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Abstract
The early diagnosis of cancer is crucial  to provide prompt and adequate management of 
the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first 
preferred method for diagnosis. However, these tests have some limitations which can 
cause a delay in detection and diagnosis. The use of  computer-aided intelligent systems 
can assist physicians in diagnosis. In this study, we established a Convolutional Neural 
Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, 
which was improved with the Ranger optimization and extensive pre-processing. We also 
compared the proposed model with state-of-the-art deep learning architectures such as 
ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their 
spatial features. We achieved the best micro-average results with 99.85% test accuracy, 
99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% 
f1-score. Furthermore, the experimental results of the improved model were compared to 
various CNN-based architectures using key performance metrics and were shown to have 
a strong impact on tumor categorization. The proposed system has been experimentally 
evaluated with different optimizers and compared with recent CNN architectures, on both 
augmented and original data. The results demonstrated a convincing performance in tumor 
detection and diagnosis.
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1 Introduction

Brain tumors are one of the most common causes of human death. Thus, an early and 
accurate diagnosis is critical for an effective treatment process. In clinical neuroradiology, 
pre-treatment diagnosis of brain tumors using Magnetic Resonance Imaging (MRI) is 
challenging. This is because in contrast t-1 weighted MRI scans, their appearance is very 
similar to hyperintense brain lesions such as lipoma, dermoid cysts, thrombosis, etc. [65]. 
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Additionally, the human eye cortex has a limited capacity to distinguish between different 
gray levels present in both MRI and computerized tomography.

As brain cells renew themselves, the abnormal cells that occur in the replication phase 
grow and become a mass, forming brain tumors. There are two types of brain tumors with 
benign/primary (e.g. pituitary or meningioma) and malignant/secondary (e.g. glioma). 
While benign brain tumors do not spread, malignant tumors spread throughout the body 
using different organs, such as breasts and lungs to make brain metastases [48]. One type 
of malignant tumors, gliomas not only invade the surrounding tissues but have the ability 
to metastasize to distant tissues. As a result, they require a quick and accurate diagnosis, as 
they have a faster growth rate, a tendency to invade surrounding tissues, and the ability to 
metastasize to different tissues. Therefore, the development of more effective therapeutics 
in both diagnosis and treatment is crucial. Additionally, there are some drawbacks to the 
ability of conventional MRI to discriminate between primary and metastases tumors and 
central nervous system masses, because their radiological features appear to be similar. 
Artificial Intelligence (AI)-based research on existing data is required to help guide 
decisions, comprehensive datasets from various users, and retrospective analysis of data 
to shed light on exploring new avenues in both diagnostic and therapeutic processes [12].

With the development of computer vision technology, AI technology produces smart 
solutions in many fields such as industry [43, 70], medicine (e.g. cancer detection) [20], 
early diagnosis and treatment of non-symptomatic liver disease [41], predicting fatal 
malaria [55], thoracic surgery [21], face mask detection for COVID-19 prevention [5, 52, 
54], nanotechnology [13], robotics [19, 72], agriculture [53, 56, 74]. Convolutional Neural 
Network (CNN) is one of the most commonly used neural networks in Deep Learning (DL) 
with its strong self-learning, adaptability, and generalization ability.

This article proposes a new CNN-based framework to detect tumors and categorize 
brain tumor types at the pre-diagnosis stage. In the proposed framework, the MR images 
are first cropped up to the skull, then the histogram equalization and denoising filter 
are performed. Then, the data augmentation technique is used to ensure stable learning. 
Finally, the EfficientNetv2 + Ranger pre-trained CNN model was performed using the fine-
tuned hyperparameters for brain tumor detection and pre-diagnosis.

The main contributions of this study are:

1 To introduce a new CNN-based classification system with EfficientNetv2 + Ranger 
architecture for malign tumors (glioma, meningioma, and pituitary).

2 To show that data pre-processing is crucial for the accurate diagnosis of tumors.
3 To provide better accuracy and stable learning procedure of the automated diagnosis 

of tumors compared to the performance of the other CNN architectures in multi-class 
scenarios using Ranger optimizer on different datasets.

4 To explore the behaviors of recent optimization algorithms in CNN networks for MRI 
images.

5 To propose an alternative method for the rapid diagnosis of brain tumors using com-
puter-assisted radiological examination in addition to neurological examination, and a 
future-oriented guide intended to encourage other scientists to conduct advanced studies 
in this area.

In the general structure of this work, Section 2 reviews related works. Then, a detailed 
description of the basic algorithm, with some considerations on the pre-processing tasks, 
is presented in Section  3. In Section  4, the experiments are evaluated using both the 
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perceptual and classical quality criteria and the effectiveness of our methodology. Sec-
tion 5 discusses the detailed results using existing tumor classification methods and Sec-
tion 6 introduces the conclusions and future work, respectively.

