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Abstract
Lung cancer is a widespread type of cancer around the world. It is, moreover, a lethal 
type of tumor. Nevertheless, analysis signifies that earlier recognition of lung cancer 
considerably develops the possibilities of survival. By deploying X-rays and Computed 
Tomography (CT) scans, radiologists could identify hazardous nodules at an earlier 
period. However, when more citizens adopt these diagnoses, the workload rises for 
radiologists. Computer Assisted Diagnosis (CAD)-based detection systems can identify 
these nodules automatically and could assist radiologists in reducing their workloads. 
However, they result in lower sensitivity and a higher count of false positives. The pro-
posed work introduces a new approach for Lung Nodule (LN) detection. At first, His-
togram Equalization (HE) is done during pre-processing. As the next step, improved 
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) based segmen-
tation is done. Then, the characteristics, including “Gray Level Run-Length Matrix 
(GLRM), Gray Level Co-Occurrence Matrix (GLCM), and the proposed Local Vector 
Pattern (LVP),” are retrieved. These features are then categorized utilizing an optimized 
Convolutional Neural Network (CNN) and itdetectsnodule or non-nodule images. Sub-
sequently, Long Short-Term Memory (LSTM) is deployed to categorize nodule types 
(benign, malignant, or normal). The CNN weights are fine-tuned by the Chaotic Popula-
tion-based Beetle Swarm Algorithm (CP-BSA). Finally, the superiority of the proposed 
approach is confirmed across various measures. The developed approach has exhibited 
a high precision value of 0.9575 for the best case scenario, and high sensitivity value 
of 0.9646 for the mean case scenario. The superiority of the proposed approach is con-
firmed across various measures.
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Nomenclature
Abbreviation  Description
AI  Artificial Intelligence
Bi-LSTM  Bidierctional LSTM
BIRCH  Balanced Iterative Reducing and Clustering using Hierarchies
BOA  Butterfly Optimization Algorithm
BSO  Beetle Swarm Optimization
CAD  Computer Assisted Diagnosis
CE  Contrast Enhancement
CNN  Convolutional Neural Network
CT  Computed Tomography
CXR  Chest X-Ray Radiograph
DL  Deep Learning
DNN  Deep Neural Network
FDR  False Discovery Rate
FE  Feature Extraction
FNR  False Negative Rate
FPR  False Positive Rate
GLCM  Gray Level Co-Occurrence Matrix
GLRM  Gray Level Run-Length Matrix
GOT  Geometric Mean-Based Otsu Thresholding
HE  Histogram Equalization
KL  Kullback-Leibler
LA  Lion Algorithm
LDA  Linear Discriminant Analysis
LN  Lung Nodule
LP  Local Pattern
LR  Learning Rate
LSTM  Long Short-Term Memory
LVP  Local Vector Pattern
MCC  Matthews Correlation Coefficient
MC-CLAHE  Modified Clip Limit-Based Contrasts Limited Adaptive Histograms 

Equalization
ML  Machine Learning
MRCN  Multi-Resolution Convolutional Networks
MU  Mask Unit
NN  Neural Networks
NPV  Negative Predictive Value
PNN  Probabilistic Neural Network
PRO  Poor Rich Optimization
PSO  Particle Swarm Algorithm
RNN  Recurrent Neural Network
ROI  Regions Of Interest
SMO  Spider Monkey Optimization
SSA  Salp Swarm Optimization
SSO  Shark Smell Optimization
SVM  Support Vector Machine
TWEDLNN  Target Based Weighted Elman DL NN
WNLM  White Nodule-Likeness Map
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1 Introduction

Lung cancer is said to be a much deadlier disease. It possesses higher casualty rates, and its 
occurrence rate is rising globally [18, 29, 34, 54]. The last analysis of lung cancer is the main 
aspect of offering the finest potential clinical cure for patients. Several diseases, like lung can-
cer, are diagnosed early by routine health screening. As an early diagnostic tool for several 
medical conditions, an X-ray radiograph is normally deployed for radiological tests in fitness 
screening by making up almost every examination in a typical radiology sector [16, 26].

Unlike CXR, CT provided 3D data and was deployed for screening for lung cancer [1, 
47]. The results demonstrate that low dosage C.T. for screening lung cancer is better than 
benchmark CXR; however, CT also revealed superior FPR. Based on the current study, the 
appliance of new CAD software might manipulate the efficacy of CXR. It can eventually be 
a cost-effective technique in which low-dosage C.T. delivery is not possible due to costs or 
infrastructure constraints [20, 53]. Conventionally, CXR images are computed by doctors and 
radiologists. But most hospices endure a deficiency of practicing radiologists [25, 48].

A CAD system assists in the finding of unremarkable lung nodules [6, 12, 43]. Alterna-
tively, in several crowded countries, extreme CXR images must be analyzed in a short period 
when doing wide-ranging fitness screening. Accordingly, doctors fail to spot certain unremark-
able nodules. Earlier research regarding lung nodule recognition employed the differentiation 
of candidates’ shapes under different thresholds because the characteristics recognized nodules 
from another candidate. However, these schemes only measured the shape and intensity of the 
lung nodule candidate and thereby couldn’t attain high sensitivity and lower FPR simultane-
ously [38, 46, 51]. Furthermore, in the field of healthcare, deep learning methods are utilized 
in many applications such as lung nodule classification, COVID-19 medical image processing, 
and so on [5, 21, 22, 40]. Current research regarding lung nodule recognition including gradient 
features & texture features for identifying lung nodules from pre-identified candidates.

Major contributions of the research study:

• Introduces an improved BIRCH clustering model for the segmentation process. This is an 
enhanced form of the traditional BIRCH model.

• For feature extraction, it derives the proposed LVP features along with GLCM & GLRM 
characteristics.

• Deploys ahybrid optimized CNN classifier and an LSTM classifierfor precise LN detec-
tion outputs.

• Introduces a novel CP-BSA scheme for finding the optimal weights in CNN. The proposed 
CP-BSA model is a modified form of the traditional BSO algorithm.

