
Multimedia Tools and Applications (2024) 83:9785–9815
https://doi.org/10.1007/s11042-023-15249-5

metaFERA: a meta-framework for creating emotion
recognition frameworks for physiological signals

João Oliveira1 · Soraia M. Alarcão1 · Teresa Chambel1 ·Manuel J. Fonseca1

Received: 5 July 2021 / Revised: 9 December 2022 / Accepted: 6 April 2023 /
Published online: 26 June 2023
© The Author(s) 2023

Abstract
Recognizing emotions from physiological signals has proven to be important in various
scenarios. To assist in developing emotion recognizers, software frameworks and toolboxes
have emerged, offering ready-to-use components. However,these have limitations regarding
the type of physiological signals supported, the recognition steps covered, or the acqui-
sition of multiple physiological signals. This paper presents metaFERA, an architectural
meta-framework for creating software frameworks for end-to-end emotion recognition from
physiological signals. Themodularity and flexibility of the meta-framework and the resulting
frameworks allow the fast prototyping of emotion recognition systems and experiments to
test and validate new algorithms. To that end, metaFERA offers: (i) a set of pre-configured
blocks to which we can add behavior to create framework components; (ii) an easy way to
add behavior to the pre-configured blocks; (iii) a channel-based communication mechanism
that transparently and efficiently supports the exchange of information between components;
(iv) a simple and easy way to use and link components from a resulting framework to create
applications. Additionally, we provide a set of Web services, already configured, to make
the resulting recognition systems available as a service. To validate metaFERA, we created
a framework for Electrodermal Activity, an emotion recognizer to identify high/low arousal
using the aforementioned framework, and a layer to offer the recognizer as a service.

Keywords Emotion recognition · Physiological signals · Software as a service ·
Software framework

B Manuel J. Fonseca
mjfonseca@ciencias.ulisboa.pt

João Oliveira
joliveira@lasige.di.fc.ul.pt

Soraia M. Alarcão
smalarcao@ciencias.ulisboa.pt

Teresa Chambel
mtchambel@ciencias.ulisboa.pt

1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15249-5&domain=pdf
http://orcid.org/0000-0002-3559-828X

9786 Multimedia Tools and Applications (2024) 83:9785–9815

1 Introduction

In recent years, recognizing emotions from physiological signals has become an important
area of research. Being able to accurately identify the emotion a person is feeling has proven
useful in various scenarios. For example, to improve the effectiveness of psychological ther-
apy sessions [21], gather feedback on how users perceive ads [23] or their reactions when
interacting with user interfaces [15], and even to dynamically adjust the content of a video
game to the player’s emotional reactions [26]. Therefore, there is a need for efficient solutions
that can identify people’s emotions from physiological signals.

To help develop these solutions, a few frameworks and toolboxes have been created [4–6,
8, 9, 16, 18, 20, 24, 25]. For example, EEGLab [4] andOpenBCI [16] are two domain-specific
frameworks for EEG signals, providing tools for signal pre-processing and functionalities
for signal analysis and visualization. Matlab [9] and Weka [6], on the other hand, are two
examples of more generic and extensible tools that allow the use of various types of phys-
iological signals while providing algorithms for the majority of the emotional recognition
stages at the expense of a potentially complex programming task for the developers. There
is also iMotions, a complete commercial biometric research platform aimed at conducting
studies of human behavior and not at supporting the development and testing of techniques
and solutions for affective computing.

Although these frameworks help in the creation of new emotion recognition systems, they
still have limitations, for instance, their specificity for only one type (or very few types)
of signals; their suitability for only one of the stages of the emotional recognition process
(e.g., pre-processing); their inability to deal with the online acquisition of physiological
signals, being able to process only already pre-computed features; their difficulty of use,
which increases the development effort involved in the creation of new applications; or the
high monetary cost of using it.

To overcome these issues, we propose metaFERA (Meta-Framework for Emotion
Recognition Applications), a software meta-framework that offers a backbone structure,
a flexible and optimized connection mechanism, and a set of pre-configured building blocks.
metaFERA can be seen as a set of configurable molds that allow the creation of “Lego"
blocks, which can later be used to build emotion recognition applications. Since the config-
urable molds are pre-configured and are designed to produce blocks that fit well together, the
researcher only needs to be concerned about configuring the molds (behavior of the compo-
nents). Moreover, the blocks can be easily reused, added, removed, or switched. These blocks
can be used to create specialized frameworks for each type of physiological signal (domain-
specific frameworks), which can then be used to develop end-to-end emotion recognition
systems with minimal effort for programmers.

Signal Acquisition Pre-processing Feature Extraction Feature Selection Prediction
User

Dataset

Fig. 1 Steps of a traditional emotion recognition system from physiological signals acquired from sensors or
annotated datasets

123

Multimedia Tools and Applications (2024) 83:9785–9815 9787

Although most recent emotion recognition solutions use deep learning techniques, we
designed metaFERA to support the traditional emotion recognition pipeline (Fig. 1). We
made this choice because there are several situations where deep learning cannot be applied,
such as when there is not enough data to train deep learning models or when we need to
perform learning and prediction in an online setting while collecting data in real-time from
human subjects. Moreover, deep learning models currently lack interpretability. Our open-
source meta-framework was conceived to be easy to use for creating framework components
(e.g., pre-processing, feature extraction, prediction algorithms, etc.), and for the resulting
frameworks to also be easy to use for developing complete emotion recognition applications.
metaFERA was designed as a set of interconnected pre-configured blocks encompassing all
the main components of a traditional emotion recognition system from physiological signals.
This way, its modular architecture offers developers not only the common structure of an
emotion recognition system but also the abstraction needed to add new behaviors whenever
they need to.

In this paper, we describe the meta-framework infrastructure and provide details on its
modules, connectionmechanism, recognition as a service concept, and how everything can be
used to create domain-specific frameworks and emotion recognition applications. To validate
metaFERA, we applied it to a specific scenario, by (i) developing an emotion recognition
framework for Electrodermal Activity (EDA), exemplifying the usage of its building blocks
and how to add behavior to them; (ii) creating a recognition application for identifying
high/lowarousal fromEDA, showing the use of a specific framework createdwithmetaFERA;
(iii) using the recognition as a service concept, showing how an emotion recognizer can be
made available for use bymultiple thin clients (e.g.,Web applications ormobile applications).

The rest of the paper is organized as follows: Section 2 gives an overview of the related
frameworks for creating emotion recognizers. In Section 3, we present the building blocks
of the meta-framework, as well as how it works and how it can be used to create recognition
frameworks. Section 4 describes the Web services platform to offer recognition as a service.
In Section 5, we describe the use of metaFERA, as a test case, for developing a domain-
specific framework, which is then used to create a recognition system, and the correspondent
layer to offer it as a service. We conclude the paper by presenting a discussion and main
conclusions in Section 6.

2 Related work

As illustrated in Fig. 1, emotion recognition systems from physiological signals typically
consist of a number of steps, namely: (i) acquisition of physiological signals from the user
(through sensors) or from datasets; (ii) pre-processing the signals to remove noise and arti-
facts; (iii) extraction of relevant features from the signals; (iv) feature selection to identify
the most discriminant features; and (v) machine learning methods for emotion prediction. To
make the creation of this type of system easier, a few tools and frameworks have emerged
seeking to offer blocks that correspond to each of the aforementioned steps.

Although there are a few tools and frameworks that can be used to build emotion recog-
nition systems, many of them focus on a limited number of steps, like, for example, the
toolboxes ANSLAB [2], Biosig [27], BrainStorm [25], CarTool [3], EEGLab [4], Physio-
Lab [18], or the Python library MNE [8], which focus mainly on signal pre-processing and
visualization. These types of tools and frameworks have some disadvantages. First, they fre-
quently can only read physiological data from datasets. An exception is theOpenBCI [16] and

123

9788 Multimedia Tools and Applications (2024) 83:9785–9815

iMotions [12], which can read data from sensors. Second, they are typically specialized only
in one type of signal, as is the case of EEGLab, BrainStorm, MNE NeuroTechX MOABB,
and OpenBCI, which were created only for Electroencephalography (EEG) signal analysis.
Finally, they can only pre-process the data and save the results in a file, which is not suitable
for online emotion recognition systems, where signals are being collected in real-time from
users and results are being produced.