2  Related works

Computer-assisted smart healthcare systems have been rapidly developing in order to 
provide more coordinated and quality service to patients needing after a disease diagnosis. 
After the emergence of MRI, it became possible to analyze both the anatomical status 
and the biochemical structure of brain morphology. Additionally, CNN-based methods 
have made tremendous progress in analyzing the growing quantity and diversity of 
distinct tumor types. [27] compared different CNN architectures where these two CNN 
architectures used to solve these problems related to the instability of tumor labels using 
a two-step training procedure. Unlike traditional CNN models, the two-step training 
procedure was constructed using the average of the outputs from both local details and 
global texture features. [71] solved the medical image classification problem by using 
features from segmentation networks, which allowed for the learning procedure to be 
executed more easily and robustly in real classification problems involving complex 
structures. Their study compared the pre-trained ImageNet classifiers and the scratch-
trained classifiers and they demonstrated that the ImageNet and pre-trained VGGNet [64] 
neural network yielded more successful results. Similarly, [38] developed a new abnormal 
brain disease categorization using several classes i.e., sarcoma, meningioma, gliomas, 
and metastases through the transfer learning method and VGGNet neural network. In this 
approach, the last few layers of VGGNet were updated to embed new image categories 
by including a pre-trained model in the learning procedure. Although this model has 
a very long training time, it has slightly better accuracy than existing studies focused on 
standard performance metrics. [40] established an algorithm that classifies brain images 
either as tumor or non-tumor using ensemble learning techniques based on pre-processing, 
segmentation, and feature extraction. As an alternative, [6] improved an Extreme Learning 
Machine (ELM)-based method to use when evaluating model performance by synthesizing 
cropped, uncropped, and segmented lesions of different dimensions of t1-weighted scans 
[16]. In [51], all traditional machine learning algorithms and the CNN methods enhanced 
for brain tumor detection were broadly compared including feature extraction and 
classification. Unlike the other studies, [58] described a brain tumor diagnosis algorithm, 
which included image segmentation based on the Unet architecture using advanced CNN 
architectures. In comparison to the previous approaches, this new strategy was built on 
VGG16 network architecture as the backbone of the Unet architecture. In particular, since 
clinical applications may include patients with different pathological tumor findings, the 
results should be accurate and obtained within a narrow time period. Advances in various 
experimental imaging techniques, including the early detection of brain abnormalities, are 
helping to increase the popularity of MRI as a complementary modality for treatment in 
the patients’ clinical preparations for treatment. Another approach is to use an evolutionary 
algorithm to adapt the reinforcement learning to classify and detect brain tumors [60]. 
This involves two phases of pre-processing: freezing and fine-tuning. The significant 
features are then extracted from the MRI slices. However, this approach is not applicable 
when inaccurate segmentation has been done as it depends directly on the segmentation 
performance. As an alternative to the previously mentioned research, [4] found that a 

44529Multimedia Tools and Applications (2023) 82:44527–44553



1 3

CNN technique based on the RELU-derived hard swish activation function could better 
extract CNN edge and texture features in order to detect cancerous tissue. Many powerful 
CNN models have recently accomplished perfect progress in computer-assisted clinical 
programs, including segmentation [9, 34], diagnosis, and the classification [8, 59, 69] of 
medical images using radiological data.

In terms of the weights, bias, and other learning parameters, ResNet50 [28], 
DenseNet201 [33], MobileNetv2 [31], InceptionV3 [66], and NASNet [75] artificial 
neural network layers are capable of high-level brain tumor identification and learning 
a large number of key features. One of the major drawbacks of these proposed systems 
is the small number of training data used to categorize brain tumors. Additionally, some 
CNN architectures such as VGGNet, KE-CNN, and ResNet50 may perform insufficiently 
in both tumor detection and classification tasks when determining the subtle alterations of 
the brain morphology on the MRI. Some of these differences include total brain volume, 
corpus callosum, increases in the total white matter volume, etc. These architectures can 
easily learn the underlying data patterns, which can lead to overfitting, poor generalization, 
and difficulty in interpreting the results. In this study, in order to address these drawbacks, 
we pre-processed the whole dataset before feeding them to the neural network. This step 
worked to prevent overfitting and under-fitting, which could affect the performance. 
Meanwhile, [67] proposed a novel EfficientNetv2 CNN family with lower training time 
and a better efficiency than previous models. This study shows that careful balancing not 
only in hyper-parameters but also network depth, width, and resolution in a CNN model 
leads to better performance. However, we provided a better balance of weight and bias 
by minimizing the error using a different optimizer, Ranger, in forward and backward 
propagation, to better extract the features of the tumor region. Based on the related studies, 
4 state-of-the-art CNN models EfficientNetv1, ResNet18, ResNet200d, and InceptionV4 
were included in this study to ensure diagnosis and multiple classifications of similar brain 
tumor diseases in addition to the EfficientNetv2 architecture.

