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Abstract
The face mask detection system has been a valuable tool to combat COVID-19 by prevent-
ing its rapid transmission. This article demonstrated that the present deep learning-based face 
mask detection systems are vulnerable to adversarial attacks. We proposed a framework for a 
robust face mask detection system that is resistant to adversarial attacks. We first developed 
a face mask detection system by fine-tuning the MobileNetv2 model and training it on the 
custom-built dataset. The model performed exceptionally well, achieving 95.83% of accuracy 
on test data. Then, the model’s performance is assessed using adversarial images calculated by 
the fast gradient sign method (FGSM). The FGSM attack reduced the model’s classification 
accuracy from 95.83% to 14.53%, indicating that the adversarial attack on the proposed model 
severely damaged its performance. Finally, we illustrated that the proposed robust framework 
enhanced the model’s resistance to adversarial attacks. Although there was a notable drop in 
the accuracy of the robust model on unseen clean data from 95.83% to 92.79%, the model per-
formed exceptionally well, improving the accuracy from 14.53% to 92% on adversarial data. 
We expect our research to heighten awareness of adversarial attacks on COVID-19 monitoring 
systems and inspire others to protect healthcare systems from similar attacks.

Keywords COVID-19 · Adversarial example · Face mask recognition · Adversarial 
attacks · Deep learning · Robustness

1 Introduction

The Covid-19 epidemic has caused devastation to healthcare facilities and treatment sys-
tems in every country. The virus is disseminated by direct contact with contaminated res-
piratory droplets (produced via sneezing and coughing). Anyone who comes into contact 
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with virus-infected surfaces and touches their faces might get sick, with symptoms such as 
shortness of breath, cough, and fever. In crowded and public locations, the WHO recom-
mends wearing a face mask to minimize viral transmission via the nose or oral passages 
[12, 14, 62]. The government of COVID-19-affected nations has passed laws mandating 
the wearing of face masks. As a result, large groups of individuals in public spaces and 
congested locations must be monitored for face mask violations. Conventional procedures 
for checking a face mask violation are not always feasible and are error-prone.

Computing-assisted deep neural network (DNN) techniques have made significant pro-
gress in the recent decade, showing promise in a variety of classification tasks [33, 55] 
and pattern recognition [26]. In the fight against the COVID-19 epidemic, artificial intel-
ligence, and more specifically machine or deep learning, has proved to be a successful 
and crucial tool. It has proven to be beneficial in early predicting infection by the analy-
sis of the previous data of the patients [5]. In addition, deep learning models have been 
proposed to detect COVID-19 from the readily available chest X-Ray or CT images [27]. 
As discussed earlier, wearing a mask is the most effective way to stop the rapid spread of 
COVID-19. However, ensuring that masks are worn properly in public or crowded places 
is difficult with conventional approaches, which rely on human monitoring. Fortunately, 
artificial intelligence has provided a solution with computer-aided face mask detection sys-
tems. In computer-aided face mask detection systems, methodologies primarily based on 
deep learning have been applied to produce rapid, accurate, and trustworthy systems. A 
large number of researchers have developed a variety of DNN architectures to detect face 
mask violations. Most of these researchers have based their methods on transfer learning 
[61], while some have developed novel architectures. DL models have shown high sensitiv-
ity and specificity when detecting face mask violations.

Deep learning models need a significant amount of data to train a model effectively 
in the training phase. When given a new unseen input sample, the deep learning model 
infers the corresponding output during the inferencing phase. For example, in the case of 
the face mask detection model, when the model is trained on the dataset, the model is then 
given unseen data and returns the classification result, i.e., with mask, no mask, or incor-
rect mask. Deep learning models have various confidential and substantial assets in deep 
learning models, including training data, trained models and model parameters. However, 
recent research has proven that these assets are vulnerable to various attacks during the 
training and inferencing phase of the model, allowing attackers to undermine the model’s 
security and privacy. These attacks on deep learning algorithms are broadly categorized 
into four types: Adversarial attack, Data poisoning attack, Model Inversion attack and 
model extraction attack. Data poisoning is performed before the model’s training process 
[6]. The training data is contaminated using various techniques, including adding misla-
beled data or triggering patches to the input data. It aims to force the model to misclas-
sify the input. Model inversion attack concerns the confidentiality of the data used for the 
model’s training [31]. In a model extraction attack [28], the attacker tries to get the internal 
confidential details of the model, such as parameters,hyper-parameters, and the model’s 
architecture. During an adversarial attack, input data samples are added with the modest, 
skillfully crafted perturbation that causes the model to misclassify during inferencing [53]. 
In computer vision, the adversarial attack is primarily applied to the classification mod-
els during the inferencing phase. In Fig. 1, we have demonstrated various attacks on deep 
learning models in their respective phases.

The presence of the adversarial attack calls into doubt the widespread use of deep learn-
ing models for face mask recognition. Especially in insecure situations, the prevalence of 
this adversarial approach raises concerns regarding the widespread deployment of deep 
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learning models for face mask identification. Since various face mask detection systems 
based on deep learning have been proposed so far, none of them have discussed the pos-
sible vulnerabilities in the system and how to mitigate these weaknesses. This study reveals 
the vulnerabilities of face mask detection systems based on conventional deep learning and 
proposes a comparatively more robust system against adversarial attacks. As a part of this 
research, first, we developed a custom dataset for training the proposed face mask detection 
model. The model is based on transfer learning of the state-of-the-art classification model 
MobileNetV2 [54] and can recognize and classify the images into three classes, including 
an incorrect face mask, with mask and no mask, with excellent accuracy of 96%. After that, 
we assessed the commensurate vulnerabilities of the developed model against the adver-
sarial examples. In particular, we attacked the model by the Un-targeted Fast Gradient Sign 
Method (FGSM) [17]. The adversarial samples were computed on different, very small 
epsilon parameter settings of FGSM and the model’s performance was evaluated. The 
resultant adversarial image looks imperceptible and similar to the original image. These 
adversarial input images forced the face mask model to misclassify with high and alarm-
ing confidence. The result shows that the attack significantly degrades the performance of 
a model. In order to enhance the model’s resilience against adversarial attacks, we imple-
mented an adversarial training strategy with slight alterations [15]. Specifically, instead of 
retraining the model on the entire dataset, we trained it on a randomly chosen subset of the 
training data, along with their respective adversarial images. The outcome of this modified 
training approach demonstrated an improvement in the model’s performance on adversarial 
examples.