On the other hand, there are more general tools, like the Matlab [9] platform, which
can load datasets with physiological data and has an extensive library of functions for pre-
processing and feature extraction. Additionally, its powerful scripting language allows further
extensions to its capabilities. TEAP [24] is an example of a toolbox that expands Matlab’s
pre-processing library. One of the advantages of TEAP over other pre-processing tools is its
generalization when it comes to signals, being able to process EEG, galvanic skin response
(GSR), electrocardiography (ECG), blood volume pulse (BVP), electromyography (EMG),
among others. Other extensions to Matlab add missing features, such as PRTools [5] and
FieldTrip [20]. PRTools is a toolbox for Matlab that adds feature extraction, feature selec-
tion, and classification, showing that Matlab can be an effective tool for building emotion
recognition algorithms; Fieldtrip has the advantage of supporting online processing of phys-
iological signals by retrieving sensor data from a server. However, the scripting required to
build an online emotion recognition system can be considerably complex. Moreover, adding
or removing algorithms to the recognition pipeline is not trivial, making the experimentation
of different methods slow and ineffective.

Another popular software for performing feature selection and classification/regression is
Weka [6]. However, it can only deal with datasets of pre-computed features, not supporting
the extraction of features from physiological signals nor the acquisition of signals directly
from sensors. Although its API allows the creation of independent applications, this process
has some complexity and does not allow fast experimentation of different methods.

Python [19] is a full-fledged programming language with a vast range of libraries avail-
able and widely popular within the scientific community. Among these libraries we have
SciPy [28] and Scikit-learn [22], which provide extensive pre-processing and machine learn-
ing capabilities, making Python one of the most powerful tools for machine learning tasks.
However, like the previously mentioned tools, it does not have a simple and efficient way to
create online emotion recognition systems, where signals are directly collected from sensors
in real-time, nor a fast and easy way to test and validate new methods or algorithms while
developing traditional end-to-end emotion recognition applications.

iMotions is a complete software solution for biometric research, supporting a wide range
of biosensors (e.g., eye tracking, facial expression analysis, EEG, GSR, and ECG) [12]. It
offers an open API to import and export data from many data sources, stimuli presentation,
built-in surveys, live visualization of data streams, complete study analysis, etc. Although
iMotions provides the most comprehensive, easy-to-use, and scalable biometric research
platform to conduct human behavior studies, it is primarily an expensive commercial closed
research platform, making it difficult to create new methods.

Outside the realm of physiological signals and emotion recognition, we have Rapid-
Miner [11], a popular enterprise solution for machine learning, primarily used to make
predictive models for database analysis in economics and human behavior. An interest-
ing feature of RapidMiner is the mechanism to create the prediction pipeline. It allows the
connection of algorithms together to build the system, and all the communication between
them is handled internally by RapidMiner. Although RapidMiner cannot be used to create
emotion recognition systems nor to use physiological signals, we believe it will be possible

123

Multimedia Tools and Applications (2024) 83:9785–9815 9789

Table 1 Summary of the available libraries and tools that support the development of emotion recognition
systems

Tool Signal
Acquisition

Pre-Processing Feature
Extraction

Feature
Selection

Classification/
Regression

ANSLAB [2] Dataset � �
Biosig [27] Dataset � � Classification

BrainStorm [25] Dataset � �
CarTool [3] Dataset �
EEGLab [4] Dataset � � �
FieldTrip [20] Dataset � �
g.BSanalyze [7] Dataset � � Classification

iMotions [12] Stream

MNE [8] Dataset � �
NeuroTechX
MOABB [13]

Dataset � � � Classification

OpenBCI [16] Stream �
PhysioLab [18] Dataset � �
PRTools [5] Dataset � Classification

RapidMiner [11] Dataset �
SMILE [14] Dataset � �
TEAP [24] Dataset � �
Weka [6] Dataset � �

to load a database with feature vectors and use its machine learning algorithms similarly to
Weka. Thus, having the same drawbacks as Weka.

Despite these efforts over the years, as we can see in Table 1, most of the existing libraries
and tools support a limited number of steps of a recognition system. Therefore, to create an
emotion recognition application, we must combine a few frameworks and tools and make
additional code, which is not always easy and fast. Thus, there is a need for an open-source
meta-framework to support the development of domain-specific frameworks, which can then
be used to easily create emotion recognition applications and the testing of new research
ideas with minimal effort.

3 metaFERA

metaFERA1 is an architecturalmeta-framework that provides generic pre-configuredbuilding
blocks for creating domain-specific software frameworks for physiological signals. Such
frameworks can then be used to develop end-to-end emotion recognition systems. Moreover,
by being modular, it makes it simple to test new pre-processing techniques, feature extraction
methods, or prediction algorithms, since the developer can easily replace components of
an emotion recognition application without having to change the rest of the pipeline. Its
architecture can be seen as a set of interlinked independent and pre-configured blocks, which

1 metaFERA is developed in Java, and its source code and documentation can be found at
https://git.lasige.di.fc.ul.pt/explore?name=metafera

123

9790 Multimedia Tools and Applications (2024) 83:9785–9815

define themain components of an end-to-end emotion recognition system from physiological
signals and their connections, but not their behavior. The behavior is added during the creation
of the domain-specific frameworks. For example,metaFERAoffers a pre-configuredblock for
feature extraction. This means, that developers who want to create, for example, a component
to extract the Power Spectral Density (PSD) for their frameworks, only need to implement
the algorithm needed to compute the PSD. They do not need to be concerned about the way
the signal is received or the feature vector is sent since metaFERA takes care of that.

3.1 Architecture

Figure 2presents an example of themultiple layers for applicationdevelopment usingdomain-
specific frameworks created using metaFERA. Our meta-framework provides developers
with structure, pre-configured building blocks, and the connection between them, so they
can create new domain-specific frameworks (e.g., a framework for dealing with EDA). To
construct these frameworks, developers must add behavior to the building blocks offered
by metaFERA, like for example a pre-processing algorithm (e.g., band-pass filter), or a
feature extraction algorithm (e.g., Hjorth parameters [10]) to create the components of the
framework. Finally, these components from the domain-specific frameworks can be used to
develop different emotion recognition applications. Notice that metaFERA is not directly
used to develop applications, but rather to build frameworks that can later be used to create
them.

metaFERA is organized as a set of independent, interrelated, and reusable modules with
a well-defined API, which can be combined to create domain-specific frameworks. It offers

EDA Framework

metaFERA

EEG Framework

High/Low
Arousal

Recognition

Arousal
Prediction

Discrete
Emotion

Recognition

Valence
Prediction

...

...

D
om

ai
n

S
pe

ci
fic

F
ra

m
ew

or
ks

A
pp

lic
at

io
ns

P
hy

si
ol

og
ic

al
S

ig
na

ls

User Dataset

M
et

a-
F

ra
m

ew
or

k

Dataset

Fig. 2 Layers diagram for an example of use of the metaFERA meta-framework in the creation of domain-
specific frameworks, which can then be used for developing emotion recognition applications

123

Multimedia Tools and Applications (2024) 83:9785–9815 9791

five main building blocks, corresponding each to the steps of a typical emotion recogni-
tion system from physiological signals, namely, signal acquisition, pre-processing, feature
extraction, feature selection, and prediction (Figure 1); and five auxiliary modules to support
feature scaling, feature aggregation, dimensionality reduction, results aggregation and results
summarization.

Note that both types of modules only provide structure, and therefore it is necessary
to add behavior to each of the pre-configured building blocks to create domain-specific
frameworks. For instance, filters in the pre-processing module, or a machine learning method
in the prediction module. To that end, developers can use already existing libraries, in Java,
or wrappers for other programming languages, such as python and C++, that implement the
desired behavior. As an example, if we want to create a band-pass filter component for a
framework, we can import an existing Java library and use it to add behavior to a metaFERA
Pre-processing block.

3.2 Communicationmechanism

metaFERA provides a channel-based communication mechanism, which allows a simple
and fast connection between blocks. Both types of blocks can have input channels, to receive
data from other modules, and output channels to send data to other modules. The only
exceptions are the Signal Acquisition which does not have any input channels and Results
Summarization which does not have any output channels, since they are at the beginning and
end of the recognition pipeline, respectively. An input channel can only receive data from
one component, while an output channel can be connected to several modules. In such a case,
all of them will receive the same data.

metaFERA has methods for sending a value (lines 2 and 3 in Listing 1), or a list of values
(lines 4 and 5 in Listing 1) to the next components via the specified channel, and for receiving
values from a given channel (line 7 in Listing 1). Each of the components’ input channels
has an input queue where the values are stored until it retrieves them.

Listing 1 Methods for sending and receiving data from channels.

1 / / sending methods
2 public void send(double value)
3 public void send(double value , int channel)
4 public void send(double[] values)
5 public void send(double[] values , int channel)
6 / / receiving methods
7 public Double receive (int channel)

The first method in Listing 2 checks if an output channel is open. This may be useful if
for instance a module is computing several values (e.g., a Pre-processing module computing
the delta, theta, alpha, beta, and gamma bands from an EEG) and sending each to a different
output channel. If the output channel associated with one of the values is not open (i.e. it is
not connected to another module), then that value does not need to be calculated, making the
overall computation more efficient. The second method checks if the input channel is open
and the third if it has more values available. If temporarily there are no values available, then
the module can pause its execution for a short period of time using the method rest().