3  Materials and methods

Recent years have witnessed fast development in CNN technologies. CNNs have become 
popular due to their high sensitivity and their ability to be used in a wide range of appli-
cations and research areas such as signal processing [1, 35, 47], pattern recognition [36], 
authentication systems [2, 29, 50]. CNNs are an advanced concept of artificial neural net-
works and have gained increasing attention due to both their learning stability and capa-
bility of processing images with varying quality for computer vision problems in many 
different fields. In our approach, we used a CNN-based system to diagnose 3 different 
malignant brain tumors using the EfficientNetv2 model powered by the state-of-the-art 
optimizer Ranger and fine-tuned pre-processing. At the time of publication, to the best of 
our knowledge, this idea has not been considered in the literature. Based on the achieve-
ment of CNNs in solving various complex tasks, this improved framework aims to achieve 
optimal multi-class brain tumor diagnosis by clarifying the missing details in MRI images 
against the restrictions such as noise, blur, and brightness. Figure 1 shows the flow diagram 
of the proposed system. The system includes the following stages: 1. Pre-processing, 2. 
Data generation, 3. CNN framework or deep feature extraction for tumor detection and 
4. Diagnosis. In the first step, the image datasets were cropped and filtered against image 
impairments. The next process was data augmentation and the whole dataset was balanced 
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Fig. 1  Flow diagram of proposed system
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using different transformation and noise invariance methods using different parameters. 
Just after splitting the dataset into training, validation, and test sets, the input was sent to 
the trained model on MR images for the detection of cancer.

3.1  Datasets

In this work, to ensure a less dataset-specific and more generalizable approach, two publicly-
available datasets BR35H::Brain Tumor Detection 2020 (BR35H) [26] and t1-weighted 
contrast-enhanced MRI dataset [16] were chosen. The first dataset consisted of a total of 
2768 different resolution MR images, of which 1458 images showed different tumor types 
and the remaining 1310 images showed healthy brains. The second dataset included CE-MR 
slices of 3064 t1-weighted meningiomas, gliomas, and pituitary tumors, and each MR slice 
had a size of 512 × 512 resolution (pixel dimensions 0.49 × 0.49  mm2). The used images in 
this study are illustrated in Fig. 2 and the tumor borders are highlighted in red.

3.2  The EfficientNetv2 architecture

In recent scientific studies, the EfficientNetv2 model has been preferred as a powerful tool 
(faster training speed and better parameter efficiency) in smart healthcare systems, as it is 
capable of handling medical image analysis successfully. It has been used for automatic 
tuberculosis diagnosis in chest X-ray images [3], breast cancer classification [62], and 
COVID-19 detection using X-ray and CT images [32].

Although the EfficientNetv2 architecture was developed the same way as EfficientNetv1, 
EfficientNetv2 is generally superior to EffiecientNetv1 in terms of parameters and floating-
point operations per second (FLOP) efficiency. The FLOPs indicate the complexity of 
the model by measuring the number of transactions of a frozen CNN network. Due to 
EfficientNetv1 being trained with a large image size, it consumes a significant amount of 
memory. Since the total memory size in the Graphics Processing Unit (GPU) is limited, it 
is necessary to execute CNN models with a smaller batch size, which slows the training 
speed down considerably. One of the superior features of EfficientNet compared to the 
other models is its depth-wise convolutions [63].

In the EfficientNetv2 architecture, the original Inverted Residual Block (MBConv) in 
EfficientNet-B4 was replaced with Fused-MBConv in the first layers. In this architecture, a 
non-uniform scaling strategy was used to gradually add more layers to subsequent stages. 
Through progressive training, it initially provides low regularization by using small images 

(a) (b) (c) (d) (e)

Fig. 2  The selected samples from t1-weighted MRI image dataset used in this study, a Tumor-free sample, 
b Axial tumor appearance, c Coronal side of meningioma, d Axial side of glioma, e Sagittal side of pitui-
tary
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during training which is then followed by high regularization. Through this process it 
achieves a positive impact on the width or depth expansion of the network and extracts the 
discriminative features. Thus, it achieves better model performance with fewer parameter 
sizes. This model, with shallow and faster CNN for image recognition, was developed by 
optimizing with a non-uniform expansion procedure. Then step-by-step extra layers were 
added to the next phase for sensitive training. In addition, the scaling rule was modified 
and the maximum image size was limited to a smaller value. The training speed increased 
while the parameter compatibility was maintained.

3.3  Comparison of Ranger with current optimizers

Optimization Function (OF) is a critical component in CNN networks and the performance 
of the optimization algorithm directly impacts the training efficiency of a model. However, 
the compatibility of different optimization algorithms with different CNN models can be 
achieved through the optimization of the cost function by adapting the neural network’s 
attributes such as learning rate, weights, and bias. To obtain optimal results from the 
network, we used the cutting-edge optimizer Ranger [68], instead of the default Adam 
optimizer [39], for the EfficientNetv2.