1.1  Basic concepts

we have discussed some essential terminologies related to attacks on deep learning-
based face mask detection models. The attacks on the system can be classified according 

Fig. 1  It demonstrates the various attacks on the deep learning model’s assets
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to whether the attacker has access to the model; in that case, we have two types of 
attacks: white box and black-box attacks. Additionally, the attacks can be classified 
according to whether the model is compelled to produce a particular label or not. As a 
result, we have two types of assaults: targeted and untargeted.

• White box Attack Approach: In this case, the attacker has full access to the system, 
say ‘F’ or the entire information of a model, including the gradient of the model, 
model parameters, hyperparameters, and training dataset. The adversary is provided 
with the classifier ‘F’ in the white-box threat model. Gradient descent on the adver-
sarial loss ℓy(·), or an approximation thereof is a powerful attack approach in this 
scenario. To ensure that the changes remain undetectable, one can regulate the per-
turbation norm ‖δ‖2 either by stopping the loss optimization early or by incorporat-
ing the norm directly as a regularize or constraint into the loss optimization.

• Black box Attack Approach: The attacker only partially knows a model. Gradient 
parameters and training sets might not be accessible or known to the attacker. Argu-
ably, many white-box assumptions are impractical in many real-world situations. For 
example, the model ‘h’ may be accessible to the public via an Application Program-
ming Interface(API) that allows only input queries, obviating the attacker of access 
to the model’s details.

• Targeted Attack Approach: The face mask detection system is compelled to output a 
certain/target label. For example, given an input image of a person wearing a mask, 
the model may be compelled to output an unmasked face.

• Untargeted Attack Approach: It is entirely focused on the misclassification of a 
model, regardless of the output.

1.2  Contribution

• The custom face mask dataset was developed and made publicly available on a 
KAGGLE repository (https:// www. kaggle. com/ datas ets/ shiek hburh an/ face- mask- 
datas et).

• We developed the deep learning-based face mask detection model using the con-
ventional approach. The model is based on transfer learning of MobileNetv2 and 
performed well on the unseen clean data samples with an accuracy of 95.85%

• We demonstrated that the conventional model is susceptible to adversarial attacks by 
exposing it to the FGSM attack.

• We proposed the framework for a robust face mask detection model that is resistant 
to adversarial attacks such as FGSM.

1.3  Paper organization

Following the introduction, Section 2 reviews the literature on face mask detection and 
adversarial attacks. The proposed dataset and comparison with other standard datasets 
are described in Section  3. The methodology, which is broken down into three parts, 
training a face mask classifier, attacking it with FGSM, and improving the robustness 
of the face mask model, is described in Section 4. Section 5 discusses the Experimental 

https://www.kaggle.com/datasets/shiekhburhan/face-mask-dataset
https://www.kaggle.com/datasets/shiekhburhan/face-mask-dataset
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results and outputs in detail. Section 6 deals with the conclusion. Finally, the paper is 
concluded with the future scope of the study.

2  Related work

The literature review has been split into two sections. First, we will go through the existing 
literature on face mask detection systems, and then we will discuss the literature on adver-
sarial attacks on COVID-19 monitoring systems, including face mask detection systems.

2.1  Face mask detection models

Due to the ongoing epidemic, there has been a lot of interest in projects with similar 
purposes. Most researchers utilize convolutional neural networks (CNN) from all the 
approaches mentioned in the literature because of their outstanding performance and 
capacity to extract valuable characteristics from the image data. Other methods have 
employed hybrid strategies that use ML methodologies with or without deep learning.

2.1.1  CNN‑based approaches

Contrary to ML approaches, we do not need to manually extract the features in CNN-based 
methods. CNN uses convolution and pooling techniques to extract valuable features from 
the input. We have discussed some popular CNN-based face mask detection models in the 
following.

In [16], the MAFA or Masked Faces face mask dataset was initially produced. They 
built a CNN model capable of detecting facial occlusion, including masks. They divided 
their concept into three key components: the proposal module, the embedding module, 
and the verification module. The initial module combines two CNNs and retrieves facial 
image characteristics. The second module focuses on detecting facial landmarks that are 
not obscured by occlusion. The LLE algorithm is implemented at this stage [50]. In the 
final module, classification and regression tasks are carried out using a CNN to determine 
if an item is a face and to scale the position of missing facial signals. Identifying side-
facing faces degraded the model’s performance, and the dataset contains more occluded 
than masked faces. Therefore, training with this dataset is not always viable for face mask 
identification alone. The performance was determined by calculating the precision of each 
parameter and averaging the precision of various parameters. Recorded precision averaged 
74.6%.

In [8], similar to our model, they used MobileNetV2 to classify the face mask and 
Caffe-based face detector. A small dataset of 4095 images was used. Additionally, the data 
set has only two classes, masked and unmasked. Hence, the model trained cannot detect 
the incorrectly masked faces (i.e., having his or her mask below the nose). It achieved a 
descent f1-score of 0.93.

