, it is concluded that the computed outcomes of SSIM, FID, and 
VGG16 classifier accuracy align with each other, indicating similar results. The lower face 
recognition accuracy of the VGG16 classifier coinciding with higher SSIM values suggests 
better resemblance between the ground truth and reconstructed images.

The analysis suggests that out of the three models tested in the present work—Patch 
Match[5], EdgeConnect Model[29], and Gated Convolution Model [44], Patch Match is 
not found to be suitable for facial image reconstruction, while EdgeConnect model per-
forms better on the Masked Face CelebA dataset and Gated Convolution model performs 
better on the MaskedFace-CelebA-HQ dataset.

8  Conclusion & Future work

In this study, a comparative analysis of image inpainting models was conducted using syn-
thetic masked datasets, namely MaskedFace-CelebA and MaskedFace-CelebA-HQ. The 
traditional PatchMatch model yielded unsatisfactory results for face reconstruction, as it 
is primarily used for restoring images or removing blocked patches from images based on 
neighbourhood information. However, deep learning-based models such as EdgeConnect 
and Gated Convolution produced plausible images and outperformed traditional patch-
based methods in quantitative comparisons.

Despite the promising results on synthetic datasets, the deep learning-based models 
faced challenges when dealing with real masked faces, such as lack of proper face visibility 
and illumination. Face recognition results showed synchronized performance in terms of 
differentiating ground truth images from reconstructed ones, as indicated by IQA and FID 
metrics.

It’s important to note that the models used in this study were originally designed for 
removing face occlusions or reconstructing natural scenes, and were repurposed for masked 
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face reconstruction. Further improvements can be made by training on new datasets, fine-
tuning hyperparameters, and exploring the use of generative diverse image inpainting tech-
niques for real masked face recognition in future work.
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