
https://doi.org/10.1007/s11042-023-15199-y

The classification of wheat yellow rust disease based
on a combination of textural and deep features
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Abstract
Yellow rust is a devastating disease that causes significant losses in wheat production world-
wide and significantly affects wheat quality. It can be controlled by cultivating resistant
cultivars, applying fungicides, and appropriate agricultural practices. The degree of precau-
tions depends on the extent of the disease. Therefore, it is critical to detect the disease as
early as possible. The disease causes deformations in the wheat leaf texture that reveals
the severity of the disease. The gray-level co-occurrence matrix(GLCM) is a conventional
texture feature descriptor extracted from gray-level images. However, numerous studies in
the literature attempt to incorporate texture color with GLCM features to reveal hidden pat-
terns that exist in color channels. On the other hand, recent advances in image analysis
have led to the extraction of data-representative features so-called deep features. In partic-
ular, convolutional neural networks (CNNs) have the remarkable capability of recognizing
patterns and show promising results for image classification when fed with image texture.
Herein, the feasibility of using a combination of textural features and deep features to deter-
mine the severity of yellow rust disease in wheat was investigated. Textural features include
both gray-level and color-level information. Also, pre-trained DenseNet was employed for
deep features. The dataset, so-called Yellow-Rust-19, composed of wheat leaf images, was
employed. Different classification models were developed using different color spaces such
as RGB, HSV, and L*a*b, and two classification methods such as SVM and KNN. The
combined model named CNN-CGLCM HSV, where HSV and SVM were employed, with
an accuracy of 92.4% outperformed the other models.
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1 Introduction

Yellow rust disease caused by Puccinia striiformis f. sp. tritici pathogen leads to significant
losses in wheat production worldwide because of its high devastating property [37, 54]. It
is a global disease and has been determined in more than 60 countries [54]. Turkey also
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suffers from the wheat yellow rust epidemic [13]. It caused crop damage estimated at ten
million US dollars in Central Anatolia in 2010 [6]. Due to disease, yield losses might reach
up to 100% when hypersensitive cultivars are used and when suitable weather conditions
occur [11]. Moreover, yellow rust limits not only the yield but also the quality of wheat. As
a result, it is critical to monitor the development of yellow rust in natural conditions using
reliable methods for minimizing economic losses. The disease causes physical changes on
wheat leaves such as leaf color, leaf texture, and leaf morphology [26], the severity of the
disease is evaluated through these physical deformations. In other words, texture features
provide enough evidence about wheat yellow rust [40]. However, the process of determining
the severity level of yellow rust is carried out according to certain standards through visual
inspection in field conditions by specialists. This process is subjective, labor-intensive, and
time-consuming. Failure to perform accurate severity level evaluation may pose problems
in later growth stages, especially in precision agriculture in which detecting infection type
is critical in taking necessary precautions against the disease.

Texture features analysis over two-dimensional images is one of the most popular
approaches in digital image processing problems [2]. It focuses on partitioning images into
regions of interest and, later, classifying those regions. It utilizes existing information on the
spatial arrangement of colors or intensities in an image. It extracts information about texture
features, structural features of surfaces, and their relationship with each other [17]. Texture
feature extraction methods have been used for about half a century [18] in various computer
vision applications, including object detection and image classification [55]. Over time, the
number of features has increased to better adapt to the various tasks. The methods consist
of various techniques such as Gray Level Co-occurrence Matrix (GLCM), Local Binary
Patterns (LBP), Gabor Filter, Segmented Fractal Texture Analysis (SFTA) each based on
different calculations. GLCM is a popular measurement among the other texture feature
extraction methods designed to perform statistical calculations over different image textures
and forms [17]. It is often used especially in the fields of texture analysis and machine learn-
ing. GLCM performs calculations using statistical distributions of combinations of different
intensity values for an image [48]. However, capturing information only from grayscale
images limits GLCM features’ effectiveness with color images. Thus, recently, color spaces
have attracted the attention of researchers as they reveal hidden patterns in color channels
[15, 20].

On the other hand, recent developments in both information technologies and image anal-
ysis offer new methods to extract data-dependent features to develop more sophisticated
systems for image-based problems [36, 47, 50]. Convolutional Neural Network (CNN) is in
the leading position among these methods due to its ability to have both automatic feature
extraction and classification. It also has the advantage of spatial information over other types
of deep networks. CNN is a deep learning (DL) method that is especially popular in classi-
fying images, text, sounds, and videos. One of CNN’s strongest sides is that it automatically
extracts data-dependent appropriate features from images in the dataset. Researchers are
still on the hunt to improve the effectiveness and generalizability of deep learning models
[35, 51].