The Ranger optimizer combines two mechanisms: the Rectified Adam (RAdam) [44] 
and the stochastic optimizer LookAhead [49]. The RAdam was built by first determining 
an automatic warm-up mechanism using a rectifier function based on the actual variance 
encountered and then stabilizing learning at the beginning of training.

Based on the variance, the RAdam rectifies both the variance and generalization issues 
in the Adam stochastic optimizer’s adaptive momentum. The main reason for these issues 
is that in the early steps of model training, the adaptive learning rate has an undesired large 
variance due to the limited amount of training dataset being used. Fundamentally, there is a 
close relationship between stability and variance.

By keeping an exponential moving average of the weights updated every 5 steps and 
replaced with the existing weights, LookAhead stabilizes learning and convergence during 
the rest of the training. LookAhead improves the network stability and reduces the vari-
ance of its inner optimizer with negligible computation and memory cost. Thus, it ensures 
a robust and stable breakthrough during the training period, as shown in Fig. 3. In CNN 
networks, the correct extraction of the most representative features depends heavily on the 

Fig. 3  Performance comparison of optimization functions (a) Training cost by iterations (b) Validation cost 
by iteration

44533Multimedia Tools and Applications (2023) 82:44527–44553



1 3

stability of the optimizer, which reducing the variance in the process. Therefore, it is pos-
sible to obtain higher accuracy rates by combining Ranger and EfficientNetv2.

4  Experiments

In this section, the experimental studies and a detailed evaluation of the improved sys-
tem are discussed. Figure 4 illustrates the CNN-based tumor diagnosis system for brain 
tumors. During the study multiple CNN architectures and modern optimizers were 
trained and tested in order to identify the best-suited network. All networks were pre-
trained using the ImageNet database. To construct the optimal model, we employed a 
fivefold cross-validation (CV) method, where each fold was divided into the subset (test: 
10%, train: 80%, and validation: 10%) for every 10 iterations. We initially assigned the 
learning rate of the network as 0.001 and it was reduced gradually by a gamma factor of 

Fig. 4  Overview of the CNN-based brain tumor diagnosis system
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0.5 every 20 epochs. All models were trained throughout 40 epochs with batch size 32 
and implemented in Python v.3.7 on a platform containing a 2.0 GHz Intel Xeon CPU 
and NVIDA Tesla T4 13 GB GPU. Algorithm 1 and Algorithm 2 describes the training 
and testing algorithm of the CNN models and the pseudocode for the overall proposed 
framework, respectively. In the following subsections, the pre-processing, the input data 
generation, and CNN models are described in more detail. The result of each operation is 
statistically proven and graphically shown.

Algorithm 1   Training and testing algorithm of the CNN models
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4.1  Pre‑processing stage

For increasing the productivity and stability of neural networks, image pre-processing is 
generally considered an indispensable procedure for image-based systems such as CNN. 
However, it is a complicated and time-consuming procedure, which has to extract the most 
appropriate features for successful detection. Figure 5 illustrates the applied image-process-
ing techniques used in this work, such as cropping, histogram equalization, and denoising.

In order to produce reliable results and to alleviate the overall computational effort, 
it is important to select the most effective pre-processing tasks on the available data. It 
should be observed that an image carries not only spatial information but also information 
about the interpolated noisy pixels, which causes significant performance degradation or 
poor learning conditions. Having a large number of noise-free, quality data is an important 
factor for CNN models to be able to learn effectively without overfitting and to increase the 
performance of the CNN model considerably [73].

4.2  Data generation

Data augmentation is a frequently preferred data balancing technique in CNN-based 
methods used to achieve reliable satisfactory results. Although it provides some 
technical benefits such as increasing the prediction accuracy of the model and reducing 
overfitting and underfitting, feeding the network with unrealistic data can introduce 
unnecessary information into the learning process. It also involves additional memory, 
transformation computation costs, and additional training time. Therefore, the use of 
data augmentation is limited in this study. In determining the characteristics of data 
augmentation, the selection of appropriate parameters involves a series of processes, 

Algorithm 2   Proposed brain tumor diagnosis CNN model in healthcare
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which improve the resolution quality of training data so that steady deep networks can 
be constructed. After the original datasets were separated into training, validation, and 
testing, all MR images were augmented t to allow the CNN model to learn the invariant 
features. These features ultimately improved the model’s performance and robustness, 
in addition to preventing the possibility of overfitting and underfitting. The selected 
augmentation techniques are rotation, zooming, horizontal flipping, vertical flipping, 
and height shifting for geometric transformation invariance. In Table 1, to produce bet-
ter test accuracy rates, the existing dataset has been expanded with the given initial 
parameters.