123

9792 Multimedia Tools and Applications (2024) 83:9785–9815

Listing 2 Methods for checking the status of input and output channels.

public boolean isOutputChannelOpen(int channel)
public boolean isInputChannelOpen(int channel)
public boolean isInputChannelEmpty(int channel)

3.3 Main building blocks

In this subsection, we provide an overview of each of the metaFERA main building blocks,
namely Signal Acquisition, Pre-processing, Feature Extraction, Feature Selection, and Pre-
diction. We highlight what needs to be filled to add behavior to them and present an example
for each.

In the description, and when it applies to the block, we consider two modes: i) building
the model (learning) - where segments of signal (epochs) from several users are processed,
feature vectors for each of these epochs are computed, and stored together with a ground-
truth, and then used to build a model; and ii) using the model (prediction) - where the pipeline
receives a signal epoch, computes a feature vector and produces a result for that epoch, using
an existing model.

3.3.1 Signal acquisition

This block holds the API for acquiring physiological signals online from sensors or offline
from datasets. In the latter case, it can also collect additional information, like for instance
labels or self-assessment information for training or the gender of the users if we want to
create different models for each gender.

Listing 3 is an excerpt of a block of this kind. It connects to a BITalino device [1] to
acquire EDA signal samples and sends them to the next blocks. To create an instance of
the Signal Acquisition block, the developer needs to extend the SignalAcquisition
class, define its constructor, and implement its run() method. In the constructor, we need
to call the super() method to call the constructor of the superclass, and pass the name
of the component and the number of output channels. The run() method will contain the
behavior of the block. In this example, it reads samples from a BITalino sensor and sends
them to the output channel. Signal Acquisition blocks can be used to acquire signals from
any type of biosensor, as long as we make the code to connect to the sensor.

3.3.2 Pre-processing

This block abstracts pre-processing algorithms, such as applying filters or splitting the signal
into epochs. Instances of this block receive data from Signal Acquisition blocks and prepare
them for feature extraction.

Listing 4 presents the excerpt of a band-pass filter created using this type of block. Here,
the same two methods (constructor and run()) need to be defined. In the run() method,
the while loop is performed until the block is closed. This is done by the module itself when
it has no more data to be processed in the input channels. As long as there is data in the input
channel, the module receives the data, applies the band-pass filter to the epoch, and sends
the result to the output channel.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9793

Listing 3 Example of a Signal Acquisition definition.

public class BitalinoSignalAcquisition extends SignalAcquisition {

public BitalinoSignalAcquisition(String name) {
/ /one output channel
super(name, 1);

}
@Override
public void run() {

/ / connect to BITalino device
. . .
while (bitalinoConnected) {

/ / acquires sample from BITalino
sample = device . read () ;
/ / sends the acquired sample to the output channel
send(sample, 0);
. . .

}
}

}

Listing 4 Example of a Pre-processing definition.

public class BandPass extends Preprocessing {

public BandPass(String name, double signalFrequency , double centerfrequency , double width−
frequency , int order) {
/ /one input and one output channel
super(name, 1, 1);
. . .

}

@Override
public void run() {

/ / create bandpass f i l t e r
. . .
while (! closed ()) {
Double r ;
i f ((r = receive (0)) != null) {
/ / applies the bandpass f i l t e r and sends the result to the output channel
send(bandpass . f i l t e r (r) , 0);

}
else {
rest (500);

}
}

}
}

3.3.3 Feature extraction

This block holds the API for feature extraction methods. It can receive data directly from
Signal Acquisition blocks or from Pre-processing blocks.

123

9794 Multimedia Tools and Applications (2024) 83:9785–9815

Listing 5 is an excerpt of a Feature Extraction block for computing the Hjorth parameters.
Like the previous components, the constructor and the run() method are required. The
workflow of the latter is similar to the one presented in Listing 4; the main difference is in
the logic inside the while loop. In this case, we compute the three Hjorth parameters, join
them in a feature vector and send it to the output channel.

Listing 5 Example of a Feature Extraction definition.

public class Hjorth extends FeatureExtraction {

public Hjorth(String name) {
/ /one input channel
super(name, 1);

}

@Override
public void run() {
List<Double> values = new ArrayList<>();
while (! closed ()) {
Double v;
/ / acquires the epoch signal from the input channel and puts i t in values
i f ((v = receive (0)) != null) {
values .add(v) ;
/ / i f the epoch is complete compute the features
i f (values . size () == EPOCH_SIZE) {
ArrayList<Double> features = new ArrayList<>();

features .add(activity (values)) ;
features .add(mobility(values)) ;
features .add(complexity(values)) ;

/ / sends the feature vector
send(features) ;
values . clear () ;

}
}
else {
rest (500);

}
}

}
/ / functions that calculate activity , mobility and complexity
. . .

}

The behavior added to the run() method is used for both the learning and prediction
modes, since it deals with the different modes internally, making the task of adding beha-
vior easier for the developer. While in prediction mode, the feature vector sent to the output
channel is received directly by the next components, in learning mode, the feature vectors
sent to the output channel are stored in a list together with the ground-truth labels (creating a
temporary dataset). Only after the component closes itself (i.e. finishes processing all signals)
the dataset is passed on to the following components.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9795

3.3.4 Feature selection

This block exposes the feature selectionAPI, allowing the use of different techniques to retain
the most relevant and discriminant features. Unlike Signal Acquisition, Pre-processing, and
Feature Extraction, this block receives a list of feature vectors in learning mode and a single
feature vector in prediction mode. In the former, it uses the input dataset to identify the most
discriminant features. As output, it produces a new dataset of feature vectors containing only
the selected features and the ground-truth labels. In prediction mode, it uses the information
about the features selected during the learning mode, to determine which features should be
discarded from the input feature vector.

Listing 6 Example of a Feature Selection definition.

public class RecursiveFeatureSelection extends FeatureSelection {

public RecursiveFeatureSelection(String name) {
super(name) ;

}

//−−−− methods to use in learning mode−−−−
/ / executes the feature selection algorithm
public void performFeatureSelection() {
Dataset dataset = getInputDataset () ;
. . .
setOutputDataset(best_features_dataset) ;

}

/ / saves information about the selected features
public void dump() throws IOException {
super .dump() ;

}

//−−−− methods to use in prediction mode−−−−
/ / loads information about the selected features
public void restore () throws IOException {
super . restore () ;

}

/ / selects the discriminant features from the feature vector
public List<Double> selectFeatures (List<Double> features) {

. . .
}

}

Listing 6 is an excerpt of a Feature Selection block, using the Recursive Feature
Selection technique. The constructor of this type of block only needs to define its
name, since by definition it only has one input and one output channel. The method
performFeatureSelection() is where the feature selection algorithm is defined,
while method dump() saves information about the selected features. They can be loaded
later in predictionmode by therestore()method, and used in theselectFeatures()
method to modify the input feature vectors. The run() method is pre-programmed

123

9796 Multimedia Tools and Applications (2024) 83:9785–9815

and does not need to be implemented by the developer. In learning mode, it calls
the performFeatureSelection() as soon as the previous block is closed, and
in prediction mode, it receives feature vectors from the input channel and calls the
selectFeatures()method before sending the resulting feature vector to the next com-
ponents.

3.3.5 Prediction

This block holds the API for training machine learning models and making predictions using
them. In learningmode, it receives a list of feature vectors and the corresponding ground-truth
labels and builds the model. In prediction mode, it receives a feature vector and predicts a
class or a value, depending if we are using a classification or a regression model, and sends
the result to the next components.

Listing 7 is an excerpt of a Prediction block, that implements a RandomForest classifier.
Predictionblocks, likeFeatureSelectionones, have apre-programmedrun()method,which
in learning mode calls the train()method, and in prediction mode calls the predict()
method. In these blocks, it is necessary to define the constructor, and the methods train()
to create the model, dump() to save the created model, and restore() to load it. There
is also a validate() method, for the evaluation of the model’s performance, using for
example cross-validation.

3.4 Auxiliary blocks

Besides the main building blocks, metaFERA also provides a set of auxiliary blocks, namely
Feature Scaling, Feature Aggregation, Dimensionality Reduction, Results Aggregation, and
Results Summarization. These blocks can be used to create more complex and complete
recognition systems involving the manipulation of features or predicted results.

3.4.1 Feature scaling

This block defines the API for performing feature normalization/scaling. Similarly to the
Feature Selection blocks, this block receives a dataset in learningmode and a feature vector in
predictionmode. In learningmode, it uses the input dataset to compute the scaling parameters
for each feature and produces as output a new dataset with the feature vectors normalized. In
prediction mode, it uses the normalization information identified during the learning mode,
to produce a normalized feature vector.