Organization: Section 2 reviews the study. Section 3 discussesthe suggested LN detection 
approach. Section 4 depictshybrid classification based lung nodule detection with CP-BSA 
optimization. Finally, sections 5 and 6 depict the outcome as well as conclusions.

2  Literature review

2.1  Related works

In 2021, Mesut et al. [45] introduced AI-based optimization techniques for realizing 
the categorization of colon and lung cancer his to pathological images. The deployed 
dataset includes 5 groups of his to pathological images with 3 classes of lung cancer 
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and 2 classes of colon cancer. In the developed scheme, the DarkNet-19 model was 
used to train the image groups from scratches and features derived from the DarkNet-19 
model. Finally, the proficient features attained were further categorized with the SVM 
technique.

In 2019, Li et al. [19] introduced a DL oriented lung nodule recognition technique. 
Here, patch-oriented MRCN was employed for extracting the features and 4 diverse 
fusion techniques were deployed for categorization. This model has better performance 
as well as was more robust than the formerly described research.

In 2020, Shayan et al. [14] introduced 2 techniques, including DNN on fractal image 
features and CNN techniques with the usage of lung images in a direct manner. Conse-
quently, classification resultants have shown that the offered CNN model outperformed 
the DNN scheme with higher accurateness and sensitivity. Furthermore, CNN architecture 
was offered during the segmentation procedure to discover ruined tissue in lung images.

In 2021, Sundhari et al. [41] deployed LDA for lung disease recognition. First, the 
pixel intensity was measured via enhanced HE and integrated with the rib model and 
original image to improve the initial intensity. Eventually, the rib borders were identi-
fied and smoothened with the usage of pixel intensity. The extraction of the white nod-
ule was the subsequent stage. For creating the WNLM, an NN classifier was employed.

In 2018, Marcin et al. [52] presented a novel classification technique for lung carci-
noma. This technique begins with the extraction as well as localization of LN via evalu-
ating every pixel of the real image. First, in variance images, the local maxima were 
discovered. By deploying the positions of these maxima in a real image, the shapes of 
feasible nodules were found in lung tissues. Nevertheless, following this segmentation 
phase, many false nodules were discovered. As a result, PNN was used as a classifier to 
differentiate the factual ones.

In 2021, Burkhardt et al. [8] evaluated 88 radiographs of both contrasts depending 
upon mean values for 2 ROI, with healthier left lung and an (irradiated) right lung. In 
addition, the proportions of mean values were compared among damaged and healthy 
lungs for contrast. While differences from healthier lungs go beyond 3σ, the time-point 
was established and evaluated amongst contrasts.

In 2021, Vijay et al. [49] established pre-processing image scheme for alleviating inten-
sity deviations among medicinal images. Then, features like Q-deformed entropy and DL 
were extracted, and thus, the anomalous marker, lesions and sound impedance from tissues 
were removed from the images. The obtained qualities were incorporated for differentiating 
among pneumonia, COVID-19 and healthier cases. The most important intention of this 
scheme was to generate an image processing device for medicinal experts.

In 2020, Laxmikant et al. [44] suggested an efficient DL method for detecting lung can-
cers by employing TWEDLNN, and MU oriented 3FCM schemes. The established scheme 
included segmentation of lung image by means of GOT; CE by means of MC-CLAHE; 
FE; classification by means of TWEDLNN; and MU oriented FCM for detecting LN.

2.2  Motivation

Table 1 represents the reviews of the existing lung nodule detection systems. Some lim-
itations of the extant works are listed below. The main disadvantage of the ANN [45] 
model was the lack of pre-processing technique to reduce the noise of images. The MRCN 
was exploited in [19], and it requires implementation on a larger database. The CNN [14] 
model has to do more with AI methods. Furthermore, more features should be explored in 
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the WNLM model [41]. The PNN model [52] fails to detect lower contrast modules. The 
Wilcoxon-Mann-Whitney test was exploited in [8], and it decreases the dark-field signal. 
Additionally, the Q-deformed entropy [49] model needs analysis in terms of complexity.

To overcome these limitations, a novel multi-classification approach for LN detection 
has been introduced. To tackle the limitations of [45], a HE model is utilized for pre-pro-
cessing. For feature extraction, GLCM, GLRM, and proposed LVP features are extracted 
rather than the reference [41]. Also, for precise detection, a novel CP-BSA model is 
deployed for optimally tuning the weights of the CNN classifier.

3  Proposed lung nodule detection approach

Despite the fact that early identification of lung cancer can significantly enhance a lung 
scanner patient’s likelihood of survival, a reliable as well as effective system is critical. 
The established CP-BSA-based technique is depicted diagrammatically in Fig.  1. The 
implemented strategy includes the following critical stages. To obtain a segmented lung 

Fig. 1  Suggested Lung  
Nodule detection scheme 
architecture
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image, HE is utilized throughout pre-processing, followed by improved BIRCH-based 
segmentation. The features are then derived, including “proposed LVP features, GLCM 
features, as well as GLRM features”. The retrieved characteristics are then fed into an 
optimized CNN to detect nodule and non-nodule images. The nodule images are then 
exposed to the LSTM structure to obtain the final output of the nodule type. Particularly, 
the CNN weights are optimized using the CP-BSA scheme, which aids in achieving bet-
ter results. Finally, the benefit of the adopted model is confirmed across multiple metrics.

3.1  Pre‑processing by histogram equalization

The lung image is initially pre-processed via an HE model, which adjusts the image inten-
sities to enhance contrast. When the image’s useful information is depicted by close-con-
trast values, this strategy often improves the global contrast of numerous photos. With this 
change, the intensities on the histogram can be more evenly dispersed. As a result, areas 
with poor local contrast can acquire contrast. This is accomplished through histogram 
equalization, which effectively spreads out the most frequent intensity values [28]. 

The attained pre-processed image isindicated by (ImHE).