The augmented training dataset for tumor detection consists of 9342 images of tumor 
presence and 8649 images of healthy brain. On the other hand, 9252, 4554, and 6111 
new images were generated of the glioma, meningioma, and pituitary tumor types. The 
statistics of MRI datasets for CNN models are given in Table 2.

Fig. 5  Results of preprocessing with cropping, histogram equalization and denoising filter a Glioma, b 
Meningioma, and c Pituitary
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4.3  Experiments on EfficientNetv2 versions

The EfficientNetv2 family has 3 types of scales, small (s), medium (m), and large (l). In this 
study, it was first used to construct a brain tumor diagnosis system. Due to the parameter 
size of the EfficientNetv2l model being larger than the EfficientNetv2s and EfficientNet2m, 
it consumed the computer’s GPU resources at an extreme level. As given in Table 3, the 
size of the trainable parameters used by the models was 20.18 M, 52.86 M, and 117.23 M 
for s, m, and l, respectively.

As seen in the table, while the pre-trained EfficientNetv2l achieved the best accuracy 
scores by using learned parameters to the limit of the computer’s computational capability, the 
training time was much longer when compared to the others (27.68 min with augmentation). 
It was observed that the increase in model depth increased the training time significantly. 
The EfficientNetv2s has a fast convergence speed (11.15 min with augmentation) and stable 
training procedure with a satisfactory test accuracy score of 97.36% on the augmented dataset. 
Consequently, the EfficientNetv2 can adaptively adjust regularization (e.g. data augmentation) 
through image size and improve the training procedure using progressive learning. Therefore, 
when the depth of the model increases, the inputs are resized to 128 × 128 pixels to reduce 
computer memory consumption. The outputs of the tumor diagnosis systems were evaluated 
before and after data augmentation, which both improved the overall accuracy, learned 
invariant features, and reduced overfitting. With the above training strategy, the goal of each 
model was achieved, while the joint Ranger optimizer minimized the prediction loss.

4.4  Classification performance of optimizers

In the second experiment, we analyzed the competence of optimization algorithms on 
CNN performance and measured their variability and reliability in automatic classification. 

Table 1  Data augmentation 
procedures with initial 
parameters

Number Augmentation
technique

Parameters

1 Rotation -40° to 40°
2 Zoom 0.3
3 Flip horizontal 0.5
4 Flip vertical 0.5
5 Height shift 0.2

Table 2  Statistics of MRI datasets

Tumor Detection Tumor Classification

Yes No Total Glioma Meningioma Pituitary Total

Number of patients unavailable unavailable - 88 82 59 229
Original dataset 1458 1310 2768 1426 708 930 3064
Training dataset 1038 961 1999 1028 506 679 2213
Validation 233 183 416 221 108 131 460
Test 187 166 353 177 94 120 391
Augmented training 9342 8649 17,991 9252 4554 6111 19,917
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Meanwhile, using the Ranger optimizer, instead of the default optimizers, meant the CNN 
model could avoid overfitting problems and work to ensure a superior classification perfor-
mance. To evaluate the optimizer, we compared the CNN using Cohen’s Kappa coefficient 
[18] and Hamming Loss metrics [23] for the 4 optimizers previously mentioned in Sec-
tion 3.3. The detailed results of each optimizer are given in Table 4. The selected evalua-
tion metrics are expressed in Eq. 1 to Eq. 7 [30].

In these equations, TP, TN, FP, and FN denote the true-positive, true-negative, false-
positive, and false-negative values, respectively. Ranger showed notable improvements 
of 0.9770 ± 0.0094 Cohen’s Kappa, 0.0147 ± 0.0012 Hamming Loss, and 98.60% ± 0.14 
in test accuracy compared to the SGD, RMSprop, and Adam, respectively. According to 

(1)Accuracy = (TP + TN)∕(TP + TN + FP + FN)

(2)Precision = TP∕(TP + FP)

(3)Recall = TP∕(TP + FN)

(4)F1 − Score = (2 × Precision × Recall)∕(Precision + Recall)

(5)
Pe = ((TP + FN) × (TP + FP) + (FP + TN) × (FN + TN))∕(TP + TN + FP + FN)2

(6)Cohen�s Kappa = (Accuracy − Pe)∕(1 − Pe)

(7)Hamming Loss = (FP + FN)∕(FP + FN + TP + TN)

Table 3  Comparison of EfficientNetv2 versions

Bold symbol indicates highest performance value

Pre-trained
Model

Parameter
Size

Augmentation Training
Time (min)

Training
Acc. (%)

Validation
Acc. (%)

Test
Acc. (%)

EfficientNetv2s 20.18 M No 10.92 ± 0.23 99.99 ± 0.02 96.83 ± 1.24 96.54 ± 0.88
Yes 11.15 ± 0.20 99.95 ± 0.04 97.48 ± 0.60 97.36 ± 0.59

EfficientNetv2m 52.86 M No 16.51 ± 0.19 99.94 ± 0.13 97.32 ± 1.33 96.51 ± 0.70
Yes 16.86 ± 0.19 99.94 ± 0.07 98.29 ± 0.83 97.32 ± 0.49