Listing 8 presents an excerpt of a Z-score normalization using the Feature Scaling
block. The method performNormalization() is where the normalization algorithm
is specified, while method dump() saves information about the normalization parameters.
These can then be loaded in prediction mode by the restore() method, and used in
the normalize() method to normalize the input feature vectors. Similarly to the Fea-
ture Selection block, the run() method is pre-programmed. In learning mode, it calls the
performNormalization() method and in prediction mode calls the normalize()
method.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9797

Listing 7 Example of a Prediction definition.

public class RandomForestClassifier extends Prediction {
private RandomForest rf = null ;

public RandomForestClassifier(String name) {
super(name) ;

}

//−−−− methods to use in learning mode−−−−
/ / builds a model
@Override
public void train () {

/ / preparation of the feature vectors and the ground−truth for creating the model
. . .
/ /RandomForest with 500 trees
rf = new RandomForest(training_data , ground_truth_labels , 500);

}

/ / saves the trained model
@Override
public void dump() throws IOException {

. . .
}

//−−−− methods to use in prediction mode−−−−
/ / loads the trained model
@Override
public void restore () throws IOException {

. . .
}

/ / predicts a class for the input feature vector
@Override
public void predict (List<Double> vector) {
i f (rf != null) {
double r = rf . predict (vector) ;
send(r) ;

}
else {
/ / error message
. . .

}
}

/ /method for training and testing a model
@Override
public void validate () {

/ / validates a model using some validation method, like Cross−Validation .
. . .
/ / sends results to a Results Summarization that can calculate metrics like Accuracy,
F−Score , etc .

. . .
}

}

123

9798 Multimedia Tools and Applications (2024) 83:9785–9815

Listing 8 Example of a Feature Scaling definition.

public class ZScoreNormalization extends FeatureScaling {

public ZScoreNormalization(String name) {
super(name) ;

}

//−−−− methods to use in learning mode−−−−
/ / computes the scaling parameters for each feature and applies them to al l feature vectors
public void performNormalization() {
Dataset dataset = getInputDataset () ;
. . .
setOutputDataset(normalized_dataset) ;

}

/ / saves information about feature scaling
public void dump() throws IOException {

/ / saves the standard deviation and mean for each feature
. . .

}

//−−−− methods to use in prediction mode−−−−
/ / loads information about feature scaling
public void restore () throws IOException {

. . .
}

/ / normalizes the feature vector
public List<Double> normalize(List<Double> features) {

. . .
}

}

3.4.2 Feature aggregation

This block defines the API for joining several features using early fusion. It can receive data
from more than one input channel, and combine them using an early fusion strategy. The
Feature Aggregation block already has pre-programmed behavior. It constructs the feature
vectors by joining the input vectors by the order they were added to this block. However,
developers can overwrite the default behavior and define a newmerging strategy, by redefining
the merge() method (see Listing 9).

3.4.3 Dimensionality reduction

This block defines the API for performing dimensionality reduction. It has a structure very
similar to Feature Selection and Feature Scaling blocks, with a learning mode where the
criteria for dimensionality reduction are identified and a predictionmode, where these criteria
are used to reduce the dimension of the feature vectors. Listing 10 illustrates the code for
implementing a Principal Component Analysis (PCA) with metaFERA.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9799

Listing 9 Example of a Feature Aggregation definition.

public class SpecialMerge extends FeatureAggregation {
public SpecialMerge(String name) {
super(name) ;

}

@Override
public List<Double> merge(List<List<Double>> vectors) {

/ / code for the special merge of feature vectors
}

}

Listing 10 Example of a Dimensionality Reduction definition.

public class PrincipalComponentAnalysis extends DimensionalityReduction {

public PrincipalComponentAnalysis(String name) {
super(name) ;

}

//−−−− methods to use in learning mode−−−−
/ / computes the cr i ter ia for the resulting features and applies them to al l feature vectors
public void performReduction() {
Dataset dataset = getInputDataset () ;
. . .
setOutputDataset(reduced_dataset) ;

}

/ / saves information about the reduction cr i ter ia
public void dump() throws IOException {

. . .
}

//−−−− methods to use in prediction mode−−−−
/ / loads information about the reduction cr i ter ia
public void restore () throws IOException {

. . .
}

/ / applies the reduction to a feature vector
public List<Double> reduce(List<Double> features) {

. . .
}

}

3.4.4 Results aggregation

This block abstracts algorithms for aggregating several results using late fusion. This fusion
can be done, for example, with a Voting algorithm. It already has the code needed to read
the results received in the input channels, and send them to the apply()method. Thus, the
developer only needs to implement the aggregation algorithm in the apply() method (see
Listing 11).

123

9800 Multimedia Tools and Applications (2024) 83:9785–9815

Listing 11 Example of a Results Aggregation definition.

public class FusionWithClassifier extends ResultsAggregation {

public FusionWithClassifier (String name) {
super(name) ;

}

/ / receives a l i s t of results and applies the aggregation
public List<Double> apply(List<Double> results) {

. . .
}

}

Listing 12 Example of a Results Summarization definition.

public class SimpleResults extends ResultsSummarization {

public SimpleResults(String name) {
super(name,1) ;

}

/ / returns a l i s t with al l the results from the session
public List<Double> getAllResults () {

. . .
}

/ / saves the l i s t with al l the results from the session into a f i le
public void saveAllResults () {

. . .
}

/ / returns the latest predicted result
public Double getLatestResult () {

. . .
}

public void run() {
while (! closed ()) {

/ / gathers the results from the input channel and adds them to a l i s t
. . .

}
}

}

3.4.5 Results summarization

This block stores the results produced during a prediction session, exposing an API for
accessing them. Developers can add behavior for creating for example a block just to provide
access to the last value or to all the values of the session (see Listing 12). It can also be used
to compute metrics, like precision, or recall, when using the validate() method of the
Prediction block, since the Results Summarization block, has access to the ground-truth.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9801

3.5 Connecting the blocks

By adding behavior to each of the main and auxiliary blocks, we can create components
for domain-specific frameworks. Next, we can use these frameworks to develop systems
for recognizing emotions from physiological signals. To that end, we need to define which
components from the created framework are going to be used and how theywill be connected.

The AffectiveApplication class is the main element for building a recognition
system. It offers methods to create and connect components in sequence, from Signal
Acquisition (first block) to Results Summarization (last block). Listing 13 shows a sim-
ple emotion recognizer built with a framework created with metaFERA. We start by creating
an AffectiveApplication and then we connect all the components, by linking the
output channels to the input channels. For example, to connect the output channel zero
of the signal acquisition to the input channel zero of the band-pass filter, we execute the
app.addPreProcessing(feed, bandpass, 0, 0) method.

Listing 13 A simple emotion recognition system created using a framework built with metaFERA.

public class EmoRecognizer {
private stat ic AffectiveApplication app;
private stat ic ResultsSummarization results ;
private stat ic SignalAcquisition feed ;

/ / constants definition (omitted for readability reasons)
. . .

public stat ic void main(String [] args) {
app = new AffectiveApplication("EmoRecognizer" , ApplicationMode .PREDICT);
feed = new BitalinoSignalAcquisition("Bitalino ");
app. addSignalAcquisition(feed) ;

BandPass bandpass = new BandPass("Bandpass" , SIGNAL_FREQ, BANDPASS_CENTER_FREQ, BANDPASS
_WIDTH_FREQ,BANDPASS_ORDER);
app. addPreProcessing(feed , bandpass , 0, 0);

Hjorth hjorth = new Hjorth("Hjorth ");
app. addFeatureExtraction(bandpass , hjorth , 0, 0);

RandomForestClassifier rf = new RandomForestClassifier("RF");
app. addPrediction(hjorth , rf) ;

results = new ResultsCompiler("RESULTS");
app.addResultsSummarization(rf , results , 0, 0);

app. restore () ; / / restore the pre−saved models to use in prediction
app. startAllComponents () ;

while (!app. finished ()) {
Thread. sleep(SLEEP_TIME); / / for showing the results only on every SLEEP_TIME millise−
conds
System. out . println (results . getLatestResult ()) ; / / prints the last prediction

}
app.stopAllComponents () ;

}
}

123

9802 Multimedia Tools and Applications (2024) 83:9785–9815

In this simple emotion recognizer, we are creating a feed from a device, connecting it
to a band-pass filter, and then to a Feature Extraction component (to compute the Hjorth
parameters). This is connected to a Prediction component (Random Forest), and the latter,
finally is connected to a Results Summarization block. As we can see, the creation and
connection of components from a framework built with metaFERA is easy and simple.