3.2  Improved BIRCH model for Segmentation

The BIRCH clustering [55] deploys the pixel grey values of the image as sample data and 
ignores the domain association among the pixels (spatial data). A neighboring pixel is 
assumed to be in the same class as it is based on the characteristics of medical imaging. 
To lessen the noise effect on a segmented cluster, a novel image is created using the grey 
means in a tiny neighborhood of each pixel for medical images. Conventionally, the dis-
tance between pixels is computed depend on the difference among the centre & reference 
pixels. However, as per the developed improved BIRCH model, the distance assessment is 
performed by KL divergence distance (Di) as shown in Eq. (1), here, we is the weight, xi is 
the centre pixel, yi and reference pixel n refers to the total count of pixels.

The segmented image is represented by Imseg. The pseudo-code of the segmentation 
scheme is depicted below.

(1)Di(x, y) =

n
∑

i=1

(

xi − yi
)

log
xi

yi
∗ we

Algorithm 1:  Improved BIRCH scheme
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3.3  Feature extraction

In this section, the GLCM, GLRM, and modified LVP features are retrieved from the seg-
mented image.

3.3.1  GLCM features

It is deployed for computing the spatial relationship amongst the pixel [3]. The extracted 
GLCM features are listed as follows: “entropy, difference variance, contrast, energy, sum vari-
ance, correlation, information measures of correlation 1, sum average, homogeneity, variance, 
sum entropy, MCC(2ndhigher Eigen value of Q)0.5, difference entropy, & information meas-
ures of correlation 2.”The characteristics derived from GLRM are represented as (fGLCM).

3.3.2  GLRM features

“Geometrical features are represented through a matrix in GLRM. It gauges the intensity of 
the pixels along the designated Run-length direction [27].” The extracted GLRM features are 
given as follows: “run length non uniformity, grey level non uniformity, small run emphasis, 
low grey level run emphasis, long run emphasis, high grey level run emphasis, as well asrun 
percentage.” The features derived from GLRM are represented as (fGLRM).

3.3.3  Modified LVP features

The LVP model was introduced for providing different 2-D spatial structures of micro-pat-
terns with a variety of pair wise vector directions of neighborhood pixel and reference pixel. In 
recent times, LVP is deployed in many extant works to prevail over the disadvantages of other 
LP descriptors [10]. In this research, it is planned to carry out LVP based on the harmonic 
mean to attain more accurate features and it is known as proposed LVP. The distance execu-
tion is performed by the manhattan distance and the improved LVP is shown in Eq. (2), where, 
VDis
�

(C) denote the derivative vector of C at α direction, Dis denote the manhattan distance as 
well as C is the reference pixel. Also, f Dis

4
(.) it refers to the LVP at a Manhattan-based neigh-

bourhood distance Dis as well as α is the index angle.

The retrieved modified LVP based characteristics are denoted as (fILVP). The pseudo-
code for modified LVP features is shown in algorithm 2.

(2)fILVP = f Dis
4

(C, �) =

MP
∑

P=1

2
P−1ZDis

lvp
(P,C, �)

(3)ZDis
lvp

(P,C, �) =

{

1; if CSTDis
P,C,�

≥ 0

0; otherwise

}

(4)CSTDis
P,C,�

= VDis

�+450
(P) −

[

VDis

�+450
Σ(C)

VDis
�

(C)
× VDis

�
(P)

]

(5)VDis
�

(C) = Im(�,Dis) − Im(C)
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Accordingly, the derived improved LVP features (fILVP), GLCM features (fGLCM) and 
GLRM features (fGLRM) are summed up as FE classified via optimized CNN and LSTM 
classifier for detection.

4  Hybrid classification based LN detection with CP‑BSA optimization

4.1  Optimized CNN classifier

CNN’s are similar to conventional ANNs in that they are made up of neurons that learn 
to optimize themselves [9, 13, 37]. Figure 2 depicts the CNN’s overall architecture. Due 
to its benefits, such as high prediction accuracy, weight sharing capability, as well as 
good computing complexity, CNN is used for classification in this study. Convolutional, 

Algorithm 2:  Modified LVP

Input

Convolution layer Pooling layer

Fully connected 
layer

Output

Fig. 2  CNN model
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pooling, & fully-connected layers are the three distinct CNN layers. All neurons are 
connected with adjacent neurons in the last layer.

At a position (r, t) in lth a layer of the related wth feature map, the features are com-
puted as per Eq. (6).

In Eq. (6), Wl
w
 denote weight optimally tuned deploying theCP-BSA method as well 

as Tl
w
 denote bias term of wth filter connected to lth layer. At a centred layer location, the 

patch input is denoted by QIl
r,t

 . Finally, the activation value 
(

actl
r,t,w

)

 linked to convolu-
tional features Bl

r,t,w
 is determined as per Eq. (7).

The pooling layer carries down sampling functions achieved from convolutional lay-
ers. For each pooling function pool(∙)actl

m,h,w
 , the Al

r,t,w
 value is evaluated by Eq. (8), 

here NNr, t denote a neighbourhood near a location (r, t).

The predictions made by CNN appear in its output layer. As depicted in Eq. (9), the 
CNN loss is indicated Loss.

The elementconnected to Wl
w
 and Tl

w
 is denoted as θ. Here exist nu counts of output-

input relation {(QI(h), A(h)); h ∈ [1, ⋯, nu]}. Also, the hth input feature, the labels, as well 
as output are indicated as G(h) respectively.

Furthermore, the CNN weights are chosen optimally via the CP-BSA scheme for 
accurate detection. From CNN output, it can be determined whether the lung image 
contains a nodule or non-nodule. If the lung image contains nodules, it is further pro-
vided as input to LSTM, which provides the final output regarding nodule type (benign, 
malignant, or normal). For simulation experimentation, 6 × 1 layer array with layers is 
utilized, and the details are given in Table 2.