In [3], a dataset known as “MASKED FACE DATASET” was proposed and three CNN 
architectures were cascaded for face mask detection. The dataset only consists of 200 
images. In order to overcome the problem of overfitting, they used the concept of transfer 
learning and fine-tuned the model with the WiderFace dataset [63]. The first CNN consists 
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of five layers and is used to scale the input image. The second and third layers consist of 
seven layers each. The advantage of using three cascaded CNN is that each false detection 
is eliminated, thus making a prediction stronger. However, using three CNN makes it com-
putationally expensive. The model achieved an accuracy of 86.6% and recall of an 87.8% 
on their proposed dataset.

In [49], the authors presented the SRCNet model for face mask detection. The model 
comprises two networks: a classification network and an image super-resolution (SR) net-
work. The model is capable of adequately classifying Incorrect Facemask-Wearing (IFW), 
Correct Facemask-Wearing (CFW), and No FaceMask-Wearing (NFW). The model was 
trained using the MMD or Medical Masked dataset [1] and the MobileNetV2 CNN algo-
rithm was adopted. The design was well-organized and effective. However, the dataset used 
for training was very small and the face mask detection speed was plodding than other 
algorithms. The model achieved an accuracy of 98.07%.

The approach in [24] identifies three classification categories: no-mask, improper-face 
mask, and with-mask. The model was trained on a dataset consisting of 35 masked and 
unmasked face images. Before training, the dataset was first preprocessed and scaled to 
the necessary dimensions. The model first identifies the face, then extracts the face from 
the input, and then applies the face masknet model for classification. It includes extremely 
limited and regionally specific data. The accuracy of the model was reported to be 98.06%.

In [38], they proposed the novel face mask detection technique using YOLOv2 [52] and 
ResNet50 [18] together. They used the FMD [35] and MMD [1] datasets to train and test 
a model. SGDM and ADAM optimizers were used to compare the performance [32]. The 
model achieved an average precision of 81%.

In [23], the VGG16 architecture was utilized to identify and categorize face expressions 
[55]. The accuracy of their VGG16 model trained on the KDEF database is 88%.

The transfer learning of the InceptionV3 model [56] was used in [29]. The last layer of 
the model was removed and five new trainable layers were added. The last layer consists of 
2 neurons followed by a softmax activation function where each neuron corresponds to a 
masked face and unmasked face, respectively. The model obtained an accuracy of 99.91% 
training and 100% testing accuracy in 80 epochs.

In [42], VGG-16 CNN was used for face mask detection. The dataset they developed 
consists of 25,000 images, and the model was trained on it. The mask-covered area in an 
image was first segmented and extracted. The proposed model used the Adam optimizer as 
an optimization function. Their algorithm was 96% accurate at spotting face masks.

The SSDMNV2 model is proposed in [44]. They used a similar approach to ours—for 
face detection, they utilized a single shot multi-box detector [37] and MobileNetV2 is used 
for classification. The classification accuracy was around 92% and the F1 score was 0.93. 
Our proposed system outperforms it with 98.6% training and 97% testing accuracy and a 
0.95 F1 score.

In [36], for face detection, YOLOv3 was used. It was trained on celebi and wider-face 
[63] databases. The model was later evaluated on the FDDB database [25] and achieved an 
accuracy of 93.9%.

2.1.2  Hybrid‑based approaches

The algorithms for deep learning and machine learning were combined in [39]. The deep 
learning model ResNet50 was employed for feature extraction, while machine learning 
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methods such as Support Vector Machines and Decision Tree algorithms were used for 
classification. One of the four types of datasets contains both actual and fake face masks. 
On the training dataset containing actual face masks, the decision trees classifier did not 
obtain a decent classification accuracy (68%) on false face masks.

In [45], they proposed a model that triggers an alarm for surgical face mask violation in 
the operating room for face detection. They used Viola-jones face detection and LogitBoost 
for face mask detection [59]. One of the problems with the model was that it would make a 
mistake if clothing was found near the face. Synthetic rotation was used to find a solution 
to this problem. In addition, the model was trained only on surgical facemasks. The recall 
was said to be above 95%, and the rate of false positives was less than 5%.

In [4], a haar-cascade-based feature detector was utilized to recognize a nose and mouth 
from the detected face [58]. The model identifies the nose and mouth and predicts an 
unmasked face. If it detects only the nose, it predicts an incorrectly masked face and a cor-
rectly masked face if neither is detected. This method is quick and straightforward, but it 
can only interpret full-frontal faces and can be tricked by covering the mouth and nose. Our 
proposed model is able to predict correctly from different orientations of a face and occlu-
sion, such as a hand on a face, hair on a face etc.

Principal Component Analysis (PCA) algorithm was implemented in [11] for face mask 
violations. It performed well with an accuracy of 96.25 for detecting the faces without the 
mask, but while detecting the faces with a mask, the performance was reduced to 68.75%.

2.2  Adversarial attack on COVID‑19 monitoring models

Since it was claimed in [57] that adversarial techniques might attack neural networks, the 
study of such techniques has become a hot topic in the field of artificial intelligence, with 
researchers continually proposing novel adversarial attack methods and mitigation tech-
niques. A paucity of research has been conducted up until this point to address the chal-
lenges posed by adversarial attacks on computer-based COVID-19 combating technologies.

In [19], they conducted both targeted and untargeted universal adversarial perturbation 
(UAP) attacks against the COVID-Net architecture [60]. COVID-Net is a model developed 
specifically for classifying COVID-19 patients based on chest X-ray pictures. The outcome 
revealed that the COVID-net is susceptible to tiny UAPs. In particular, 2% of the UPAs 
to the average norm of image perturbations for face recognition systems using the image 
translation techniques achieve success rates of >85% and > 90% for nontargeted and tar-
geted attacks, respectively. Due to nontargeted UAPs, most chest X-ray pictures are classi-
fied as COVID-19 instances by the DNN models. The targeted UAPs cause DNN models 
to classify most chest X-ray pictures into a specific target class.