If we want to create a multimodal recognizer, where we use more than one physiological
signal (e.g., EDA, ECG, and EEG), it will be enough to use several Signal Acquisition
components (implemented in a single framework or on different frameworks), one for each
signal type, and then create the necessary connections to define the behavior of the emotion
recognizer.

A more complete emotion recognition system is explained further in Section 5.2 and
shown in Listings 19 and 21. Although this system has at least one component for each type
of block offered by metaFERA, that is not required. We can use only a subset of the blocks,
as long as Signal Acquisition (to input the signal data), Feature Extraction (to generate the
features), Prediction (to predict the values), and Results Summarization (to obtain the final
values) are included since they aremandatory blocks in an emotion recognition system. There
is also some flexibility in the order the components that receive and send feature vectors can
connect to each other. Feature Selection, Feature Scaling, Dimensionality Reduction, and
Feature Aggregation components can be connected in any order, as long as they are included
after Feature Extraction and before Prediction.

As we mentioned before, an affective application can work in two modes: learning and
prediction. In learning mode, all components that generate features will create an internal list
of feature vectors, known as dataset, along with their expected class (ground-truth). When
this list is fully generated, that is, when the previous components have finished their task
and there is no more data to process, the components apply their respective modifications
to the dataset and pass it to the next component. This continues until the dataset reaches a
Prediction component, where it is used to train the prediction model. In prediction mode,
the components receive a feature vector, apply the required modifications according to the
previously obtained data in training mode and send it to the next components. Finally, the
Prediction component uses the received feature vector to calculate a result. All this processing
is managed automatically and transparently by metaFERA, in accordance with the mode in
which the application is running.

When developers connect the framework components to build an application, they need
to call two mandatory methods. In learning mode, they must call the dump() method after
all processing is finished to save the models and other data necessary in the future. Similarly,
in prediction mode, they have to call the restore()method before starting the application
to retrieve all the previously stored data.

4 Emotion recognition as a service

One of our goals while developing metaFERA, was to ensure that emotion recognition could
be performedonline, that is, get the signals directly fromsensors in real-time and recognize the
emotions, and be able to do it efficiently. However, although the framework was designed for
this, the devices where the recognitionwill be performedmay not have enough computational
power to guarantee an efficient response.

metaFERA offers a Web service platform in order for emotion recognition to be used
on a wider range of devices with different computing capabilities and in a wider variety

123

Multimedia Tools and Applications (2024) 83:9785–9815 9803

of applications. This way, all the structures and essential functionalities needed to create a
recognition system as a service are already developed and ready to use. This mechanism
isolates the client applications from the services offered, making it possible to change the
functionalities of the services (e.g., improve the algorithms available) without the need to
modify the clients.

In the following subsections, we detail the services provided, how the communication
between client and server is done, and the two client APIs (Java and JavaScript) to make
using the Web services simpler.

4.1 Services provided

The platform provides the services summarized in Table 2, which can be organized in two
groups of services: One for account management and another for using the affective appli-
cations.

4.1.1 Account services

The Account Services are used to register and unregister the client’s account. When a client
registers an account the server generates a token and returns it to the client. This token acts
as an identifier and is required to use the affective applications.

Unregistering an account deletes the account and all its data and makes the token invalid.
Clients that remain inactive for more than two hours are automatically unregistered. This
way, we reduce the number of active accounts that are not in use, allowing us to optimize the
use of the server’s resources.

If a client was using the baseline service (for normalization purposes), when the account
is unregistered, this information about the baseline is lost, and the client needs to restart the
process again.

4.1.2 Affective application services

The Affective Application Services offer all the tools needed to setup and perform real-time
prediction. The client can list the affective applications available usinggetapplication–
prdelist, and check their details using getapplicationspec. These two endpoints,
unlike the others, do not require the client to be registered.

The loadmodel endpoint instructs the server to load the desired affective application,
which can be used to perform predictions from physiological signals, using the endpoint
predict. The addbaseline endpoint receives signal data and uses it to identify the
normalization parameters. These are used to normalize the signal sent when the client calls
the predict endpoint.

4.2 Communication

The communication between client and server happens through HTTPS requests and
responses. The type of request and response depends on the endpoint used. As shown in
Table 2, services use either a GET or a POST request. For each endpoint it is also specified
what kind of data the client should send to the server and what kind of data it will receive
from the server.

123

9804 Multimedia Tools and Applications (2024) 83:9785–9815

Ta
bl
e
2

Su
m
m
ar
y
of

th
e
se
rv
ic
es

pr
ov
id
ed

R
eq
ue
st
U
R
L

H
T
T
PS

D
es
cr
ip
tio

n
In
pu

t
O
ut
pu

t

A
cc
ou
nt

se
rv
ic
es
:

/
e
m
o
s
e
r
v
i
c
e
s
/
a
c
c
o
u
n
t
/

r
e
g
i
s
t
e
r

G
E
T

R
eg
is
te
rs
an

ac
co
un
ti
n
th
e

se
rv
er

–
to
ke
n
(a
cc
ou

nt
id
en
tifi

er
)

u
n
r
e
g
i
s
t
e
r
/

t
o
k
e
n

G
E
T

R
em

ov
es

th
e
ac
co
un

ta
nd

al
l

its
da
ta

to
ke
n

–

A
ff
ec
tiv

e
A
pp
lic
at
io
n

se
rv
ic
es
:

/
e
m
o
s
e
r
v
i
c
e
s
/
a
p
p
l
i
c
a
t
i
o
n
s
/

g
e
t
a
p
p
l
i
c
a
t
i
o
n
l
i
s
t

G
E
T

R
et
ur
ns

a
lis
to

f
th
e
av
ai
la
bl
e

af
fe
ct
iv
e
ap
pl
ic
at
io
ns

–
ap

pl
ic
at
io
ni
d
(i
de
nt
ifi
er
)
na

m
e

g
e
t
a
p
p
l
i
c
a
t
i
o
n
s
p
e
c
/

a
p
p
l
i
c
a
t
i
o
n
i
d

G
E
T

G
et
a
de
sc
ri
pt
io
n
of

th
e

af
fe
ct
iv
e
ap
pl
ic
at
io
n

ap
pl
ic
at
io
ni
d

de
sc
ri
pt
io
n

l
o
a
d
m
o
d
e
l
/

t
o
k
e
n
/

a
p
p
l
i
c
a
t
i
o
n
i
d

G
E
T

E
ns
ur
es

th
e
af
fe
ct
iv
e

ap
pl
ic
at
io
n
is
lo
ad
ed

in
th
e

se
rv
er

to
ke
n
ap

pl
ic
at
io
ni
d

–

p
r
e
d
i
c
t
/

t
o
k
e
n
/

a
p
p
l
i
c
a
t
i
o
n
i
d

PO
ST

E
st
im

at
es

us
in
g
th
e
af
fe
ct
iv
e

ap
pl
ic
at
io
n
an
d
si
gn
al
s
in

th
e
ep
oc
h
JS
O
N
.C

al
cu
la
te
s

th
e
em

ot
io
na
lv

al
ue

an
d

re
tu
rn
s
it
to

th
e
cl
ie
nt

to
ke
na

pp
li
ca
ti
on

id
pr
ed
ic
te
d
va
lu
es

a
d
d
b
a
s
e
l
i
n
e
/

t
o
k
e
n
/
a
p
p
l
i
c
a
t
i
o
n
i
d

PO
ST

A
dd

s
th
e
si
gn

al
ep
oc
hs

to
be

us
ed

as
ba
se
lin

e
fo
r

w
ha
te
ve
r
ba
se
lin

e
pr
oc
es
s

th
e
af
fe
ct
iv
e
ap
pl
ic
at
io
n

us
es

to
ke
n
ap

pl
ic
at
io
ni
d

su
cc
es
s
m
es
sa
ge

A
cc
ou
nt

se
rv
ic
es

al
lo
w
s
th
e
cr
ea
tio

n
an
d
de
le
tio

n
of

ac
co
un
ts
.A

ff
ec
tiv

e
A
pp
lic
at
io
n
Se
rv
ic
es

al
lo
w
s
th
e
us
er
s
to

ge
ta

lis
to

f
ap
pl
ic
at
io
ns

an
d
se
le
ct
w
hi
ch

th
ey

w
an
tt
o
us
e

123

Multimedia Tools and Applications (2024) 83:9785–9815 9805

Every server response have the same format, which is composed by a code and a message.
This format, Message JSON, is presented in Listing 14.

Listing 14 Message JSON format.