Herein, various models have been proposed to determine the severity of yellow rust dis-
ease in wheat. The models were trained on a dataset that included not only CNN-based
auto-generated data representation features, but also traditional texture features. The study
focuses on the hypothesis of “diversity in the feature set is crucial in developing state-of-art
learning models trained on image datasets even though dataset-representative image-based
features are available”. Pre-trained DenseNet-201 was employed to extract CNN-based fea-
tures. DenseNet-201 was fine-tuned by the so-called Yellow-Rust-19 dataset [19] to obtain
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task-specific features. DenseNet-201’s Global Average Pooling (GAP) layer was utilized for
extracting 1920 features. Also, using both the Gray Level Co-occurrence Matrix (GLCM)
and the Color-Gray Level Co-occurrence Matrix (CGLCM), a total of 88 texture features
were obtained, 22 features corresponding to each grayscale and 22 features correspond-
ing to each color channel for each leaf image in Yellow-Rust-19 dataset [19]. Moreover,
three different color spaces such as Red-Green-Blue (RGB), Hue-Saturation-Value (HSV),
and Lightness-Red/Green-Blue/Yellow (L*a*b) were utilized for obtaining color textural
features.

Experimental results confirm that models trained using combined features sound and are
promising. Experimental results also confirm that the models developed using combined
features perform better than the models developed by using one of the CNN-based features
and textural features. The support Vector Machine (SVM) method and K-Nearest Neighbors
(KNN) were employed as the classifiers. Figure 1 shows the overall workflow.

The remaining part of this paper is organized as follows. In the next section, some stud-
ies’ reviews related to the methodologies used in the study are presented. Section 3 explains
the methodological framework. This section gives information about the final data set and
feature extraction methods. The combined textural analysis results based on different color
spaces and CNN results are presented in Section 4. In the last section, the results are
summarized and recommendations for further studies are given.

2 Related work

Precision farming is heavily dependent on information technology, with data and connec-
tivity at its core. With artificial intelligence, analytics, and connected sensors, it can further
increase yields, detect diseases and build sustainability and resilience across crop cultiva-
tion. Kundu et al. [25] developed a CNN-based model called Custom-Net that collects the
imagery and parametric data from the pearl millet farmland and predicts the blast and rust
diseases in pearl millet. Hayit et al. [19] introduced a multi-label deep convolutional neural
networks-based model to classify the severity of yellow rust disease on wheat. The model
inputs the wheat leaf image and classifies it by the percentage of rust. However, Abayomi-
Alli et al. [1] aimed to improve the accuracy of deep learning models on low-quality test
images using data augmentation. They generated synthetic images by histogram transfor-
mation technique to recognize important colour-based features, which are less sensitive to
the deficiencies of low-quality images.

Fig. 1 The workflow of the study
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On the other hand, there exists recent studies on the diagnosis of plant diseases through
rich, informative, and data-representative features. Almadhor et al. [3] developed an arti-
ficial intelligence (AI)-based model to detect and classify the most common guava plant
diseases by utilizing a combination of color histograms and Local Binary Patterns (LBP)
textural features. However, GLCM is a widely used statistical method for texture analysis,
but it can only capture information from grayscale images [18, 20], which limits its effec-
tiveness with color images. Recently, color spaces have also attracted researchers’ attention
due to their ability to reveal color data hidden in pixel values. Thus, many efforts have
been made to extend the effectiveness of GLMC by combining or integrating the color
in it. For example, Hossain and Parekh [20] studied the possibilities of including color
information from color texture images to improve texture analysis. The results proved that
color GLCM combination provided better accuracies as compared to standard GLCM. In
another study, Gui et al. [15] demonstrated the texture feature extraction based on Color
Co-occurrence Matrix is superior over the GLCM-based texture feature extraction methods.
HSI and RGB color spaces were used for texture feature extraction. More on combining
color and grey-level co-occurrence matrix features, see [23, & references therein].