(6)Bl
r,t,w

= Wl
w

T
QIl

r,t
+ Tl

w

(7)actl
r,t,w

= act
(

Bl
r,t,w

)

(8)Al
r,t,w

= pool
(

actl
m,h,w

)

,∀(m.h) ∈ NNr,t

(9)Loss =
1

nu

nu
∑

h=1

l
(

�;A(h);G(h)
)

Table 2  CNN layer details Layer no Layer name Description

1 Image Input 15116x1x1 images 
with ‘zerocenter’ 
normalization

2 Convolution 1 1 × 1 convolutions 
with stride [1 1] and 
padding ‘same’

3 ReLU ReLU
4 Fully Connected 2 fully connected layer
5 Softmax Softmax
6 Classification Output Crossentropy ex
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4.2  LSTM Classifier

The LSTM configuration makes use of a list of repeated LSTM cells. The “forget gate, 
input gate, and output gate” are represented by the three multiplicative units that make up 
each LSTM cell [33, 56]. The LSTM memory cells can retain as well as transport informa-
tion for extended periods of time due to these units. Figure 3 depicts the LSTM’s overall 
architecture.

Consider, hidden and cell states parameters (R & D). At the time, t, the output, input, 
as well as forget gate imply Ot, It, Ft. LSTM is employed Ft for sorting the information to 
neglect. The sorted information represent particular partial characteristics connected to the 
past gaze direction, and Ft is defined in accordance with Eq. (10).

Eq. (10), (JRF, ERF) & (JIF, EIF) stand for weight as well as bias elements to connect hid-
den & input layers to forget gates, while σ indicates an activation function.

The LSTM uses the input gate as demonstrated in Eqs. (11)–(13), wherein (JRG, ERG) 
& (JIG, EIG) denote weight & bias constraints to map the hidden & input layers to the cell 
gate. To map input & hidden layers to It, terms (JRI, ERI) & (JII, EII) indicate weight and bias 
constraints. Layers for input and output are described by (Xt, Dt − 1, Rt − 1) & (Rt, Dt).

Further, the LSTM cell obtains the output hidden layer from the output gate as revealed 
in Eq. (14) & Eq. (15), here, (JRO, ERO) & (JIO, EIO) implies weight as well as bias to map 
the hidden & input layer Ot.

(10)Ft = �

(

JIFXt + EIF + JRFRt−1 + ERF

)

(11)Gt = tanh
(

JIGXt + EIG + JRGRt−1 + ERG

)

(12)It = �

(

JIIXt + EII + JRIRt−1 + ERI

)

(13)Dt = FtDt−1 + ItGt

Fig. 3   Architecture of LSTM classifier
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Therefore, the output achieved from LSTM gives the final output regarding nodule 
type(benign, malignant, or normal). For simulation experimentation, 6 × 1 layer array with 
layers is utilized, and the details are shown in Table 3.

4.3  Solution encoding

The CNN weights are selected optimally through theCP-BSA model. Solution encoding is 
depicted in Fig. 4, W1, W2, . …, WNI representing the whole number of CNN weights. The 
objective Obj is to minimize the error Err as per Eq. (16).

4.4  CP‑BSA algorithm

The BSO is an improved algorithm that incorporates the swarm optimization technique 
and the beetle foraging process. The current BSO [30] paradigm has several advantages, 
but there are also some drawbacks. “For instance, the search range for a particle increases 
as the inertial weights value in the BSO algorithm increases; this indicates a higher global 
search capacity as well as poorer local search ability. The magnitude of the inertial weight 
decreases with increasing search range proportional to particle narrow, resulting in a 
stronger local search capability as well as a weaker global search capability. This study 
enhances the BSO in order to improve the inertia weight.” Hence, a novelCP-BSA optimi-
zation has been developed in this work. Generally, self-enhancement is established to be 
capable in conventional optimization schemes [11, 15, 30–32, 35, 36, 42, 50].

(14)Ot =
[

�

(

JIOXt + EIO + JRORt−1 + ERO

)]

(15)Mt = Ottanh
(

Dt

)

(16)Obj = Min(Er) = Min(Loss)

Table 3  LSTM layer details

Layer no Layer name Description

1 Sequence Input Sequence input with 15131dimensions
2 LSTM LSTM with 100 hidden units
3 Fully Connected 3 fully connected layer
4 Softmax Softmax
5 Classification Output Crossentropy 

Fig. 4  Solution encoding
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In the established CP-BSA, the beetles share information just like PSO, but their long 
antennas allow them to be differentiated by the direction and distance they are traveling in.

The mathematical representation of PSO’s design was taken. In S-dimensional 
searching space, there is a population of NP beetles denoted as Y = (Y1, Y2, .. YNP). The 
jth beetle indicates an S-dimensional vector Yj = (yj1, yj2, .. yjS)T, denotes the location of 
the jth beetle, as well as also denotes a potential resolution to the problem. Each beetle 
position’s fitness value is calculated based on the target function. Uj = (Uj1, Uj2, .. UjS)T 
represents the beetle jth speed, Mj = (Mj1, Mj2, .. MjS)T and Mg = (Mg1, Mg2, .. MgS)T stand 
for the beetle’s individual limit and an excessive population value, respectively. Eq. (17) 
illustrates the numerical method used to simulate its behavior.

In Eq. (17), s = 1, 2…S; i = 1, 2. . NP; k denotes the current iteration number, Uis 
denotes the beetle speed, ζis denotes the increase in movement of beetle position as well 
as η denotes positive constant. Conventionally, speed U is evaluated as per Eq. (18), 
however, as per introduced CP-BSA model, speed is evaluated based upon chaotic popu-
lation function. In Eq. (18), φ1, φ2 indicates the 2 positive constants, ra1, ra2 denotes the 
2 arbitrary values between [0, 1], ϖ denotes the inertia weight.

Conventionally, inertia weight is determined as per Eq. (19). As per proposed contri-
bution, a new inertia weight strategy is developed based upon cos function as shown in 
Eq. (20), wherein, ran denote the arbitrary integer.

In Eq. (19), ϖmax & ϖmin symbolize the maximum as well as minimum value of ϖ. 
K denotes thelargest iteration number. As ϖ reduces the beetle lessons speed as well 
asthen, go for local searches.