EfficientNetv2l 117.23 M No 27.41 ± 0.27 99.97 ± 0.06 96.91 ± 0.84 96.87 ± 0.86
Yes 27.68 ± 0.17 99.82 ± 0.06 98.05 ± 0.70 97.72 ± 0.83

Table 4  Classification performance of optimizers with EfficientNetv2s

Bold symbol indicates highest performance value

Model + Optimizer Training
Time (min)

Cohen’s
Kappa

Hamming
Loss

Test
Accuracy (%)

EfficientNetv2s + SGD 32.29 ± 0.33 0.9586 ± 0.0065 0.0264 ± 0.0042 97.36 ± 0.42
EfficientNetv2s + RMSprop 39.78 ± 0.41 0.9734 ± 0.0057 0.0170 ± 0.0036 98.30 ± 0.36
EfficientNetv2s + Adam 41.40 ± 0.37 0.9708 ± 0.0072 0.0186 ± 0.0046 98.14 ± 0.46
EfficientNetv2s + Ranger 42.28 ± 0.09 0.9770 ± 0.0094 0.0147 ± 0.0012 98.60 ± 0.14
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the training time, the SGD achieved the fastest convergence at 32.29 min and the Ranger 
converged slower than the other optimizers at 42.28 min.

4.5  Comparison with current CNNs

To assess the classification potential of the brain tumor diagnosis system among 
different CNN models, five types of CNN networks were trained and tested. The values 
of the metrics containing accuracy, precision, recall, and F1-score were calculated 
and expressed as mean ± standard deviation in C-category classification. Table  5 
compares the various CNN model classification performances found in the 3-tumor type 
classification of independent test data as micro and macro statistics.

As Table 5 shows, the average training time of every operation related to Efficient-
Netv2s + Ranger was 41.99 min with a standard deviation of 0.57 over 40 epoch. When 
completing the same operation the training time for the ResNet18, ResNet200d, and 
Inception V4 was 12.1, 102.4, and 54.5 min, respectively. The EfficientNetv2s + Ranger 
model showed a more superior performance than the other CNNs and achieved 99.85% 
test accuracy, without significantly increasing parameter size and computational cost in 
repeated tests. As seen in the table, the ResNet18 and InceptionV4 have lower accu-
racy values than the other CNNs. The ResNet18 has significantly reduced the number of 
parameters and has a satisfactory performance compared to the InceptionV4. While the 
ResNet200d is the largest model, the micro and macro scores show that at high training 
times it achieved almost the same accuracy as the other CNNS. These results indicate 
that the improved model enabled effective edge and texture learning of tumor charac-
teristics through the use of accuracy and micro and macro statistical metrics. To further 
confirm the generalization performance of our system, the Receiver Operating Char-
acteristic (ROC) curve and AUC values were also calculated for all models, which are 
shown in Fig.  6. The ROC curves for our improved model were slightly above other 
models, with an AUC value 0.9985.

Confusion matrices are presented graphically to identify the discordance between the 3 
classes and the CNN models in Fig. 7. While the EfficientNetv2 + Ranger model for glioma 
tumors outperformed the other models, the Inceptionv4 made an error in predicting only 
two samples for the meningioma tumor. The ResNet200d appeared to better separate for a 
pituitary tumor.

4.6  Statistical comparisons

In this section, we used the Cochran Q test statistical method [17] to provide a compre-
hensive level of type I error and to build pairwise comparisons. It requires that there be 
only a binary matrix and that there be more than two classifiers of the same size. Figure 8 
illustrates the binary comparisons between the models through the Cochran Q test, cor-
responding to the results presented in Table 5. Assuming that we chose a significance level 
of α = 0.05, most models in pairwise comparisons did not yield a statistically significant 
difference except for CV4. The EfficientNetv2 + Ranger showed a statistically significant 
difference according to both ResNet18 and Inception v4. This indicates that the clear dif-
ference may have been caused by the dataset.
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5  Results and discussion

In the first experiment, we compared three versions of the EfficientNetv2 family. The 
dataset with raw images was split into three sets with training, validation, and test. Next, all 
experiments were conducted on pre-processed augmented and non-augmented images. The 
hyperparameters were left with default settings, i.e., the learning rate was equal to 0.001, 

Fig. 6  ROC curve of the different 
CNN models on brain tumor 
classification

Fig. 7  Confusion matrices of the DL models on the independent test data. a ResNet18, b ResNet200d, c 
InceptionV4, and d EfficientNetv2s + Ranger
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and gamma was set to 0.5 depreciate. All models were run on a fivefold cross-validation set 
and each training time was noted separately. The accuracy of the models was higher after 
the data was augmented. In all models, the training time of the models after augmentation 
was longer than the training time of the model before augmentation. The EfficientNetv2l 
achieved the highest accuracy of 97.72% using augmentation with the highest training time 
in the test set as reported in Table 3.