In [51], they studied six different applications used for COVID-19 diagnosis and each 
adversarial application attack was proposed. They attacked the following applications: 1) 
recognize whether a subject is wearing a mask from a live camera feed; 2) maintain DL-
based QR codes as immunization certificates; 3) add explainability of GRAD-CAM DL 
algorithms; 4) recognize COVID-19 from CT scan images; 5) detect noninvasive biom-
etrics and identify social distancing from a live camera feed; and 6) recognize COVID-
19 from X-ray image analysis. They tested the existing adversarial methods in this study, 
including FGSM, MI-FGSM, Deepfool, L-BFGS, C&W, BIM, Foolbox, PGD, and JSMA 
[13].

Using image translation methods, the authors of [30] calculated adversarial perturba-
tion [2] for face recognition systems. To fool the targeted face recognition system, they 
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would take a source image and distort it to create any desired facial appearance. White-box 
testing showed a 90% success rate for the attack. With the help of adversarial instances 
and the dynamic distillation technique, the model was able to reach an 80% success rate 
in the black-box setting. The translated images were realistic to the human eye and kept 
the person’s identity intact, while the perturbations were significant enough to fool trained 
defenses.

In [46], they proposed a COVID-19 diagnosis model based on transfer learning. The 
models were based on the state-of-the-art classification models VGG and the inception 
model. Models were developed using VGG and the inception model, two of the most 
advanced classification methods currently available. When the perturbation was increased 
from 0.0001 to 0.09, the VGG16 model’s accuracy plummeted by more than 90% for X-ray 
images, while the Inception-v3 network’s accuracy declined by 30%. The FGSM attack 
similarly exposed vulnerabilities, such as misdiagnosis, in CT imaging. They also demon-
strate that the degree of disturbance has a sizable impact on the degree to which people are 
aware of attacks.

In [41], machine learning techniques including support vector machine, random forest, 
logistic regression naïve bayes were implemented to classify chest X-ray images as viral 
pneumonia, COVID-19 and healthy persons. The model used 1400 images that were col-
lected from the Kaggle public repository. The experimental outcomes of this study con-
firmed that the supported vector machine technique has high accuracy and excellent perfor-
mance in the classification of the disease, as reflected by values of 91.8% accuracy, 91.7% 
sensitivity, 95.9% specificity, 91.8% F1-score, and 97.6% AUC.

3  Dataset description

We uploaded a new dataset called the Sophisticated Face Mask Dataset on the Kaggle pub-
lic repository on 16 June 2022. This dataset contains many different types of images of 
people wearing face masks. We collected these images from many different places so that 
the dataset would be unbiased and diverse. We used some images from other popular data-
sets like Masked FAces (MAFA) 16 and Masked Face Detection Dataset (MFDD), as well 
as some simulated images to make sure our dataset was complete. We also included some 
pictures that we found on the internet. Our goal was to create a  dataset that could help 
train a model to recognize different types of face masks from different angles. The model 
we train with this dataset can categorize images into three groups: a mask on the face, an 

Fig. 2  Dataset’s organization structure in a graphical format
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incorrectly worn mask, or no mask at all. The organization of the data in the dataset can be 
seen in Fig. 2.

The dataset contains 14,535 images categorized into three primary categories: with 
mask(4,789), incorrectly masked(5,000), and without mask(4746). Each category has sub-
categories based on the type of image, which makes the dataset useful for other computer 
vision tasks such as face recognition and occlusion face detection [22]. The images include 
various depictions of people wearing masks, including those with masks incorrectly placed 
on the chin or covering only the mouth, simple and complex masks with different designs, 
and images of people not wearing masks with occlusions like beards, long hair, or hands 

Fig. 3  Example of images in the dataset

Fig. 4  Data Distribution (a) Distribution of each class. (b) Mask-on chin and Mask-on-face-chin images in 
the incorrectly masked images. (c) Distribution of simple and complex images in correctly masked images. 
(d)Distribution of the Unmasked images
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covering their faces. some of the data sample in the dataset are shown in Fig. 3. The data-
set’s data distribution can be seen in the Fig. 4

Some of the data samples in the dataset are shown in Fig. 3.
The dataset has a total of 14,535 images. The incorrect_masked class consists of 5000 

images, of which 2500 are Mask_on_Chin and 2500 are Mask_on _Mouth_Chin. The 
With_mask class has 4789 images, of which 4000 are simple with_mask and 789 are com-
plex with_mask images. Similarly, without_mask has 4746 images, of which 4000 are sim-
ple and 746 are complex images. The data distribution of each class can be seen in Fig. 4.

In addition, the proposed dataset has been compared to the standard datasets that have 
been regularly used for face mask identification algorithms in Table 1.

4  Methodology

This study develops a face mask detection model based on transfer learning of Mobile-
NetV2, attacks the face mask model by untargeted FGSM adversarial attack and proposes 
a framework for a robust face mask detection model that is resistant to adversarial attacks. 
The proposed face mask model is initially trained on the custom compiled dataset for effec-
tive and efficient training. For the proposed model, adversarial images are created by com-
puting the perturbation for each test image using the FGSM technique and combining it 
with the corresponding clean image. The non-robust face mask model is then modified by 
using the proposed framework.