{
"code": messagecode,
"message": message

}

The code tag represents the kind of response provided by the server, while the message
tag contains the server response. The responses can be of the following types:

– ERROR - An error occurred in the server and it returned an error message;
– STRING_MESSAGE - The call to the end point was successful and the server returned
a message with a success response;

– INFO_JSON - The server returned a list of generic data.
– PREDICTION_JSON - The server returned the predicted values and the feature vector
used for prediction;

A responsecodeERRORorSTRING_MESSAGE,will imply amessage tag containing
a String message, while a INFO_JSON code, will contain a JSON with the format shown
in Listing 15.

Listing 15 Info JSON format.

{
"info1":value1 ,
"info2":value2 ,
. . .

}

Finally, when the code is PREDICTION_JSON, the message tag will contain a JSON
with the format shown in Listing 16. Here,expected are the predicted values, and vector
represents the several features extracted from the signal and used for prediction.

Listing 16 Prediction JSON format.

{
"epochkeyword1":{
"expected":[value1 , value2 , . . . , valueM] ,
"vector ":[feature1 , feature2 , . . . , featureN] ,

} ,
. . .

}

123

9806 Multimedia Tools and Applications (2024) 83:9785–9815

4.3 Client API

To facilitate the development of applications that use emotion recognition as a service, we
provide a pre-programmed layer that handles all communications with the endpoints. This
layer provides a simplified API for the client application, so it does not have to deal with data
serialization, Web service calls, or error handling. Currently, we offer a Java and a JavaScript
version of this layer.

The Java layer API offers five classes with functionalities to help build and serialize JSON
messages, deal with epochs, create feature vectors, and access the endpoints. The five classes
are:

– JsonSerializationHelper - Contains methods to serialize and deserialize Epoch and Pre-
dictionOutput JSONs;

– Epoch - Corresponds to a single signal epoch;
– EpochSplitter - Allows the client to split an epoch into smaller epochs, by defining the
size of the window and how many samples to slide after every window;

– PredictionOutput - Contains the prediction for an epoch, and the corresponding computed
feature vector;

– EmoServicesWrapper - Allows the client to call the endpoints using a simple syntax.

For creating their clients, developers only need to use the Epoch,PredictionOutput
and EmoServicesWrapper classes.

Listing 17 Example of the client-side code using the Java layer API.

/ / creates the wrapper and registers the account
EmoServicesWrapper wrapper = new EmoServicesWrapper() ;
wrapper . registerAccount () ;

/ / loads application with id 1 from the server
int appID = 1;
wrapper . loadModel(appID);

Dictionary<String , Epoch> epoch_list = new Hashtable<>();
List<Double> signal = new ArrayList<>();

boolean stop = false ;
while(! stop) {

/ / gather the signal
signal .add(/∗get data from sensor∗ /) ;
i f (signal . size () == NUMBER_SAMPLES) {
/ / creates a signal epoch, adds i t to the l i s t of epochs and sends to server for
prediction
Epoch e = new Epoch() ;
e . addSignal("EDA" , signal) ;
epoch_list .add("epoch" , e) ;
System. out . println (wrapper . predict (appID, epoch_list) . get ("epoch") .getExpected () [0])) ;

}

/ / check some conditions to stop execution
. . .

}

123

Multimedia Tools and Applications (2024) 83:9785–9815 9807

Listing 18 Example of the client-side code using the Javascript layer API.

import {EmoServicesWrapper} from ’EmoServicesWrapper. js ’ ;

le t appID = 1;
/ / creates the wrapper , registers the account and loads application 1 from the server
window.wrapper = new EmoServicesWrapper() ;
window.wrapper . registerAccount () . then (() =>
window.wrapper . loadModel(appID)) ;

le t signal = [] ;

/ / setup sensor connection and callbacks
. . .

/ / callback function to get sensor data
function receiveValues(values) {

/ / gather the signal
signal .push(values) ;

i f (signal . length >= NUMBER_SAMPLES) {
/ / gets the f i r s t NUMBER_SAMPLES samples and builds a JSON
let valuestosend = signal . slice (0 , NUMBER_SAMPLES);
le t jsondata = {"epoch":{"EDA":valuestosend}};

/ / sends the data and uses the predicted value
window.wrapper . predict (appID, JSON. stringify (jsondata)) . then((response) => { /∗ uses the
predicted value returned in response .epoch. expected ∗/ });

/ / removes the samples used
signal . splice (0 , NUMBER_SAMPLES);

}
}

The JavaScript layer API is much simpler, due to the language’s built-in capabili-
ties in building and manipulating JSON structures. This API has only one class, the
EmoServicesWrapper, which provides methods for calling the endpoints.

Listings 17 and 18 show the Java and JavaScript code, respectively, needed to create an
epoch of an EDA signal, send it to the server for prediction, and use the predicted result. As
we can see, the developers do not need to be concerned with low-level operations, such as
serialization, calls to the endpoints, or even error handling. All of this is offered transparently
by the client’s API.

5 Test case

In the previous sections, we described metaFERA, its main and auxiliary blocks, and how
to add behavior to these pre-configured blocks to create domain-specific framework compo-
nents. We have also seen how to use recognition as a service via the Web service platform
and the client APIs.

In this section, we show how to put all the pieces together to create a set of components of
the domain-specific framework for EDA, and how to build an end-to-end affective application
for identifying high and lowarousal fromEDAusing this framework (Fig. 3).We also describe

123

9808 Multimedia Tools and Applications (2024) 83:9785–9815

User

BITalino Signal
Acquisition

Random
Forest

H
ig

h/
Lo

w
 A

ro
us

al
 R

ec
og

ni
ze

r
m

et
aF

ER
A

Signal
Acquisition Pre-Processing Feature

Selection
Feature

Extraction
PredictionFeature

Scaling

Principal
Component

Analysis

Dimensionality
Reduction

Results
Aggregation

Recursive
Feature

Elimination

Results
Summarization

Late Fusion
with

Classifier

Accuracy and
Confusion

Matrix

ED
A

Fr
am

ew
or

k Hjorth
Parameters

Higher Order
Crossings

Statistical

Power Spectral
Density

Recursive
Feature

Elimination

Min
Redundancy

Max Relevance

Mutual
Information

Principal
Component

Analysis

Z-Score
Normalization

Quantile
Tranformer

Min-Max
Scaler

Max-Abs
Scaler

Robust
Scaler Naive Bayes

J48 Decision
Tree

Support Vector
Machine

Random Forest

K-Nearest
Neighbors

Multi-Layer
Perceptron

Late Fusion
with

Majority Voting

Late Fusion
with

Classifier

Accuracy and
Confusion

Matrix

Area Under
the Curve

Precision and
Recall

Daubechies
Wavelets

BITalino Signal
Acquisition

Feature
Aggregation

Z-Score
Normalization

Early Fusion

Early Fusion

Band-Pass
Filter

Z-Score
Normalization

Support Vector
Machine

Discrete
Wavelet

Transform

Mel-Frequency
Cepstral

Coefficients

Band-Pass
Filter

Mel-Frequency
Cepstral

Coefficients

Power Spectral
Density

Hjorth
Parameters

Fig. 3 Example of the use of metaFERA for creating a domain-specific framework, and the use of this to
develop an emotion recognizer. (bottom) the main (in blue) and auxiliary (in gray) blocks of metaFERA;
(middle) set of possible components for an EDA framework, created by adding behavior to the metaFERA
blocks; and (top) an high/low arousal recognizer built using some of the components from the EDA framework.
The bold border in the metaFERA blocks means these are mandatory in the creation of an emotion recognition
system

how to offer this arousal recognizer as a service, and how to use it in a Java or JavaScript
client. We conclude the section with a short performance evaluation of the resulting emotion
recognition system, to measure the influence of the meta-framework in its overall efficiency.

5.1 Domain-specific framework

According to the scenario described above, we must first develop the components of the
domain-specific framework for EDA that will allow us to create emotion recognizers using
EDA signals. This consists in filling the main and auxiliary building blocks offered by
metaFERA with specific behavior for each one (Fig. 3 - middle).

In Sections 3.3 and 3.4 we described how to add behavior to each of the main and auxiliary
blocks to create the components of a domain-specific framework. Although we have only
described the creation of some of the components of the EDA framework shown in Figure 3,
the creation of the remaining ones would be very similar, so we do not describe it here.
In practical terms, we can create as many components as we wish for the domain-specific
frameworks, using the building blocks offered bymetaFERA, and then use these components
to create several recognition systems. Indeed, we can use the same component in different
frameworks, as well as use components from different frameworks in the same recognition
system.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9809

5.2 Emotion recognition system

After creating the various components of the domain-specific framework, the next step is
to create an affective application. To accomplish this, we combine the components of the
framework to get the desired behavior.