Nowadays, with the emergence of deep learning, especially CNNs, there has been a shift
to the use of both hand-crafted and learning-based features. Zhou et al. [58] employed hand-
crafted features like color histogram and LBP for image retrieval as well as the deep features
extracted from the various CNNs such as VGG16, ResNet, and AlexNet. Zhang et al. [56]
proposed a classification model for medical images, which the model was trained by uti-
lizing deep and handcrafted visual features. In [53], Wei et al. proposed a hybrid feature
descriptor based on DL by integrating the deep and handcrafted features. An SVM-based
classification model was used for training. Experimental results show that the proposed
method outperforms the state-of-the-art predictors.

Nowadays, with the emergence of deep learning, especially CNNs, there has been a shift
to the use of both handcrafted and learning-based features. Zhou et al. used deep features
extracted from various CNNs such as VGG16, ResNet and AlexNet as well as handcrafted
features such as color histogram and LBP for image acquisition. Zhang et al. [58] proposed
a classification model for medical images, in which the model is trained using deep and
handcrafted visual features. In [53], Wei et al. proposed a hybrid feature descriptor based on
DL by integrating deep and handcrafted features. A SVM-based classification model was
used for training. Experimental results show that the proposed method outperforms state-of-
the-art predictors. Nanni et al. [32] proposed a model for the classification of virus images
by using both hand-crafted features and pre-trained deep neural network features. SVM was
used for features training. Various pattern analysis methods were used as handcrafted fea-
tures extraction methods. The experiment results showed that the combined method with
hand-crafted and deep features improve the accuracy. Luz et al. [27] presented an urban
sound classification method based on deep and handcrafted features combination. CNN
model was used for extraction deep features. Random Forest and SVM were used as clas-
sifiers and also two separate data sets were used. For both classifiers, the proposed method
outperformed handcrafted features. Zhang et al. [57] used a combination of handcrafted and
deep CNN features extracted from X-Ray images for classify between healthy, widespread
pneumonia, and Covid-19 patients. The performance of the proposed approach was com-
pared with a standard CNN and the SVM trained with texture features. It was reported that
combining the features improves the accuracy of the classification compared to the indepen-
dent application of handcrafted and deep features. Naz et al. [33] proposed a hybrid method
based on the texture features and deep features for automated detection of gastrointestinal
diseases by using wireless capsule endoscopy images. Texture features were extracted by
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using SFTA and LBP texture analysis methods. Also, deep features were extracted by using
VGG-16 and Inception-V3 pre-trained CNN models. Extracted deep features were com-
bined serially along with the obtained texture features to obtain an ensemble deep feature
vector. It was reported that the results of proposed approach are promising.

In addition, state-of-the-art studies utilized the DenseNet [21] model for similar tasks
that this study is concerned with [12, 31, 44, 49]. Each of these studies used leaf images of
different plants as a dataset and successfully detected diseases. While some of these studies
use the basic DenseNet model, others modified the DenseNet to their specific task.

The studies summarized above indicate that a combination of textural and deep fea-
tures improves the performance of learning-based models, which motivated us to explore a
learning-based classification performed on a combination of textural and deep features to
determine the severity level of yellow rust disease in wheat.

3 Materials andmethod

3.1 Wheat yellow rust infection types

Yellow rust disease causes physical changes in wheat leaves such as leaf color, leaf texture,
and leaf morphology [26], which provide sufficient evidence of wheat yellow rust disease
[40] to determine the type of yellow rust infection. Relative to the resistance of wheat to
the disease, there are six different infection types according to the modifed Cobb scale
[38]. Infection types no disease (Immune), Resistant (R), Moderately Resistant (MR), Mod-
erately Resistant—Moderately Susceptible (MR-MS), Moderately Susceptible (MS), and
Susceptible (S) in Table 1 presented by Johnston and Browder [22] were used for disease
assessment. However, the process of determining the severity level of yellow rust is carried
out according to certain standards through visual inspection by specialists.

3.2 Dataset

The classification has been performed on the dataset called Yellow-Rust-19, which was ini-
tially created by Hayıt et al. [19] and composed of wheat leaf images. In order to obtain
images, first, wheat leaves were collected from the cultivation area belonging to the Repub-
lic of Türkiye Ministry of Agriculture and Forestry Directorate of Field Crops Central
Research Institute located in Ankara, Türkiye. After that each leaf was examined to deter-
mine the severity level of yellow rust by two specialists. Then, they were photographed to
yield a raw dataset. After that, each image in the raw dataset went through some image

Table 1 Infection types of wheat leaf rust used in disease assessment

Immune No visible infection on plant.