4.1  Transfer learning of MobileNetV2

MoblineNetV2 is a State-of-the-art CNN mode that performs well on devices such as 
mobile phones. The layers have been trained on the ImageNet dataset [9] and attained an 
optimal set of values. It is fast, accurate, and lightweight (resources efficient) when dealing 
with resource-constrained and real-time systems. The face mask detection system is incor-
porated in surveillance systems with limited resources, such as CCTV cameras. Therefore, 
it is the perfect model for the proposed method. MobileNetV2 employs a dual-block struc-
ture. One is a residual block with a stride of 1 and the other is of stride 2 that is used for 
downsampling. Both blocks have three layers each. The first layer is 1 × 1 convolution with 
linearity. The second layer is the depthwise convolution. The third layer is another 1 × 1 
convolution but without any non-linearity.

For the face mask detection model, we removed the last layer of the MobileNetV2 and 
added four trainable layers, including Dense 128, Dense 62, Dense 32, and Dense 3. We 
also used the dropout layers between these layers to avoid overfitting. MobileNetV2 layers 
are kept frozen so that they are not trainable during the training of the face mask model. 
The last layer of the model consists of 3 neurons, each corresponding to the required class/
output. Transfer learning of MobileNetV2 allowed us to save significant computational 
costs while improving the result. Figure  5 illustrates the architecture of the face mask 
detection model.

During the model training, we used 93% of the complete data and 7% for testing a 
model. The model classifies an image with an accuracy of 98.51% on training data and 
95.83% on testing data. During the training, the parameters and hyperparameter used are 
discussed in Table 2. The learning rate controls how fast the network weights are updated. 
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The batch size controls the number of samples before the network updates its parameters. 
The number of epochs controls the number of training iterations. The dropout rate deter-
mines the percentage of parameters that are dropped while training to prevent over-fitting.

4.2  Untargeted FGSM (fast gradient sign method) attack on the proposed model

We first provide notations and then introduce the formulation of an adversarial attack on 
the proposed face mask detection system.

Notations: Consider F as a face detection model, x as original input, l  as the desired 
output of a model or class of input, r as a perturbation, t as the target class, and θ as param-
eters of the face mask detection model.

x ∈ Sample from the dataset.
l ∈ With-mask or without-mask or incorrect-mask.
Formulation: Consider x a sample from the sophisticated face mask dataset, for 

instance, an image with no-mask on a face. We compute perturbation r of . Adding this 
perturbation r to the original image x is known as an adversarial example i.e.

x ‘= x + r is an adversarial example.

Fig. 5  Face mask Detection model architecture based on transfer learning of MobileNetV2

Table 2  Face mask detection 
model parameters and 
hyperparameters

Parameter Value

Learning rate 1e-3 with decay 
rate = learning rate / 
epoch number;

Batch size 32
Epochs 30
Dropout rate 0.6, 0.4, 0.3
Input layer size 224 *224*3
Output layer size 224*224*3
Optimization ADAM
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Note: x’ should be imperceptible to humans, i.e., it should appear to humans as class l, 
i.e., no-mask. Given this x’ as input to the F, the outcome of F is other than no-mask.

The adversarial attack against the proposed model is carried out by computing the adver-
sarial perturbation for each test image and adding it to the corresponding clean image. We 
employed the FGSM strategy for adversarial perturbation computation due to its simplicity 
and attacking efficiency. The framework of the adversarial attack on the face mask model is 
shown in Fig. 6. The TensorFlow methods and classes used to generate adversarial attacks are 
discussed in Table 3. FGSM is a white-box attack approach in which gradients are computed 
with respect to the pixels, and then sign operation is applied to the gradient matrix to get the 
desired result [54]. Back-propagation is used to calculate the gradient, which determines the 
perturbation direction. Perturbation of image is accomplished by taking a single large step in 
increasing the classifier’s loss. Simply stated, for each pixel in an input image, what would 
happen to the target output neuron if the value of that pixel increased or decreased. As the last 
step, a small value ‘ε’ epsilon is multiplied by the threshold gradient matrix and then add it to 
the input image. Perturbation is given by the Equation (1):

Fig. 6  It demonstrates the adversarial attack on the proposed face mask model

Table 3  Tensorflow methods used for the generation of adversarial examples for the proposed face mask 
system

Method Description

Gradient Tape It is used to record the operation performed on a tensor under the context 
manager’s watch. We used it to record the operation performed on the image 
during the forward propagation. This information is required during the 
computation of the gradient

Gradient It is a function used to compute the gradient. It is implemented as gradienttape.
gradient()

Categoricalcrossentropy It is a loss function provided by the tensorflow.losses.categoricalcrossentrpy(), 
used to compute the loss between prediction and original label.

Sign It returns an element-wise indication of the sign of a number.it is provided by 
tf.sign(x) = −1 if x < 0; 0 if x == 0; 1 if x > 0.
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where,
l is the true label of clean image x, ∇ *loss (x, l) calculates the gradient of the loss function 

around the current value of the model parameters in relation to the ‘x,’ ε(epsilon) is the mag-
nitude of the perturbation, i.e., it bounds the total number of pixels in x’ that can be modified 
with respect to x. The Adversarial example x’ is computed as x’ = x + 𝛿.

Since we have applied untargeted FGSM adversarial attacks on the proposed face mask 
system. The objective function of an untargeted adversarial attack is given in Equation (2):

Subject to

Here F(x) rightly classifies the input, but F(x’) misclassifies the input as some other 
class. The objective function states that the magnitude of a ‘r’ must be small and it must be 
small enough to make the model misclassify.

Following is the algorithm for generating the adversarial example for the face mask 
classifier model.