In the second experiment, SGD, RMSprop, Adam, and Ranger optimizers were used on 
the EfficientNetv2s architecture, respectively. Among these four optimizers, SGD showed 
poor convergence with 97.36% test accuracy. The Ranger showed slightly better perfor-
mance using an adaptive momentum based on variance with 98.60% test accuracy, 0.9770 
Cohen’s Kappa and 0.0147 Hamming Loss values for the test set as given in Table 4. How-
ever, the training time for the network was the longest.

In the third experiment, according to the evaluated and analyzed results using micro 
and macro metrics, the improved CNN model performed better than the selected state-of-
the-art CNN models in diagnosing tumor diseases. These data are presented in Table 5. 
The ResNet18 and InceptionV4 performed similarly in the classification of test data with 
99.62% and 99.69%, respectively. Although the ResNet200d architecture gave the closest 

Fig. 8  Statistical comparisons between different CNN models according to the outputs of fivefold CV. Each 
mini square shows that the corresponding model was pairwise compared using the Cochran Q test (p > 0.05) 
to indicate whether there is a statistical difference between them. Blue specifies a statistical difference, 
orange specifies no statistical difference, and gray specifies the results are not appropriate
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scores to what we had obtained, it had the longest training time of 102.48 min due to its 
deep network structure.

The feature maps of the internal layers extracted from block0 to block3 are illustrated 
in Fig.  9 to further clarify the learning details of the EfficientNetv2s + Ranger and Effi-
cientNetv2s network with the default optimizer Adam. In the first block, when we com-
pared them for a glioma test sample, we observed that EfficientNetv2s + Ranger had bet-
ter preserved edges (squared with red boxes) and focused gradients in the tumor region. 
It is also possible to distinguish this situation from the skull edges. However, Efficient-
Netv2s + Adam spread the edge details in gradient results. In the next blocks, it can be 
deduced that final models suppressed weak characterizations such as homogeneous regions 
in the layer outputs.

Table 6 presents the dataset, the developed environment, a brief explanation, and the 
accuracy rates of the proposed system with other methods that bring different solutions to 
the problem. [14] tried to estimate the Isocitrate Dehydrogenase (IDH) mutation status of 
gliomas from MRI by conducting a residual CNN to preoperative radiographic data. The 
test accuracy of their model achieved 85.7%. One of the challenges in training CNN net-
works is that they require a large quantity of training data. In their study, a small amount 
of data sets from three different private hospitals were used and data augmentation was 
applied to avoid the model overfitting and underfitting. ELM is another type of learning 
technique built from one or more layers of hidden nodes. In [57], another CNN model con-
sisting of some intermediate layers was studied to both normalize the data and create an 
effective mechanism.

The classification accuracy obtained by the KE-CNN model was 93%. [11] explored the 
performance of the three distinct deep CNN architectures trained on malignant intracranial 
MR images to discriminate between High-Grade Glioma (HGG) and Low-Grade Glioma 
(LGG). The VolumeNet was accomplished using the 3D volumetric dataset instead of 2D 
and while it has greatly improved findings with 97% classification accuracy, the large size 
of the model is a disadvantage. [45], inspired by ResNet34 architecture, designed a CNN 
model which mainly consists of a global pooling layer in addition to all-convolutional 
layers. They called their network G-ResNet and in their approach, the accuracy rate was 

Fig. 9 Visualization of feature maps of EfficientNetv2s+Adam and EfficientNetv2s+Ranger extracted from 
a block-0, b block-1, c block-2, and d block-3 
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measured as 95% due to the reduced number of parameters. [24] developed a new CNN 
model combining the typical trait groups to recognize IDH mutations and TERT promoter 
(pTERT) mutations. Simultaneously, the tumor lesion area was extracted from the image 
and normalized before they were sent to the AlexNet architecture. The model performance 
was measured with a final accuracy of 63.1% on a private dataset. Another brain tumor 
classification method using the Deep CNN (DCNN) architecture was experimented with 
in [10] using only 22 layers and patches extracted from whole MR images. Assuming that 
the hardware resources were limited, their shallow model can be appropriate in the case of 
narrow network bandwidths such as mobile phones, conventional PCs, or short response 
time. Meanwhile, in [46], a GAN-based model using ResNet50 on public and private 
datasets was implemented to further exhibit the feasibility and productivity of diagnosing 
IDH status of glioma tumors. The authors emphasized that IDH is a significant biomarker 
for glioma and ultimately results in better test accuracy of 88%. A wealth of research has 
considered modeling the detection and identification of brain tumors and therefore [51] 
prepared noteworthy prospective research that tries to solve this issue based on recent AI. 
In this survey, the accuracy rates of the two models generated by [61] and [15] based on 
VGGNet were 93% and 94%, respectively. The approaches given in [7, 22], and [25] clas-
sify t1-weighted contrast-enhanced MR images. [22] discusses a multi-scale deep architec-
ture that allows application at three spatial scales through different procedures. However, 
this idea is self-diagnostic after segmentation and it causes the model to be more compu-
tationally complex and impractical for medical applications due to the increased amount 
of errors. Rather than handling segmentation, [7] showed that tumor type can be estimated 
from optimized GoogleNet and ResNet101 with transfer learning. They attained the highest 
performance of 99.33% in tumor detection and 95.65% in tumor diagnosis. More recently, 
ensemble learning methods for diagnosing brain tumors have been able to deal with more 
reliable feature extraction from MR images in the case that small amounts of brain tumor 
data are available. First, brain tumor recognition was performed using a modified Incep-
tionResNet-pretrained model in [25]. In the second phase, in the case when a tumor lesion 
was detected, the tumor type was specified using the combination of InceptionResNet and 
Random Forest Tree (RFT). The last line in the table gives the accuracy of our methodol-
ogy. Among all of the methods for tumor detection, the test accuracy of our method gave 
almost the same result compared to [25] at 99%, the EfficientNetv2 + Ranger yielded the 
best performance for tumor classification at 98.85%.