R Resistant: visible chlorosis or necrosis, no uredia are present.

MR Moderately Resistant: small uredia are present and surrounded by either chlorotic or
necrotic areas.

MR-MS Intermediate: variable sized uredia are present; some with chlorosis, necrosis, or both.

MS Moderately Susceptible: medium sized uredia are present and possible surrounded by
chlorotic areas.

S Susceptible: Large uredia are present, generally with little or no chlorosis and no necrosis.
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Fig. 2 Sample leaf image of each class [19]

pre-processing. Finally, Yellow-Rust-19 was created by the labeling and data augmentation
process, for details see [19]. Sample leaf images from Yellow-Rust-19 are represented in
Fig. 2 and Table 2 shows the statistics for the dataset.

3.3 Color spaces

Texture, the spatial arrangement of pixels, has been one of the most popular features in
image processing tasks [39]. Although grayscale textures provide enough information to
solve many tasks, many researchers have started to consider color information in recent
years [4, 7, 14, 15, 20]. And, in these studies, it has been observed that structural feature
extraction through color texture has led to a considerable increase in sensitivity. Recall that
color space is an abstract mathematical model for representing colors numerically, that is,
the color space establishes a mapping between numeric values and specific colors. How-
ever, there are different color spaces for various purposes in image analysis. In this study,
three different color spaces such as Red-Green-Blue (RGB), Hue-Saturation-Value (HSV),
and Lightness-Red/Green-Blue/Yellow (L*a*b) were utilized for obtaining color textural
features.

3.4 Feature extraction

3.4.1 Gray Level Co-occurrence Matrix (GLCM) and Color-Gray Level Co-occurrence
Matrix (CGLCM) feature extraction

Visual texture (in short texture) is a feature of repeating patterns of local variations
in image intensity utilized for determining objects or regions of interest in an image.

Table 2 Final dataset statistics

Immune R MR MR-MS MS S TOTAL

2500 2500 2500 2500 2500 2500 15000
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It provides information about the spatial arrangement of colors or intensities in the image
and is described by the spatial distribution of intensity levels in a neighborhood. The sta-
tistical texture, on the other hand, is a quantitative texture measure of the arrangement of
intensities in a region. Gray Level Co-occurrence Matrix (GLCM) contains information
about the positions of pixels having similar gray level values and, mathematically defined
by,

G(dx,dy)(i, j) =
n∑

x=1

n∑

y=1

{
1, if I (x, y) = i and I (x + dx, y + dy) = j

0, otherwise
(1)

where i and j represent the pixel values, x and y represent the spatial positions in the
digital image I , dx and dy represent the displacement values and define the spatial relation
for which this matrix is calculated, and I (x, y) represents the pixel value at the spatial

Table 3 Texture features computed from GLCM P(i, j)

Feature Formula

Contrast
∑n

i=1
∑n

j=1(i − j)2P(i, j)

Correlation
∑n

i=1
∑n

j=1
(i−μx)(i−μy)

NxNy
P (i, j)

Entropy −∑n
i=1

∑n
j=1 P(i, j) logP(i, j)

Homogeneity
∑n

i=1
∑n

j=1
P(i,j)

1+(i−j)2

Inverse difference moment
∑ng−1

k=0
P

(k)
x−y

1+k2

Sum of squares: Variance
∑n

i=1
∑n

j=1(i − μ)2P(i, j)

Sum variance
∑2ng

i=2(i − SA)2Px+y(i)

Sum average
∑2ng

i=2[iPx+y(i)]
Sum entropy −∑2ng

i=2 Px+y(i) log2[Px+y(i)]
Difference variance

∑2ng−1
i=0 i2Px+y(i)

Difference entropy
∑2ng−1

i=0 Px+y(i) log2[Px+y(i)]
Information measure of correlation 1 HXY−HXY1

max (HX,HY)

Information measure of correlation 2
√

(1 − exp [−2(HXY2 − HXY)])
Maximum correlation coefficient

√∑
k

P (i,k)P (j,k)
Px (i)Py (k)

Energy
∑n

i=1
∑n

j=1 P(i, j)2

Dissimilarity
∑n

i=1
∑n

j=1 P(i, j)|i − j |
Cluster shade

∑n
i=1

∑n
j=1[i + j − μx − μy ]2P(i, j)

Cluster prominence
∑n

i=1
∑n

j=1[i + j − μx − μy ]4P(i, j)