The term ζ is the incremental function as shown in Eq. (22), which ϑ denotes step 
size.

Eq.(24) correspondingly indicates the searching behaviours of the left as well as right 
antenna and Eq. (23), which d denote search distance.

The pseudo-code of the CP-BSA model is presented in Algorithm 3.
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5  Results and discussion

5.1  Experimental setup

The introduced model was executed in MATLAB. Consequently, the performance 
ofnthe introduced approach was measured over extant models such as NN [41], CNN 
[19], RNN [17], Bi-LSTM [56], SVM [2], HC + BOA [4], HC + SMO [39], HC + PRO 
[24], and HC + LA [7], HC + SSO [23] and HC + BSO [51] regarding wide-ranging met-
rics. The experimental performance was executed via changing the learning rate  from 
60, 70, 80,& 90. The statistical as well as convergence analyses were made to repre-
sent the efficacy of the proposed work. Feature analysis and segmentation analysis are 
also conducted to validate the efficiency of the proposed scheme. During an examina-
tion, the training as well as testing rates was set as 70% & 30%.

5.2  Dataset description

For simulation, the investigation was done using a dataset downloaded from the Nod-
ule chest X-ray dataset (https:// www. kaggle. com/ raddar/ nodul es- in- chest- xrays- jsrt). 
The Japanese Society of Radiological Technology (JSRT) provided this dataset, which 
includes 247 chests X-rays in total. There are 154 that have nodules and 93 that do not 
have nodules. The images are all 2048 × 2048 pixels in size and have a 12-bit gray scale. 
Two human observers manually segmented all 154 chest X-ray nodules. Figure 5 shows 
results of five randomly selected sample images used for segmentation. Figure 5(a) and 

Algorithm 3:  CP-BSA Model

https://www.kaggle.com/raddar/nodules-in-chest-xrays-jsrt
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(b) are images with nodules and Fig. 5(c) and (d) are non-nodule images. The original 
image segmented and trained to detect the lung nodules in the original image. 

5.3  Performance analysis

The developed HC + CP-BSA outperform existing optimization models hybrid classifi-
cation using BOA, SMO, PRO, LA, SSO, BSO as well as classification approaches like 
NN, CNN, RNN, BI-LSTM, and SVM on a variety of measures. Consequently, analysis 
was held using the dataset in (https:// www. kaggle. com/ raddar/ nodul es- in- chest- xrays- 
jsrt), and Figs. 6, 7 and 8 shows the plot of relevant results. For all the metrics, the pre-
sented HC + CP-BSA model has obtained better results than the above mentioned extant 

Original image

Pre-processed 
image

FCM based 
segmented 

output

K-mean based 
segmented 

output

Conventional 
BIRCH based 

segmented 
output

Proposed 
BIRCH based 

segmented 
output

(a) (b) (c) (d)

Fig. 5  Sample representation of images for (a) nodule 1 (b) nodule 2 (c) non-nodule 1and (d) non-nodule 2

https://www.kaggle.com/raddar/nodules-in-chest-xrays-jsrt
https://www.kaggle.com/raddar/nodules-in-chest-xrays-jsrt
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works. In Fig. 6(b), the accuracy of the suggested approach at 90th learning rate is better 
than other learning rate, i.e. at 90th learning rate; the accuracy of the suggested model 
is 0.94, whereas, at 70th, the suggested scheme has obtained comparatively lower accu-
racy values of 0.93. Likewise, for the precision, the outputs for the developed model are 
increased at 60th learning rate and 90th learning rate. The outputs for sensitivity are 
high at 60th learning rate and 90th learning rate. The proposed model, the HC + BSO 
scheme has exposed superior outcomes to the other extant schemes. Thus, from the 
examination, the effectiveness of the developed HC + CP-BSA is established with the 
amalgamation of optimization theory.

5.4  Convergence analysis

Figure  9 represents the cost analysis of the suggestedandtraditional models, such as, 
existing BIRCH + CP-BSA, proposed LVP + CP-BSA, GLCM +CP-BSA, GLRM + 
CP-BSA, existing LVP + CP-BSA, BOA, SMO, PRO, and L.A., SSO and BSO for var-
ied iterations. Here, the examination changes the iterations from 0, 5, 10, 15, 20, 25,& 
30.The suggested CP-BSA has obtained minimum cost values for all iterations than the 
distinguished schemes mentioned above. Initially, from iteration 0 to iteration 15, the 
cost values are somewhat superior for adopted and compared models. Here, the sug-
gested LVP + CP-BSA and the existing BIRCH + CP-BSA have both performed poorly 
in the early versions (0–10). In other words, from iteration 10 to 30, both the compared 

(a) (b)

(c) (d)

Fig. 6  Analysis employingimplemented&traditionalworksfor“(a) precision (b) accuracy (c) sensitivity & 
(d) specificity”
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and suggested models’ cost values continue to decline, but the adopted CP-BSA method 
yields lower values than the ones that are currently in use. The proposed method has 
combined the introduced optimization theory to get the least cost value (about 1.05). 
Thus, the overall assessment supported the progress of the approach that was given. The 
enhanced model’s convergence to the particular fitness is determined.

5.5  Feature analysis

Table  4 depicts the feature analysis of the deployed HC + CP-BSA and the suggested 
LVP + CP-BSA, GLCM + CP-BSA, GLRM + CP-BSA, the suggested work with existing 
BIRCH based segmentation, extant LVP based characteristics, as well as proposed model 
without optimization. Analysis is carried out for a variety of indicators, including FPR, 
accuracy, etc. The recommended HC + CP-BSA has achieved the highest values when com-
pared to the proposed LVP + CP-BSA, GLCM +CP-BSA, GLRM +CP-BSA, proposed 
model with existing BIRCH based segmentation, existing LVP based features, and proposed 
model without optimization. For practically every metric, the results of the current BIRCH-
based segmentation have been poorer than those of alternative analyses. This guarantees 
that the generated model will improve as a result of adopting the CP-BSA hypothesis.