According to our scenario, we are going to create a recognizer to identify high/low arousal
from EDA (Fig. 3 - top). This recognizer collects EDA signals using a BITalino device
and filters them using a band-pass filter. For feature extraction, it uses Hjorth parameters,
Power Spectral Density (PSD), and Mel-Frequency Cepstral Coefficients (MFCC). The first
two are normalized and combined using early fusion, and then the dimension is reduced

Listing 19 Building a (standalone) high/low arousal recognizer.

public class ArousalRecognizer {
private stat ic AffectiveApplication app;
private stat ic ResultsSummarization results ;
private stat ic SignalAcquisition feed ;

/ / constants definition (omitted for readability reasons)
. . .

public stat ic void main(String [] args) {
ApplicationMode mode = args[0] / / learn / predict
createPipeline (mode) ;

app. startAllComponents () ;
i f (mode == ApplicationMode .LEARN) {
app.stopAllComponents () ;
app.dump() ; / /dumps al l information for later use

} else {
while (!app. finished ()) {
Thread. sleep(SLEEP_TIME); / / for showing the results only on every SLEEP_TIME millise−
conds
System. out . println (results . getLatestResult ()) ; / / prints the last prediction

}
app.stopAllComponents () ;

}
}

private stat ic void createPipeline (ApplicationMode mode) {
app = new AffectiveApplication("ArousalRecognizer" , mode) ;

i f (mode == ApplicationMode.LEARN)
feed = new ExampleDatasetAcquisition("Dataset ") ;

else
feed = new BitalinoSignalAcquisition("Bitalino ");

app. addSignalAcquisition(feed) ;
createComponents(mode) ;

}

private stat ic void createComponents(ApplicationMode mode) {
. . .

}
}

123

9810 Multimedia Tools and Applications (2024) 83:9785–9815

using Principal Component Analysis (PCA). Several MFCC features are selected using the
Recursive Feature Elimination feature selection method. Two machine learning methods for
classification are used and their results are combined using a late fusion approach with a
classifier, to produce the final result. Finally, a Results Summarization module is used to
compute accuracy and the confusion matrix. Listings 19 and 21 show the creation of this
affective application.

5.3 Emotion recognition system as a service

To provide an emotion recognizer as a service, developers only need to extend the
ServiceAffectiveApplication class. It already provides all the necessary mecha-
nisms to link the recognizer with the endpoints, without the need for additional programming.
Developers just have to program their emotion recognizer as they would for a standalone
application. The main differences to consider are: (i) the need to pause and resume compo-
nents in order to optimize the server resources; and (ii) the signal acquisition method, which
in this case uses an epoch provided by the client application rather than receiving it directly
from a signal feed.

As we can see in Listing 20 the way the recognizer is created is the same as in the
standalone application (Listing 19). Indeed, the code for creating the components (Listing
21) is the same for both. Thus, it is easy to migrate or adapt a standalone recognizer to be
offered as a service.

5.4 Performance

We conducted an experiment to analyze the performance of the resulting emotion recognition
system, using a PC Intel Core i7-3630QMCPU@2.40GHz, with 16GB of RAM and running
Windows 8.1 64-bit.

In the experiment, we used as input the EDA signals present in the AMIGOS dataset [17].
This dataset contains several physiological signals collected from 40 participants while they
were alone watching 16 short videos (2 to 5 minutes). The EDA signals were recorded using
the Shimmer 2R platform with an EDA module board (128 Hz, 12-bit resolution).

Our goal was to simulate the acquisition of physiological signals from a real user (directly
from a sensor). To do this, we used the signals from the first participant present in the dataset,
and simulated online signal acquisition by applying a 1/128 seconds pause between samples
to simulate the sampling frequency of the device used to collect the EDA. The signal was
split into epochs of 5 seconds, with no overlap.

We considered the time required to obtain a prediction as the time elapsed from when
the Signal Acquisition block finishes sending the epoch until the Results Summarization
component receives the prediction result. We did not consider the time needed to collect the
epoch samples, because it will always be fixed, and dependent on the chosen epoch duration.

The average prediction time per epoch, considering 100 epochs, was 2.84 ms (SD=1.79),
with aminimumof 1ms and amaximumof 8ms. In practical terms, and considering the epoch
of 5 s, this means that in a real situation, we would have a prediction every 5 s. So, the time to
get a prediction is determined by the duration of the epoch, and not by the meta-framework
performance. It is however worth noting that the performance of the algorithms to include in
the framework components can influence the performance of the overall system. Therefore,
programmers should favor the use of more efficient algorithms in their components.

123

Multimedia Tools and Applications (2024) 83:9785–9815 9811

Listing 20 Building the high/low arousal recognizer to be used as a service.

public class ServerArousalRecognizer extends ServiceAffectiveApplication {
protected stat ic AffectiveApplication app;
protected stat ic ResultsSummarization results ;
protected stat ic SignalAcquisition feed ;

/ / constants definition (omitted for readability reasons)
. . .

public ServerArousalRecognizer () {
/ / creates the pipeline , restores the models and te l l s the pipeline to wait until i t is
needed
createPipeline () ;
app. startAllComponents () ;
app. restUntilResumed () ;

}

public List<Double> predict (Epoch epoch) {
feed .addEpoch(epoch) ;
app.resumeComponents() ; / / unpauses the components
List<Double> result = null ;
while ((result = results . getLastResult ()) == null) {
Thread. sleep(SLEEP_TIME);

}
app. restUntilResumed () ; / / pauses the components
results . resetResults () ;

return result ;
}

private stat ic void createPipeline () {
app = new AffectiveApplication("ServerArousalRecognizer" , ApplicationMode.PREDICT);
feed = new EpochFeed("Epoch");
app. addSignalAcquisition(feed) ;
createComponents () ;

}

private stat ic void createComponents() {
. . .

}
}

Taking all this into account, we can conclude that: (i) in a scenario where we have an
emotion recognizer with a relatively high complexity, which uses blocks of all types and
several blocks of the same type (Fig. 3), the execution time is almost insignificant; (ii) the
weight of the meta-framework on the performance of the final solution is negligible. Thus,
we can consider that metaFERA does not affect the overall performance of the recognition
system created using frameworks developed with it.

6 Conclusions

In this paper, we described metaFERA, an open-source architectural meta-framework for
creating domain-specific software frameworks, which enables developers to build end-to-end

123

9812 Multimedia Tools and Applications (2024) 83:9785–9815

Listing 21 Method for creating the components of the application.

private stat ic void createComponents(ApplicationMode mode) {
BandPass bandpass = new BandPass("Bandpass" , SIGNAL_FREQ, BANDPASS_CENTER_FREQ,
BANDPASS_WIDTH_FREQ,BANDPASS_ORDER);
app. addPreProcessing(feed , bandpass , 0, 0);

Hjorth hjorth = new Hjorth("Hjorth ");
app. addFeatureExtraction(bandpass , hjorth , 0, 0);
PowerSpectralDensity psd = new PowerSpectralDensity("PSD");
app. addFeatureExtraction(bandpass , psd , 0, 0);
MelFrequencyCepstralCoefficients mfcc = new MelFrequencyCepstralCoefficients("MFCC" ,
MFCC_NCOEFFS);
app. addFeatureExtraction(bandpass , mfcc, 0, 0);

RecursiveFeatureSelection rfselect = new RecursiveFeatureSelection("RFS");
app. addFeatureVectorModifier(mfcc, rfs) ;

FeatureAggregation join = new FeatureAggregation("JOIN");
app. addFeatureAggregation(hjorth , join) ;
app. addFeatureAggregation(psd , join) ;

ZScoreNormalization zscore = new ZScoreNormalization("ZSCORE");
app. addFeatureVectorModifier(join , zscore) ;

PrincipalComponentAnalysis pca = new PrincipalComponentAnalysis("PCA");
app. addFeatureVectorModifier(zscore , pca) ;

RandomForestClassifier rf = new RandomForestClassifier("RF");
app. addPrediction(pca , rf) ;
SupportVectorMachineClassifier svm = new SupportVectorMachineClassifier("SVM");
app. addPrediction(rfselect , svm);

FusionWithClassifier mv = new FusionWithClassifier ("MV");
app. addResultsAggregation(rf , mv) ;
app. addResultsAggregation(svm, mv);

results = new ResultsCompiler("RESULTS");
app.addResultsSummarization(mv, results , 0, 0);

//=== code for standalone application only ===
if (mode == ApplicationMode.LEARN) {
/ / connect class labels (ground−truth) for validation purposes
app. connectExpectedClassLabelInput(feed , hjorth , 1);
app. connectExpectedClassLabelInput(feed , mfcc, 1);
app. connectExpectedClassLabelInput(rf , mv, 1);
app. connectExpectedClassLabelInput(mv, results , 1);

}
else {
app. restore () ; / / restore the pre−saved models to use in prediction

}

//=== code for using the recognizer as a service only ===
app. restore () ; / / restore the pre−saved models to use in prediction

}

emotion recognition systems based on physiological signals without requiring a thorough
development process. The main building blocks for creating frameworks are aligned along

123

Multimedia Tools and Applications (2024) 83:9785–9815 9813

the traditional processing pipeline commonly used in emotion recognition systems from
physiological signals. It also offers a layer to provide emotion recognition as a service. This
allows developers to create frameworks for developing emotion recognizers with minimal
effort. To do this, they simply need to add behavior to the pre-configured blocks through
specific implementations and combine them by connecting the output channels to the input
ones.