Maximum probability max (P (i, j))

Inverse difference normalized
∑n

i=1
∑n

j=1
P(i,j)

1+ |i−j |2
n2

Inverse difference moment normalized
∑n

i=1
∑n

j=1
P(i,j)

1+ (i−j)2

n2

Autocorrelation
∑n

i=1
∑n

j=1(ij)P (i, j)
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position (x, y). In words, G(dx,dy)(i, j) counts all pairs of pixels having gray values i and j

occur within (dx, dy) neighbors of I (x, y). We observe that G(dx,dy) is an n-by-n matrix.
However, the normalized GLCM is defined by

P(i, j) = G(dx,dy)(i, j)∑n
i=1

∑n
j=1 G(dx,dy)(i, j)

(2)

where the entries are between 0 and 1.
Haralick et al. [18] proposed a set of 14 textural features that can be inferred from the

co-occurrence matrix given at (2) in 1979. The set contains information about image tex-
tural characteristics such as homogeneity, linearity, and contrast. Later on, additional eight
textural features were introduced [8, 17, 43]. Some of these features have intuitive and famil-
iar definitions, for example, Energy is the second moment of P(i, j). The mathematical
definitions of features are listed at Table 3.

On the other hand, for colored images, relatively little is known about the relationship
between color information and GLCM textural features. It is known that GLCM textural
features tend to be globally adaptable but not locally optimized. Shearer [42] suggested
the use of color texture analysis to overcome the shortcomings of traditional gray-level
texture analysis. Within the scope of this study, all textural features listed in Table 3 were
obtained from each color image, i.e. 22 features for each channel. Moreover, each image
was converted to grayscale, and the similar feature set was obtained for each grayscaled
image. Thus, in total, 88 features were contributed to the dataset by each image.

Fig. 3 A Sample representation for CGLCM RGB
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Furthermore, each leaf was represented in three different color spaces such as RGB,
HSV, and L*a*b, making three different textural datasets corresponding to each image color
space. Here is a good place to point out that each image was resized to 224×224 before the
textural feature processing was applied, as the DenseNet network converts the input images
to 224 × 224 before any other processing. Finally, each feature was normalized using the
min-max normalization method to reduce the classification time. Figure 3 depicts textural
features for an image in RGB color space.

As a result of all these processes, three different feature matrices, corresponding to each
color space, with 15.000 rows, corresponding to each image, and 88 columns, corresponding
to each textural feature, were obtained for the dataset Yellow-Rust-19.

3.4.2 DenseNet-201 feature extraction

DenseNet (Dense Convolutional Network) [21] is a convolutional neural network with dense
connection, fewer parameters, but high accuracy. Huang et. al. [21] introduced DenseNet
because of the observation that convolutional networks could be substantially deeper, more
accurate, and efficient to train if they contained shorter connections between layers close to
the input and those close to the output. DenseNet concatenates the outputs of the previous
layer and the future layer, meaning each layer is directly connected to every other layer in
a feed forward structure within each dense block. DenseNet is one of the new technologies

Original Image Channel 13 Channel 27

Activations from the first convolution layer The second Batch Normalization Layer

Original Image Channel 51 Channel 52

Fig. 4 Visualization of a sample leaf image from the first Convolution Layer (CL) and the Batch
Normalization Layer (BNL) in DenseNet-201 architecture
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in deep learning for visual object recognition and has different versions such as DenseNet-
121, DenseNet-160, DenseNet-201 and DenseNet-264. DenseNet accepts 224-by-224-by-3
input images. DenseNet diminishes the vanishing-gradient problem, consolidates feature
propagation, promotes feature reuse, and considerably reduces the number of parameters.
Herein, DenseNet-201 was preferred for deep features extraction.

DenseNet-201 is a convolutional neural network that is 201 layers deep. DenseNet-201
consists of four dense blocks with varying number of layers [6,12,48,32]. In each dense
block, each layer puts some additional features on top of the existing feature maps. Inside
the dense blocks, the feature maps’ size remains the same. DenseNet-201 was trained
on the ImageNet database [10]. Like other convolutional neural networks, DenseNet-201
network creates a hierarchical representation of the input images. Deeper layers contain
higher-level features created using lower-level features of previous layers. Figure 4 shows
a visualization of a sample leaf image from the first Convolution Layer (CL) and the
Batch Normalization Layer (BNL) in DenseNet-201 architecture. Features extracted at the
Global Average Pooling (GAP) layer at the end of the network were utilized in the clas-
sification phase. The GAP provided 1920 features in total. See Table 4 for architecture
details.