(a) (b)

(c)

Fig. 7  Analysis employingimplemented&traditional worksfor“(a) F1-score (b) NPV (c) MCC”
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(a) (b)

(c)

Fig. 8  Analysis employingimplemented&traditional worksfor“(a) FPR (b) FNR (c) FDR”

Fig. 9  Convergence analysis
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Table 5  Statistical analysis
Accuracy
Methods Mean Best Std dev Worst Median
NN 0.7813 0.7682 0.0110 0.7942 0.7813
CNN 0.8144 0.8035 0.0144 0.8352 0.8093
RNN 0.8040 0.7882 0.0177 0.8270 0.8003
Bi-LSTM 0.7852 0.7414 0.0325 0.8197 0.7898
SVM 0.7678 0.7537 0.0126 0.7838 0.7668
HC + BOA 0.8561 0.8375 0.0207 0.8822 0.8524
HC + SMO 0.8896 0.8618 0.0334 0.9307 0.8829
HC + PRO 0.8876 0.8618 0.0224 0.9158 0.8864
HC + LA 0.8755 0.8618 0.0152 0.8907 0.8747
HC + SSO 0.8261 0.7914 0.0231 0.8387 0.8371
HC + BSO 0.9099 0.8999 0.0090 0.9206 0.9095
HC + CP-BSA 0.9346 0.9283 0.0042 0.9371 0.9364
Sensitivity
Methods Mean Best Std dev Worst Median
NN 0.6865 0.6522 0.0507 0.7613 0.6662
CNN 0.7444 0.7171 0.0252 0.7768 0.7418
RNN 0.6908 0.5683 0.0852 0.7597 0.7177
Bi-LSTM 0.7161 0.6718 0.0399 0.7619 0.7154
SVM 0.7426 0.7354 0.0072 0.7499 0.7424
HC + BOA 0.7707 0.7406 0.0210 0.7860 0.7781
HC + SMO 0.8357 0.7004 0.1052 0.9432 0.8495
HC + PRO 0.7941 0.7004 0.0857 0.9072 0.7845
HC + LA 0.8339 0.7004 0.1010 0.9169 0.8591
HC + SSO 0.8725 0.8200 0.0438 0.9155 0.8772
HC + BSO 0.9326 0.9158 0.0178 0.9548 0.9298
HC + CP-BSA 0.9646 0.9589 0.0044 0.9696 0.9649
Specificity
Methods Mean Best Std dev Worst Median
NN 0.6254 0.5692 0.0380 0.6507 0.6409
CNN 0.5804 0.5272 0.0415 0.6284 0.5831
RNN 0.6069 0.5264 0.0716 0.6903 0.6055
Bi-LSTM 0.6372 0.6120 0.0321 0.6829 0.6269
SVM 0.6204 0.5498 0.0816 0.7041 0.6138
HC + BOA 0.7438 0.7001 0.0432 0.7872 0.7439
HC + SMO 0.8427 0.7154 0.1067 0.9492 0.8532
HC + PRO 0.8204 0.7154 0.0925 0.9187 0.8236
HC + LA 0.8328 0.7154 0.0949 0.9187 0.8484
HC + SSO 0.8485 0.6827 0.1164 0.9350 0.8881
HC + BSO 0.9462 0.9389 0.0101 0.9609 0.9424
HC + CP-BSA 0.9535 0.9513 0.0025 0.9561 0.9534
Precision
Methods Mean Best Std dev Worst Median
NN 0.6403 0.5251 0.0941 0.7268 0.6546
CNN 0.6765 0.5574 0.0985 0.7583 0.6952
RNN 0.6701 0.6436 0.0305 0.7138 0.6614
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Table 5  (continued)
Bi-LSTM 0.6675 0.6045 0.0520 0.7179 0.6737
SVM 0.7030 0.6470 0.0615 0.7616 0.7018
HC + BOA 0.7679 0.7364 0.0255 0.7959 0.7697
HC + SMO 0.8093 0.7147 0.1045 0.9115 0.8055
HC + PRO 0.8076 0.7147 0.0866 0.9081 0.8039
HC + LA 0.8127 0.7147 0.1079 0.9081 0.8139
HC + SSO 0.8204 0.6922 0.1054 0.9379 0.8258
HC + BSO 0.9394 0.9043 0.0238 0.9568 0.9483
HC + CP-BSA 0.9630 0.9575 0.0037 0.9657 0.9645
FPR
Methods Mean Best Std dev Worst Median
NN 0.4753 0.4109 0.0623 0.5585 0.4659
CNN 0.4720 0.4134 0.0448 0.5223 0.4761
RNN 0.4828 0.4382 0.0504 0.5515 0.4708
Bi-LSTM 0.4709 0.4260 0.0446 0.5327 0.4625
SVM 0.4965 0.4308 0.0446 0.5264 0.5144
HC + BOA 0.3972 0.2955 0.1100 0.5167 0.3883
HC + SMO 0.3501 0.3008 0.0435 0.3937 0.3529
HC + PRO 0.4166 0.3380 0.0747 0.5167 0.4058
HC + LA 0.4254 0.3786 0.0595 0.5113 0.4058
HC + SSO 0.3654 0.3024 0.0422 0.3913 0.3839
HC + BSO 0.3288 0.3240 0.0062 0.3378 0.3267
HC + CP-BSA 0.2880 0.2628 0.0169 0.2993 0.2950
F1-score
Methods Mean Best Std dev Worst Median
NN 0.6779 0.6656 0.0110 0.6911 0.6773
CNN 0.6534 0.6128 0.0319 0.6908 0.6550
RNN 0.6566 0.5714 0.0614 0.7092 0.6729
Bi-LSTM 0.6939 0.6686 0.0182 0.7115 0.6976
SVM 0.7012 0.6800 0.0177 0.7191 0.7028
HC + BOA 0.7606 0.7037 0.0392 0.7900 0.7744
HC + SMO 0.8271 0.7196 0.0874 0.9324 0.8283
HC + PRO 0.8305 0.7668 0.0566 0.9036 0.8259
HC + LA 0.8358 0.7196 0.0876 0.9036 0.8600
HC + SSO 0.9074 0.8966 0.0113 0.9230 0.9051
HC + BSO 0.9353 0.9172 0.01991 0.9578 0.9331
HC + CP-BSA 0.9577 0.9527 0.0063 0.9663 0.9559
MCC
Methods Mean Best Std dev Worst Median
NN 0.6817 0.6444 0.0253 0.6976 0.6924
CNN 0.5633 0.5158 0.0495 0.6277 0.5549
RNN 0.5547 0.4022 0.1277 0.6705 0.5731
Bi-LSTM 0.6235 0.5569 0.0479 0.6695 0.6337
SVM 0.6470 0.6259 0.0171 0.6664 0.6478
HC + BOA 0.7482 0.7080 0.0371 0.7881 0.7484
HC + SMO 0.8387 0.7121 0.1079 0.9320 0.8553
HC + PRO 0.7808 0.7121 0.0898 0.9052 0.7529
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Table 5  (continued)
HC + LA 0.8283 0.7121 0.0964 0.9099 0.8455
HC + SSO 0.8320 0.7236 0.0931 0.9162 0.8442
HC + BSO 0.9364 0.9075 0.0256 0.9689 0.9345
HC + CP-BSA 0.9591 0.9500 0.0071 0.9663 0.9601
FNR
Methods Mean Best Std dev Worst Median
NN 0.5246 0.4616 0.0548 0.5889 0.5239
CNN 0.5567 0.5214 0.0412 0.6131 0.5462
RNN 0.5471 0.4914 0.0407 0.5884 0.5544
Bi-LSTM 0.5417 0.4989 0.0356 0.5857 0.5412
SVM 0.5250 0.4734 0.0617 0.5991 0.5138
HC + BOA 0.3908 0.2699 0.1124 0.5414 0.3759
HC + SMO 0.3649 0.2922 0.0835 0.4710 0.3482
HC + PRO 0.4225 0.3380 0.0861 0.5414 0.4052
HC + LA 0.4497 0.3918 0.0559 0.5175 0.4448
HC + SSO 0.3688 0.3063 0.0419 0.3948 0.3871
HC + BSO 0.3299 0.2962 0.0247 0.3489 0.3371
HC + CP-BSA 0.2774 0.2413 0.0247 0.2972 0.2855
NPV
Methods Mean Best Std dev Worst Median
NN 0.6265 0.6108 0.0126 0.6416 0.6268
CNN 0.6297 0.5787 0.0360 0.6562 0.6418
RNN 0.6347 0.5902 0.0329 0.6664 0.6410
Bi-LSTM 0.6280 0.5635 0.0450 0.6640 0.6423
SVM 0.7570 0.7119 0.0379 0.7992 0.7583
HC + BOA 0.7886 0.7823 0.0043 0.7917 0.7902
HC + SMO 0.8435 0.7197 0.1012 0.9366 0.8588
HC + PRO 0.8227 0.7197 0.0850 0.9124 0.8293
HC + LA 0.8381 0.7197 0.0951 0.9177 0.8575
HC + SSO 0.7788 0.6999 0.0888 0.9051 0.7551
HC + BSO 0.9340 0.9079 0.0320 0.9788 0.9246
HC + CP-BSA 0.9592 0.9510 0.0080 0.9694 0.9582
FDR
Methods Mean Best Std dev Worst Median
NN 0.6496 0.4981 0.0714 0.5892 0.6046
CNN 0.5952 0.5057 0.0405 0.5556 0.5607
RNN 0.6636 0.4840 0.0780 0.5654 0.5571
Bi-LSTM 0.6522 0.5815 0.0317 0.6065 0.5961
SVM 0.6468 0.4613 0.0872 0.5685 0.5828
HC + BOA 0.5597 0.3208 0.1001 0.4282 0.4162
HC + SMO 0.4684 0.3100 0.0720 0.3645 0.3399
HC + PRO 0.5597 0.3209 0.1052 0.4116 0.3829
HC + LA 0.5132 0.3565 0.0684 0.4368 0.4389
HC + SSO 0.3973 0.3240 0.0333 0.3713 0.3820
HC + BSO 0.3702 0.2473 0.0503 0.3095 0.3102
HC + CP-BSA 0.2974 0.2515 0.0222 0.2848 0.2952
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5.6  Statistical analysis