In STEP 1, we iterate through all the images in a test set for perturbation computation. 
After that, in STEP 1.1, The image selected is first preprocessed before being sent for pre-
diction. The image size is resized into 224*224*3 dimensions and normalized by dividing 
it by 225.0. The preprocessed image is subsequently forwarded to the trained model for 

(1)� = ε ∗ sign (∇ ∗ loss (x, l))

min ‖x′–x ‖
X

′

(2)
F(x) = �

F
(
x�
)
= �

�

� ≠ �
�

Input: image, label, ε(epsilon), face mask model

Output: Adversarial example

STEP 1 for each image in a Testset, do
STEP 1.1 Preprocess the image: Normalizing and resizing (224*224*3) 

STEP 1.2 Predict the label of the test image: prediction= face-mask-model.predict(image)

STEP 1.3 compute the loss between actual and predicted label: 

loss=CategoricaCrossEntriopy(   label,prediction )

STEP 1.4 compute the gradient of the loss with respect to the input test image: 

gradient=gradient( loss, image  )

STEP 1.5 Apply the sign method and multiply it with the epsilon resulting in the 

perturbation: perturbation=(sign(gradient) * ε)

STEP 1.6 Add this perturbation to the image:  Adversarial image=image + perturbation

STEP 2 Adversarial images are sent to the MobileNetV2 Classifier for classification.

Algorithm 1  Adversarial examples for face mask detection model
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prediction in STEP 1.2. After the prediction, the loss between the actual label of the image 
and the prediction is computed in STEP 1.3. In STEP 1.4, the gradient, which is the rate 
of change of loss with respect to the input image, is computed. The sign operation and 
epsilon are then applied to the gradient to compute the perturbation IN STEP 1.5. The 
adversarial image is computed by adding the clean image to the perturbation in STEP 1.6. 
In STEP 2, the adversarial images are given as input to the face mask detection system for 
classification.

We have illustrated the generation of adversarial perturbation and adversarial examples 
in Fig. 7. An adversarial image is produced by setting the epsilon value as 0.010. Although 
it is clear from the figure that the adversarial image is indistinguishable from the original 
image, the model still misclassifies it.

The parameter epsilon in FGSM determines the magnitude of the perturbation,i.e., it 
represents the amount of the change in pixel values in the adversarial image. In Fig.  8, 
we demonstrated the adversarial image with different epsilon values. We can visualize the 
impact of epsilon on the clarity of the adversarial image and by increasing epsilon’s value, 
the adversarial images’ changes become perceptible.

4.3  Improving the robustness of the proposed face mask detection model

In this section, we designed a framework by which the models’ robustness to the adver-
sarial attack is enhanced. We employed an adversarial learning approach in which the 
dataset is modified by adding adversarial examples and the model is retrained on the 
modified dataset. However, in our approach, we modified the adversarial learning by 
introducing an adversarial generator module that generates adversarial examples of the 
same image on different epsilons and adds them to the sophisticated face mask dataset. 
The conventional adversarial generator module generated only perturbations on single 
epsilon values. The reason for producing adversarial images with varying epsilon values 
is to ensure that the model is resilient to a variety of adversarial perturbations instead of 
a single perturbation. The framework of the robust model is shown in Fig. 9.

Fig. 7  Illustration of the adversarial example generation

Fig. 8  It illustrates the adversarial image computed on different epsilon values. a epsilon = 0.00, b epsi-
lon = 0.090, c epsilon = 0.0150, d epsilon = 0.020
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4.3.1  Formulation

The goal is to enhance the robustness of face mask detection model ‘F’ to adversarial 
attacks . We employ an adversarial learning approach by modifying the dataset say D 
with adversarial examples and retraining the model F on the modified dataset. We intro-
duced an adversarial generator module ‘A’ that takes an image and an epsilon value 
as input and outputs an adversarial example. Conventionally, ‘A’ generates adversarial 
examples by adding perturbations on a single epsilon value. However, we propose a 
modification to ‘A’ by introducing an adversarial generator module that generates adver-
sarial examples of the same image on different epsilon values and adds them to the 
dataset D. 

Let ε1, ε2, ..., εn be n different epsilon values. Then, ’A’ generates n different adver-
sarial examples of the same image x, denoted as, x’11, x’12, ..., x’1n corresponding to ε1, 
ε2, ..., εn, respectively. This modification aims to ensure that the model F is resilient to 
a variety of adversarial perturbations instead of a single perturbation. We create a modi-
fied dataset D’ by adding the adversarial examples (x’11, x’12,, ..., x’1n),  (x’21, x’22,..., 
x’2n), ..., (x’m1, x’m2,..., x’mn) for each epsilon value to the original dataset D, where m 
is the number of randomly selected clean samples from D. That is, D’ = {(xi,  yi), (x’ij, 
 yi): i ε {1,2,…,m}, j ε {1,2,…,n}} where  (xi,  yi) is the ith image-label pair in D and x’ij 
is the adversarial image of the ith clean image corresponding to the epsilon value j. We 
retrain the model F on the modified dataset D’ to enhance its robustness to adversarial 
attacks. Algorithm 2 outlines the steps of the robust face mask detection model.

STEP 1 iterates through a bunch of the images in the regular dataset. Instead of com-
puting the perturbation on a single epsilon value, we iterate through a range of epsilons in 
STEP1.1. For example, e1,e2,.., eN are the values of the epsilons that are used to generate 
the different adversarial examples of same clean image. In STEP 1.1.1, the trained non-
robust model predicts the output of the clean test image. STEP 1.1.2 and 1.1.3 computes 
the loss and the gradient, respectively. In step1.1.4, the perturbation is computed by apply-
ing the sign method to the gradient and multiplying it with the current epsilon value, i.e., 
perturbation = sign (gradient)* e1. STEP 1.1.5 computes the adversarial image on the cur-
rent epsilon value, say e1. The generator iterates through all epsilon values to generate 
the adversarial images of the same clean image on different epsilon values. In Step 2, the 

Fig. 9  Framework of the robust face mask detection system
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non-robust model is retrained on a modified dataset consisting of clean and adversarial 
images. The resultant model is robust to adversarial attacks.