And, Table 5 presents the hyperparameters utilized in training the model.

3.5 Classification

This study aimed to investigate the feasibility of using only textural features of colored
images compared to the combination of textural features of colored images and DenseNet-
201 deep features to determine the severity level of yellow rust disease in wheat. The dataset
was labeled, meaning each data was attached with the severity level of yellow rust dis-
ease. There are six severity levels such that Immune, R, MR, MR-MS, MS, and S. Thus,
it is a multi-class classification task. Many multi-class classification methods exist in the
literature, however, Multiclass Support Vector Machines (SVM) and K-Nearest Neighbors
(KNN) were utilized in the classification phase. Indeed, during experimental studies, other

Table 4 DenseNet-201 architecture

Layers Output size Description

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 112 × 112 7 × 7 conv, stride 2

Dense block 1 56 × 56 7 × 7 conv, stride 2

Transition layer 56 × 56 7 × 7 conv, stride 2

28 × 28 7 × 7 conv, stride 2

Dense block 2 112 × 112 7 × 7 conv, stride 2

Transition layer 112 × 112 7 × 7 conv, stride 2

112 × 112 7 × 7 conv, stride 2

Dense block 3 112 × 112 7 × 7 conv, stride 2

Transition layer 112 × 112 7 × 7 conv, stride 2

112 × 112 7 × 7 conv, stride 2

Dense block 4 112 × 112 7 × 7 conv, stride 2

Classification layer 112 × 112 7 × 7 conv, stride 2

112 × 112 7 × 7 conv, stride 2
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Table 5 DenseNet-201 hyperparameters

Parameter Value

Optimizer Adam

Loss function Categorical cross entropy

Momentum 0.9

Learning rate 1.0000e-03

Early stopping patience 10

Maximum epoch 50

Mini batch size 32

Shuffle Every epoch

classifiers such as Artificial Neural networks, Decision trees were also tested, but SVM and
KNN performed better than others, thus, the current study presents results by SVM and
KNN.

3.5.1 Support vector machines

SVM is a widespread technique in texture classification tasks [29], was employed in many
texture classification studies [5, 24, 46].

SVM seeks to find an optimal boundary between the possible labels. It is based on maxi-
mizing the minimum distance from the separating hyperplane to the nearest label. While the
fundamental SVM only supports binary classification, its extensions are designed to handle
the multiclass classification situation as well. To distinguish K classes, the classifier can
use multiple SVMs, each SVM predicting membership in one of the K classes. The idea
is to map data points to the hyperplane to achieve mutual linear separation between every
pair of classes. There are two approaches such that One-to-One approach and One-to-Rest.
The current study utilized One-to-One approach, which puts a hyperplane to separate every
two classes, neglecting the data points of the other classes, thus, it uses K(K−1)

2 SVMs. In
this case, the classifier used 15 SVMs. The parameters for the multiclass SVM classifer is
outlined at Table 6.

3.5.2 K-Nearest neighbors

KNN, a widely used and non-parametric classification method, relies on visible pattern
similarities and distance metrics to generate precise predictions, in short, it is a similar-
ity measure. It is frequently utilized in texture classification problems [16] since patterns

Table 6 Multiclass SVM hyperparameters

Parameter Value

Optimizer Bayesian

Kernel Cubic polynomial

Max. Iteration 30

Multiclass Method One vs One

Number of SVMs 15
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Table 7 Training and test sets statistics

Groups Immune R MR MR-MS MS S Total

Training 2250 2250 2250 2250 2250 2250 12250

Test 250 250 250 250 250 250 750

Total 2500 2500 2500 2500 2500 2500 15000

close to each other in the feature space most likely belong to the same pattern class. KNN
estimates the likelihood that a data point is a member of one group or another based on
which group the data points closest in distance belong to. There are different distance met-
rics such as Euclidean distance, Manhattan distance, Minkowski distance, etc. employed
with KNN, however, Euclidean distance is the most accepted metric and, for the data points
x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn), it is defined as:

Euclidean distance(x, y) =
√√√√

n∑

i=1

x2
i − y2

i . (3)

On the other hand, The k value in KNN classifier represents the number of nearest neigh-
bors to be included in groups during the voting process. The selection of k is crucial and
depends upon the data, however, generally, while large k values reduce the effect of the
noise on the classification, they may cause boundaries between classes less distinct.