The statistical analysis of different measures for the implemented HC+ CP-BSA and tra-
ditional models NN, CNN, RNN, Bi-LSTM and SVM as well as hybrid classification 
employing BOA, SMO, PRO, LA, SSO and BSO are shown in Table 5. The meta-heu-
ristic approaches are stochastic, as well as each model is looked at multiple times to get 
to Eq. (16) in order to ensure fair estimation. After carefully examining the experimental 
outcomes, the implemented HC+ CP-BSA method has reached appropriate values for each 
circumstance.In Table 5, the developed scheme has accomplished better values for posi-
tive metrics and the least value for negative metrics. Specifically, the developed approach 
has exhibited better precision outcomes for all cases. Mainly, a high precision value of 
0.9646  is attained for the best case scenario, and high sensitivity value of 0.96457is 
attained for the mean case scenario.

5.7  Segmentation analysis

Dice and Jaccard  metrics are used to compute the accuracy of segmentation. 
Table 6 describes average value of the segmentation analysis in terms of Dice and Jac-
card metrics for improved Birch scheme over conventional schemes. Analysis on pro-
posed Segmentation model over existing Segmentation model for 10 randomly selected 
individual images is represented in Table  7. While noting the results, the improved 
Birch has shown enhanced accuracy values than the conventional Birch, K-means and 
FCM schemes.