Although the proposed CNN-based approach can be used as an alternative to 
the existing methods of brain tumor diagnosis, there are some limitations to its 
performance.  These depend on, among other factors, the dataset used in the training, 
the limitation of MRI scanning, and the deep learning methodology involved in training 
such systems. Two publicly available datasets were used in this study, thus some 
clinical information about patients was limited. To improve the robustness of the CNN 
models, future multicenter studies with more detailed clinical data including patient 
datasets are required. Additionally, because the radiological features of primary tumors, 
metastases, and central nervous system cysts are similar, conventional MRIs are not 
precisely reliable to discriminate between them. Therefore, additional examinations 
such as computer tomography and biopsy are required for the exact diagnostics. CNN-
based methods also have structural limitations. For example, some problems such as 
misclassification may be encountered in the application of CNN models, thus they may 
be ineffective in making the correct diagnosis of brain tumors and may be expensive in 
terms of computational costs.
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6  Conclusions

In cases with high or weak contrast in MRI brain images, there may be uncertainty when 
deciding the presence of a tumor. Computer-aided diagnostic systems can support clinicians 
and radiologists in distinguishing between tumors and healthy cells. With radiological 
imaging, the presence of cancer and similar diseases is observed, and information about 
its size and location is obtained. With the help of AI-based solutions, reliable clarification 
of the diagnosis of tumor tissues with high similarity can be achieved using algorithm 
innovation. We presented an end-to-end CNN-based brain tumor classification system that 
represents a powerful approach for meningioma, glioma, and pituitary tumors based on 
MRI in neurosurgery clinics and demonstrated the following findings:

• We conducted the EfficientNetv2 + Ranger model, which had not been previously 
considered in the literature, and we achieved 99% test accuracy in tumor detection and 
99.85% test accuracy in predicting meningioma, glioma, and pituitary tumors.

• In CNN networks, applying extensive pre-processing on the raw dataset exhibited 
significantly improved learning capabilities.

• The Ranger algorithm provides robust and stable training throughout the training 
period in different CNN architectures by reducing the variance.

• By performing a wide range of experiments on tumor datasets, we examined recent 
CNN models and optimizers and emphasized convenient choices for recognition in 
smart healthcare.

This study stated that AI-based methods can support radiologists in validating their 
initial scans of brain tumors for multi-classification purposes. Unfortunately, for the 
indicated contributions the available datasets were obtained retrospectively by the dataset 
provider and the clinical diagnoses of the patients were not exactly confirmed. In a case 
where the patient has different symptoms, the detection of a brain tumor can change the 
diagnosis and treatment planning for clinicians and medical pathologists. In addition, 
the use of CNN for tumor diagnosis requires the identification of features such as shape, 
size, location, and extensive abnormalities in various directions of tumors, rather than the 
handcrafted features. Another challenge is that in this problem, it should be noted that the 
implementation of CNN models can be ineffective and computationally expensive.

Despite these adverse conditions, the cutting-edge AI-based solutions have made great 
progress in identifying cancers in recent years. In this way, the proposed method encour-
ages the development of current patient diagnosis techniques by including CNN-based 
techniques in the use of the health profession. This study paves the way for incorporating 
CNNs into medicine by significantly increasing the rate of cancer recognition.

We will refine the diagnostic output by considering the 3D spatial information among 
the brain MR slices using a lightweight CNN architecture, inspired by some recent studies 
using radiomic analyzes [37, 42, 65]. We also plan to collect information on the clinical 
features of a custom dataset so that we can use the data from patients suffering from brain 
tumors in CNN networks as complementary discriminative features in our future works.
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