The current study uses Euclidean distance to measure the distance between two data
points and takes k as 10. Moreover, it has used inverse distance weighting to assign higher
weights to the closest training samples.

4 Results

The study investigates the feasibility of using only colored images’ textural features com-
pared to the combination of colored images’ textural features and DenseNet-201 deep
features to determine the severity level of yellow rust disease in wheat, among one of six
severity levels such that Immune, R, MR, MR-MS, MS, and S. Initial dataset was Yellow-
Rust-19, which contains 15000 wheat leaf images with varying size. Initially, each image
was converted to the dimension of 224×224. Then, the dataset was randomly split into two
parts using the stratified selection strategy that guarantees an even distribution of images
from each class to allocate 90% training samples for model development and a 10% test
sample for the model’s generalization evaluation. Table 7 shows the training set and test set
numbers.

The implementation, as well as training of the proposed transfer model, was carried out
using both Python and MATLAB� programming environments.

For each leaf image, 66 textural colored features were obtained corresponding to each
color space as RGB, HSV, and L*a*b, making three different colored textural features
datasets. Moreover, for each image 22 gray level textural features were also obtained from
each grayscale leaf image. Furthermore, for each image 1920 DenseNet-201 deep features
provided by the GAP layer were obtained.

Different models on different datasets with different classifiers were developed. A total
of twelve models, six different multiclass models for each SVM and KNN classifier, were
developed and evaluated, six of them, three for each classifier, were trained using only
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Table 8 Datasets, color spaces

Dataset name Color Space Dataset description

CGLCM RGB RGB 22 Grayscale plus 66 Color features

CGLCM HSV HSV 22 Grayscale plus 66 Color features

CGLCM Lab L*a*b 22 Grayscale plus 66 Color features

CNN-CGLCM RGB RGB 1920 DenseNet-201 plus 22 Grayscale plus 66 Color features

CNN-CGLCM HSV HSV 1920 DenseNet-201 plus 22 Grayscale plus 66 Color features

CNN-CGLCM Lab L*a*b 1920 DenseNet-201 plus 22 Grayscale plus 66 Color features

texture features, and six of them, again three for each classifier, were trained using both
textural and deep features. Table 8 shows the datasets’ names and corresponding color
spaces.

Among models trained using texture features, the SVM classifier with an accuracy of
73.1% performed best via CGLCM RGB feature set, however, the model using SVM clas-
sifier trained on the feature set CNN-CGLCM HSV had the best accuracy with 92.4%.
Table 9 presents the methods, corresponding datasets, and their accuracies. Observe from
Table 9 that models trained using both textural and deep features outperformed mod-
els trained using textural features alone, moreover, the models trained by the dataset
CNN-CGLCM HSV for both SVM and KNN classifiers performed better.

On the other hand, Fig. 5 shows the confusion matrices for the models trained on the
dataset CNN-CGLCM HSV, with the classifier SVM on the left and KNN on the right. The
confusion matrix reveals how a classifiers performed in each class. 0 represents “Immune”,
number 1 represents “R”, 2 represents “MR”, 3 represents “MR-MS”, 4 represents “MS”
and 5 represents “S” class. A close look at confusion matrices reveals that prediction to MS
class was poor by both models.

The test set confusion matrix across all runs was recorded, and the following three
metrics were also calculated: recall, precision and F1-score are demonstrated in Table 10.
Among the textural features, observe that the models trained on CGLCM RGB dataset per-
form better than others. Indeed, models trained on combined features considerably outper-
form models trained on textural features alone. The model trained on CNN-CGLCM HSV
dataset, with the SVM classifier achieves the best results in all performance criteria.

Table 11 presents the class performance values of the best model trained on the CNN-
CGLCM HSV dataset and using the SVM classifier. A closer look at the table reveals
that the model performs poorly in distinguishing MR-MS and MS classes compared to the
others.