Table 6  Analysis on proposed 
segmentation model over existing 
segmentation model

Improved Birch Conventional Birch K-means FCM

Dice 0.8916 0.8093 0.6086 0.7618
Jaccard 0.8084 0.6942 0.4523 0.6836

Table 7  Analysis on proposed segmentation model over existing segmentation model for 10 individual 
images

Image Improved Birch Convolutional Birch K-means FCM

Dice Jaccard Dice Jaccard Dice Jaccard Dice Jaccard

1 0.8717 0.7726 0.8391 0.7228 0.6868 0.5229 0.1965 0.1090
2 0.8787 0.7837 0.8253 0.7025 0.4181 0.2643 0.8879 0.7985
3 0.9853 0.9711 0.5921 0.4206 0.7712 0.6276 0.9870 0.9744
4 0.8319 0.7122 0.9365 0.8805 0.7100 0.5504 0.8522 0.7425
5 0.8903 0.8024 0.8536 0.7445 0.4569 0.2961 0.8851 0.7938
6 0.8257 0.7032 0.9303 0.8696 0.5173 0.3489 0.8448 0.7313
7 0.8736 0.7757 0.8431 0.7287 0.6904 0.5272 0.8894 0.8008
8 0.9331 0.8745 0.7760 0.6340 0.7731 0.6301 0.9334 0.8750
9 0.8144 0.6869 0.9353 0.8784 0.7095 0.5498 0.8324 0.7129
10 0.9188 0.8498 0.8297 0.7089 0.6929 0.5301 0.9149 0.8431
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Table 8  Ablation study analysis of the adopted scheme regarding pre-processing technique

LR=60
Metrics Without pre-processing+ CP-BSA With pre-processing+ CP-BSA
Precision 0.5188 0.9650
Accuracy 0.8172 0.9364
Specificity 0.7723 0.9561
Sensitivity 0.7360 0.9639
FPR 0.3160 0.2993
F1-score 0.6832 0.9535
MCC 0.6330 0.9630
FNR 0.2640 0.2413
NPV 0.7723 0.9510
FDR 0.4812 0.2947
LR=70
Metrics Without pre-processing+ CP-BSA With pre- processing+ CP-BSA
Precision 0.6075 0.9640
Accuracy 0.8509 0.9283
Specificity 0.8062 0.9515
Sensitivity 0.6530 0.9696
FPR 0.4671 0.2945
F1-score 0.7558 0.9663
MCC 0.6998 0.9573
FNR 0.3470 0.2972
NPV 0.8062 0.9554
FDR 0.3925 0.2956
LR=80
Metrics Without pre-processing+ CP-BSA With pre- processing+ CP-BSA
Precision 0.5255 0.9575
Accuracy 0.8196 0.9365
Specificity 0.7746 0.9553
Sensitivity 0.6910 0.9589
FPR 0.3481 0.2954
F1-score 0.6890 0.9527
MCC 0.6380 0.9663
FNR 0.3091 0.2866
NPV 0.7746 0.9694
FDR 0.4745 0.2974
LR=90
Metrics Without pre-processing+ CP-BSA With pre- processing+ CP-BSA
Precision 0.5875 0.9657
Accuracy 0.8436 0.9371
Specificity 0.7988 0.9513
Sensitivity 0.6309 0.9660
FPR 0.4268 0.2628
F1-score 0.7402 0.9584
MCC 0.6851 0.9500
FNR 0.3691 0.2844
NPV 0.7988 0.9610
FDR 0.4125 0.2515
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5.8  Ablation study analysis

In this research, histogram equalization is utilized for pre-processing and this ablation anal-
ysis is evaluated with respect to pre-processing technique. Also, this analysis is performed 
based on learning rates such as 60, 70, 80, and 90 and shown in Table 8. For learning rate 
of 60, the accuracy of the propose CP-BSA model without pre-processing is 0.8172 and 
with pre-processing technique is 0.9364. Also, the precision of the propose CP-BSA model 
without pre-processing is 0.51878and with pre-processing technique is 0.96495. Similarly, 
the proposed model withpre-processing technique value is better than the one without pre-
processing technique in all LRs. Hence, the superiority of the adopted scheme is proven 
based on pre-processing technique used.

5.9  Computational time analysis

The computational time of the implemented and traditional models are shown in Table 9. 
The computation time of the implemented CP-BSA scheme is 111.98 as well as it is 
32.25%, 61.14%, 36.59%, 75.4%, 57.37%, and 37.15% better than the extant BSO, SSO, 
LA, PRO, SMO, and BOA methods respectively. As a result, the robustness of the imple-
mented lung nodule detection work is validated successfully.

6  Conclusion

A unique hybrid classifier-based LN detection model has been created in this paper. 
Pre-processing was done initially using HE model, and later improved BIRCH-based 
segmentation was carried out. Then other enhanced features were generated, including 
“proposed LVP features, GLCM features, and GLRM features”. When detecting nodule 
or non-nodule images, optimal CNN was used to classify these features. Later, LSTM 
was used to categorize more nodule kinds (benign, malignant, or normal). A new CP-
BSA technique is deployed to optimize CNN’s weights. In the end, the offered scheme’s 
dominance over the traditional schemes relating to numerous measures was proven. 
Especially, at 90th learning rate, the sensitivity of proposed model was 20.62%, 22.68%, 
41.24%, 22.68%, 23.71%, 20.62%, 2.06%, 20.62%, 5.15%, 7.22%, and 2.06% better than 
the conventional NN, CNN, RNN, BI-LSTM, and SVM, as well as with hybrid model 
employing BOA, SMO, PRO, LA, SSO, and BSO approaches respectively. Also, sub-
sequent to proposed model, the HC + BSO scheme has exposed superior outcomes than 

Table 9  Computational time 
analysis

Approaches Computation time (s)

BSO [51] 165.29
SSO [23] 288.14
LA [7] 176.59
PRO [24] 455.28
SMO [39] 262.66
BOA [4] 178.18
CP-BSA 111.98
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the other extant schemes. Hence, the superiority of the suggested work is validated suc-
cessfully. However, a limited dataset is being utilized and the developed method is lim-
ited in capturing the contextual information between slices. In future, it is planned to 
perform the concerned approach with a 3D CNN model using a larger database.
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