5  Experimental results

We trained the proposed face mask model on google collaboratory and then saved it on a 
local machine. After that, the model was loaded and the adversarial attack was executed on 
a local machine with 8 GB RAM and NVIDIA Ge Force 930 max. Finally, the non-robust 
face mask model was modified using the proposed framework and retrained on google 
collaboratory.

5.1  Pre attack model performance

The face mask detection model was trained for 20 epochs on 93% of the total data. The 
remaining 7% were used for validation/testing purposes. The model performed well and 
classified the images as the with-mask, without-mask, and incorrect-masked faces with an 
accuracy of 98.51% and 95.83% on training and testing data, respectively. The learning 
curves of the model are shown in Fig. 10.

The plot makes it clear that as the number of epochs increases, the training and val-
idation accuracy increases while the loss of training and validation data decreases. It is 

Input: regular dataset, label,  non-robust-model , ε(set of epsilon values)

Output: Robust model

STEP 1 Compute the adversarial for bunch of images in the regular dataset:

for bunch of images in a regular  dataset, do
STEP 1.1 Compute perturbations for a range of epsilon values:

for range of ε, do
STEP 1.1.1 predict the label of the clean test image: prediction= non-robust-

model.predict (clean image)

STEP 1.1.2 compute the loss between actual and predicted label:

loss=CategoricaCrossEntriopy( label,prediction )

STEP 1.1.3 compute the gradient of loss with respect to the input test image:

gradient=gradient( loss, image  )

STEP 1.1.4 Apply the sign method and multiply it with the epsilon resulting in the        

perturbation:perturbation=(sign(gradient) * ε)

STEP 1.1.5 Adversarial image=clean image+perturbation

STEP 1.1.6 Add clean and Adversarial images to the modified training dataset.

STEP 2 Retrain the non-robust-model on the modified dataset.

STEP 3 Resultant model is robust to adversarial attacks.

Algorithm 2  Robust face mask detection model
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evident from the plot that the testing and training accuracy are not far from each other, 
which concludes the model is not overfitting.

Several other metrics were used to assess a model’s performance, including recall, pre-
cision, F1-Score, accuracy, macro-average, and weighted average. All these metrics were 
computed by the classification_report method of the SK-learn package. The metrics are 
defined below:

• Accuracy: represents the number of correctly classified data instances over the total 
number of data instances.

• Precision: It is the proportion of correctly predicted positive observations to the total 
predicted positive observations.

• Recall or sensitivity: It is given by the proportion of true positives to all positives.
• F1-Score: It is the harmonic mean of the recall and precision, i.e.mathematically, it is 

computed as a weighted average of both.

  

At first, we computed the performance of a face mask detection model on the clean test 
dataset. The model was evaluated on 1053 unseen/test images, of which 353, 350 and 350 

F1Score = 2∗
(
Recall

∗
Precision

)
∕(Recall + Precision)

Fig. 10  Learning curves of models accuracy and loss: (a) is the model’s accuracy on training and testing 
data. (b) illustrates the loss of the model on training and testing data

Fig. 11  Precision, recall, f1-score of the face mask detection model on clean test data
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belong to incorrect-mask, with-mask and without-mask, respectively. The model achieved 
a precision of 95%, recall of 94%, and f1-score of 94%. The result of the clean test image is 
shown in Fig. 11.

The output of a face mask detection model is shown in Fig. 12. When given a clean 
masked face image, the model correctly predicts it as a masked image with 99.95% 
confidence.

5.2  Post attack model performance

The classifier achieved excellent training data accuracy and performed well on the test data. 
However, this was not the case once attacked by the untargeted FGSM. As discussed in 
Section 4, the model’s performance was evaluated on adversarial images generated on dif-
ferent epsilons. The reason is to compare the impact of the different epsilon on the model’s 
performance. It is evident from Table 4 that on increasing the value of epsilon, the model’s 
performance degraded. On epsilon value 0.009, the accuracy of a model was reduced to 
14.53% from 95.83, which is alarming. The plot of accuracy and loss on different epsilon 
values can be seen in Fig. 13. It is also evident that increasing the value of epsilon resulted 
in a decrease in the accuracy of the model.

In addition, we have computed the precision, recall, and f1-score on different epsi-
lon values. The results reinforce our conclusion that the performance of the model has 
degraded. The list of classification reports is shown in Fig. 14.

Fig. 12  The model correctly classifies the image as masked 

Table 4  Accuracy and loss of 
regular model on various epsilon 
of FGSM

Epsilon(ε) Accuracy (%) Loss of a model

0 (clean image) 95.83 0.1339
0.001 75.12 1.2533
0.002 59.54 2.7042
0.003 45.20 3.9079
0.004 33.62 4.8393
0.005 26.59 5.5416
0.006 22.51 6.0692
0.007 18.52 6.4622
0.008 16.33 6.7565
0.009 14.53 6.9780
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Fig. 13  Accuracy and loss curves on various epsilon values

Fig. 14  Show the accuracy, precision, recall, and f1-score on different epsilon values
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The adversarial image of the clean masked image created by FGSM forces the model to 
classify it wrongly as an incorrect mask with 100% confidence, as shown in Fig. 15. One 
thing to note here is that the model incorrectly labels the adversarial image and does so 
with 100% confidence. This confidence level exceeds the correctly classified clean image, 
which had a 99.95% classification confidence.