Although metaFERA requires developers to define behavior for its blocks (to create the
framework’s components), they can use existing libraries in various programming languages.
Nevertheless, we intend in the near future to provide a set of components with their behavior
implemented to make it even easier and faster for developers to create new frameworks and
emotion recognizers.We plan to start by offering components that are independent of the type
of physiological signals, such as feature selection or prediction algorithms, so that they can
be used as components on a wider variety of domain-specific frameworks. Our ultimate goal
is to allow the creation of an ecosystem of several frameworks and components (created by
different researchers) towhich the community can contribute and use the existing frameworks
and components to develop new frameworks and emotion recognition applications.

Weevaluated andvalidated the potential ofmetaFERAfor buildingdomain-specific frame-
works and using these frameworks to build emotion recognition systems by using a practical
and complete example. Throughout the paper, we created a framework for dealing with EDA
signals and then used it to construct a standalone application for identifying high/low arousal.
We also illustrated how to provide this arousal recognizer as a service, showing the minor
differences from developing a standalone application.

In summary, metaFERA allows developers to quickly and easily develop new frame-
works for building affective applications, as well as to test and compare new algorithms
for coping with physiological signals. It supports all steps of a traditional emotion recogni-
tion pipeline and can process various types of physiological signals, either individually or
simultaneously.

Acknowledgements This work was supported by FCT through project AWESOME, ref. PTDC/CCI-
INF/29234/2017, and the LASIGE Research Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020. Soraia
M. Alarcão is funded by an FCT grant, ref. SFRH/BD/138263/2018.

Funding Open access funding provided by FCT|FCCN (b-on).

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflicts of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

9814 Multimedia Tools and Applications (2024) 83:9785–9815

References

1. Alves, A.P., Silva, H., Lourenço A. L., Fred, A.L.: BITalino: A Biosignal Acquisition System based on
the Arduino. In: Proceeding of the International Conference on Biomedical Electronics and Devices,
pp. 261–264 (2013)

2. Blechert J, Peyk P, LiedlgruberM,Wilhelm FH (2016) Anslab: Integrated multichannel peripheral biosig-
nal processing in psychophysiological science. Behavior Research Methods 48(4):1528–1545

3. Brunet, D., Murray, M.M., Michel, C.M.: Spatiotemporal analysis of multichannel eeg: Cartool. Compu-
tational intelligence and neuroscience 2011 (2011)

4. Delorme A, Makeig S (2004) Eeglab: an open source toolbox for analysis of single-trial eeg dynamics
including independent component analysis. Journal of neuroscience methods 134(1):9–21

5. Duin, R.P.W.: Prtools version 3.0: A matlab toolbox for pattern recognition. In: Proceedings of SPIE,
p. 1331 (2000)

6. Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004) Data mining in bioinformatics using weka.
Bioinformatics 20(15):2479–2481

7. g.BSANALYZE: OFFLINE BIOSIGNAL ANALYSIS FOR MATLAB. https://www.gtec.at/product/
gbsanalyze/. [Online; Accessed 02 December 2022]

8. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen
MS (2014) Mne software for processing meg and eeg data. Neuroimage 86:446–460

9. Higham, D.J., Higham, N.J.: MATLAB guide. SIAM (2016)
10. Hjorth B (1970) EEG Analysis Based on Time Domain Properties. Electroencephalography and Clinical

Neurophysiology 29(3):306–310. https://doi.org/10.1016/0013-4694(70)90143-4
11. Hofmann, M., Klinkenberg, R.: RapidMiner: Data mining use cases and business analytics applications.

CRC Press (2016)
12. IMotions: Biometric Research Platform (SW Version). https://imotions.com/ (2001). [Online; accessed

02 December 2022]
13. Jayaram, V., Barachant, A.: Moabb: trustworthy algorithm benchmarking for bcis. Journal of neural

engineering 15(6) (2018)
14. Li, H.: Smile-statistical machine intelligence & learning engine (2016)
15. Liapis, A., Katsanos, C., Karousos, N., Xenos, M., Orphanoudakis, T.: User experience evaluation: A

validation study of a tool-based approach for automatic stress detection using physiological signals.
International Journal of Human-computer Interaction pp. 1–14 (2020)

16. Michalska M (2009) Openbci: Framework for brain-computer interfaces. University of Warsaw Faculty
of Mathematics, Informatics and Mechanics

17. Miranda Correa, J.A., Abadi, M.K., Sebe, N., Patras, I.: AMIGOS: A Dataset for Affect, Personality and
Mood Research on Individuals and Groups. IEEE Transactions on Affective Computing pp. 1–14 (2018).
10.1109/TAFFC.2018.2884461

18. Muñoz, J.E., Gouveia, E.R., Cameirão, M.S., i Badia, S.B.: Physiolab-a multivariate physiological com-
puting toolbox for ecg, emg and eda signals: a case of study of cardiorespiratory fitness assessment in the
elderly population. Multimedia Tools and Applications 77(9), 11521–11546 (2018)

19. Oliphant TE (2007) Python for scientific computing. Computing in Science & Engineering 9(3):
10–20

20. Oostenveld, R., Fries, P.,Maris, E., Schoffelen, J.M.: Fieldtrip: open source software for advanced analysis
of meg, eeg, and invasive electrophysiological data. Computational intelligence and neuroscience 2011
(2011)

21. Palestra G, Pino O (2020) Detecting Emotions During a Memory Training Assisted by a Social Robot for
Individuals with Mild Cognitive Impairment (MCI). Multimedia Tools and Applications 79(47):35829–
35844

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller,
A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Èdouard Duchesnay: Scikit-learn: Machine learning in python
(2018)

23. PhamMT, Geuens M, De Pelsmacker P (2013) The influence of ad-evoked feelings on brand evaluations:
Empirical generalizations from consumer responses to more than 1000 tv commercials. International
Journal of Research in Marketing 30(4):383–394

24. Soleymani M, Villaro-Dixon F, Pun T, Chanel G (2017) Toolbox for emotional feature extraction from
physiological signals (teap). Frontiers in ICT 4:1

25. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for
meg/eeg analysis. Computational intelligence and neuroscience 2011 (2011)

123

https://www.gtec.at/product/gbsanalyze/
https://www.gtec.at/product/gbsanalyze/
https://doi.org/10.1016/0013-4694(70)90143-4
https://imotions.com/

Multimedia Tools and Applications (2024) 83:9785–9815 9815

26. Tijs, T.J.W., Brokken, D., IJsselsteijn, W.A.: Dynamic game balancing by recognizing affect. In:
P. Markopoulos, B. de Ruyter, W. IJsselsteijn, D. Rowland (eds.) Fun and Games, pp. 88–93. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

27. Vidaurre, C., Sander, T.H., Schlögl, A.: Biosig: the free and open source software library for biomedical
signal processing. Computational intelligence and neuroscience 2011 (2011)

28. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov,
N.,Nelson,A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng,Y.,Moore, E.W.,VanderPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M.,
Ribeiro,A.H., Pedregosa, F., vanMulbregt, P., SciPy 1.0Contributors: SciPy 1.0: FundamentalAlgorithms
for Scientific Computing in Python. Nature Methods 17, 261–272 (2020). 10.1038/s41592-019-0686-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	metaFERA: a meta-framework for creating emotion recognition frameworks for physiological signals
	Abstract
	1 Introduction
	2 Related work
	3 metaFERA
	3.1 Architecture
	3.2 Communication mechanism
	3.3 Main building blocks
	3.3.1 Signal acquisition
	3.3.2 Pre-processing
	3.3.3 Feature extraction
	3.3.4 Feature selection
	3.3.5 Prediction

	3.4 Auxiliary blocks
	3.4.1 Feature scaling
	3.4.2 Feature aggregation
	3.4.3 Dimensionality reduction
	3.4.4 Results aggregation
	3.4.5 Results summarization

	3.5 Connecting the blocks

	4 Emotion recognition as a service
	4.1 Services provided
	4.1.1 Account services
	4.1.2 Affective application services

	4.2 Communication
	4.3 Client API

	5 Test case
	5.1 Domain-specific framework
	5.2 Emotion recognition system
	5.3 Emotion recognition system as a service
	5.4 Performance

	6 Conclusions
	Acknowledgements
	References