5.3  Robust model performance

The proposed robust framework is based on adversarial learning. However, due to the lim-
ited resources, including RAM, the adversarial generator selected only a random subset of 
the training dataset for adversarial example generation and added them to the subset. The 
model was then retrained on the modified dataset containing a subset of training data and 
their adversarial examples. Despite using only a portion of the training data, the model 
generalized well. Figure 16 depicts the robust model’s learning curve. There was a notice-
able drop in accuracy when evaluated on the modified dataset from 95.78% to 92.79%, 
but the defended model performs incredibly on the images that once fooled it. The model 
maintained an accuracy of 92% on adversarial images computed on different epsilons. 
Table  5 shows the performance of the robust model on the FGSM attack with different 
epsilons. Compared to the regular model’s performance attack in Table 4, the robust model 
performed ideally on adversarial data. e.g., on epsilon 0.009, the non-robust model’s accu-
racy is 14.53%, whereas the robust model achieved 92% accuracy.

Fig. 15  Model misclassifies an adversarial image as an ‘incorrect mask’ with 100% confidence

Fig. 16  a illustrates the training accuracy vs. the validation accuracy of the robust model on a modified 
dataset; b shows the training and testing loss
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The plot of accuracy and loss of the robust model on different epsilon is shown in 
Fig. 17. The model performed exceptionally well even on varying epsilon of FGSM attack, 
maintaining its accuracy of about 92% on adversarial data.

The output of a robust model is shown in Fig. 18, where it correctly classifies the adversar-
ial image of the masked face to its intended class, ‘with mask’. Note that the same adversarial 
image fooled the regular model into misclassifying it into an ‘incorrect mask’, as shown in 
Fig. 14.

Table 5  Accuracy and loss of 
robust model on various epsilon 
of FGSM

Epsilon(ε) Accuracy (%) Loss of a model

0 (clean image) 93.79 0.5855
0.001 92.87 0.5937
0.002 92.79 0.6011
0.003 92.70 0.6084
0.004 92.62 0.6182
0.005 92.62 0.6317
0.006 92.38 0.6450
0.007 92.05 0.6585
0.008 91.97 0.6738
0.009 92.13 0.6883

Fig. 17  Illustrates the model’s performance in terms of accuracy and loss on different epsilons values of 
FGSM

Fig. 18  Robust model correctly classifies an adversarial image of the masked face with 92.23% confidence
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6  Conclusion

In this study, we demonstrated the vulnerabilities of the deep learning-based face mask 
detection model against adversarial examples and designed a framework for a more robust 
face mask detection system resistant to these attacks.

We began by introducing the custom dataset used to train the face mask identification 
model. The model was created by applying transfer learning of the state-of-the-art clas-
sification model MobileNetV2. The model attained a respectable accuracy of 95.83% when 
tested on clean inputs, as shown in Figs. 10 and 11. The model was subsequently subjected 
to adversarial examples computed on various epsilons of the FGSM attack. The results 
shown in Table 4 revealed that the models’ performance declined further as the epsilon’s 
value increased. On epsilon 0.009, the model’s accuracy declined to 14.53%, which is 
alarming. Although we employed extremely small epsilon values to create impercepti-
ble perturbations, the model misclassified the adversarial input with greater certainty. In 
Fig. 15, we noted that the adversarial image of the masked face was recognized as an incor-
rect mask face with 100% confidence. During the FGSM attack, the majority of the images 
in the test data were wrongly classified as incorrectly masked faces.

We employed the adversarial learning strategy to enhance the robustness of the model, 
which involved modifying the custom dataset with adversarial samples. However, in our 
defense approach, we modified the conventional adversarial learning approach by using 
only a portion of the total dataset and generating adversarial examples on the combination 
of epsilon values. The results in Table 5 and Fig. 17 demonstrate that the model is robust, 
achieving 92% accuracy on adversarial examples.

Face mask identification is critical for effectively combatting COVID-19. Thus, further 
study on vulnerabilities and defensive techniques is required before these systems can be 
implemented. We believe our findings will assist researchers in improving the security of 
their models and raise awareness of the need to establish face mask detection models with 
several protection strategies.

7  Future scope

In the future, we would like to work on the following areas:

• The present study is based on evaluating the model’s performance on adversarial 
images. There is a potential to carry out adversarial attacks on the face mask surveil-
lance systems, forcing the model to misclassify from the live video data.

• In our particular scenario, we attacked the model by utilizing the white-box FGSM 
attack because the specifics of the model, including its gradient, architecture, and train-
ing data, were readily available and easy to access. However, in practical cases, when 
the model is deployed, all of these specifics are often concealed from the users. How-
ever, in that case, there is still a scope to attack the model using Black-box strategies 
[7].

• In our work, we used the FGSM strategy for adversarial example computation due to its 
simplicity. However, in the future, we would like to attack the model using other attack 
strategies such as the Basic Iterative Method (BIM) [34] and Jacobian-based Saliency 
Map Attack (JSMA) [47] .



23896 Multimedia Tools and Applications (2024) 83:23873–23899

1 3

• As discussed, there are other strategies to generate adversarial perturbation. We aim to 
design a universal framework that is robust to the adversarial examples generated by 
any strategies.

• To evaluate the model’s performance on adversarial images, we computed the pertur-
bation of each clean image separately and added it to its corresponding clean image. 
However, there is a method by which we can compute the universal perturbation [43], 
which is the singular perturbation matrix for all test samples.

• Due to limited resources, the model was retrained on a fraction of the training data 
and adversarial examples during adversarial learning. Although the robust model per-
formed well on adversarial examples, there is room for improvement by retraining the 
model on the complete dataset and their adversarial examples.

• In the future, we aim to investigate several different defensive strategies, such as net-
work distillation, which extracts knowledge from deep neural networks to ensure their 
robustness [48], and adversarial example detection during the testing stage [40].
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