Table 9 The accuracy rates (%)

Dataset name Accuracy by SVM Accuracy KNN

CGLCM RGB 73.1 72.5

CGLCM HSV 69.5 67.8

CGLCM Lab 61.8 67.5

CNN-CGLCM RGB 90.7 88.6

CNN-CGLCM HSV 92.4 88.1

CNN-CGLCM Lab 86.9 86.6
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Fig. 5 The Confusion matrix for the models trained on the dataset CNN-CGLCM HSV, on the left by the
classifier SVM and on the right by KNN

5 Discussion

From the experiment results, we observed that the combined features have better accu-
racy rates than traditional textural analysis methods. The dataset which represents healthy
wheat leaves and diseased wheat leaves with different types of infection (Yellow-Rust-19)
was used in all methods. The best performance for combined features was calculated as
92.4% for HSV color space. In addition, it was observed that average accuracy rate increase
for all color spaces. The same SVM parameters were used for all classifications for fair
comparison.

The popular texture feature extraction techniques are stated in the literature [29]. The
GLCM is a robust method for statistical texture analysis [28, 34, 43] and is an effective
texture identifier. It is also proven that it has better accuracy value and computational time
than other texture analysis methods [9]. Therefore, the authors preferred the GLCM for
texture feature extraction. In addition, it is stated that GLCM can be improved to be applied
on different color spaces [29, 41, 45]. This paper also supports this view.

Table 10 Performance comparison of the models

SVM KNN

Dataset Precision Recall F1-Score Precision Recall F1-Score

CGLCM RGB 0.73 0.74 0.73 0.73 0.72 0.72

CGLCM HSV 0.70 0.69 0.70 0.68 0.68 0.67

CGLCM Lab 0.62 0.62 0.62 0.69 0.67 0.67

CNN-CGLCM RGB 0.91 0.91 0.91 0.89 0.89 0.88

CNN-CGLCM HSV 0.93 0.93 0.93 0.88 0.88 0.88

CNN-CGLCM Lab 0.87 0.87 0.87 0.87 0.87 0.87

Bold fonts in Table emphasize the highest value
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Table 11 Classwise performance comparison for the CNN-CGLCM HSV dataset

SVM KNN

Class Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Immune 99.13 0.97 0.98 0.97 98.87 0.97 0.96 0.97

R 98.67 0.96 0.96 0.96 98.20 0.95 0.94 0.95

MR 98.20 0.96 0.94 0.95 97.00 0.94 0.88 0.91

MR-MS 96.73 0.94 0.87 0.91 94.60 0.83 0.84 0.84

MS 95.07 0.81 0.89 0.85 92.47 0.72 0.80 0.76

S 97.00 0.91 0.91 0.91 95.00 0.86 0.84 0.85

Although, there is a performance improvement in all color spaces, confusion matrices
showed there were differences in the performance obtained for each class. This deficiency
must be taken into account since the statistics of the confusion matrices were similar in all
color spaces. However, deep learning methods can be helpful for increasing the performance
of textural features and creating a more stable system. Although performance tests prove
the performance of combined methods, better classification methods should be tested to use
the features in real conditions.

Transfer learning (TL) as a deep learning approach, allows an existing pre-trained model
on a large-scale dataset for one task on a domain to be used as a starting point for another
task on a similar domain with relatively less labeled data. TL-based models need less
training time, compared to models trained from scratch [30].

Wang and Zhang [52], reported that DenseNet surpasses other pre-trained models based
on the comparison results of popular pre-trained models. Also, in the same study, Wang and
Zhang have proved that DenseNet-201 is more successful than other DenseNet versions.
Therefore, it was preferred DenseNet-201 for deep feature extraction.

This paper, discusses the feasibility of combination of texture features and deep features
to determine the severity level of yellow rust in wheat. Although textural and deep features
were combined in this study, the expected high classification performance could not be
achieved in the MS class, which contains similar samples to MR-MS and S classes. On
the other hand, even though, the Yellow-Rust-19 dataset was labeled by two experts via

Table 12 Performance comparison for the combined features (CF) against the standard texture features (STF)

Work M TA Method DL Method Classifier STF CF

Proposed Work A Color-based GLCM DenseNet-201 SVM 72.1 92.4

Zhang et al. [56] A LBP VGG-19, VGG-f, Caffe-ref Ensemble 71.29 85.47

Wei et al. [53] A NPPS Deep Belief Network LR 76.70 79.23

Nanni et al. [32] A Various methods Pre-trained DenseNet-201 SVM 86.13 89.47

Luz et al. [27] A Various methods LeNet SVM 71.2 85

Zhang et al. [57] A Various methods VGG-16 SVM 96.3 98.8

Naz et al. [33] A LBP and SFTA Inception-V3 and VGG-16 SVM 59.2 99.3

Note: Best results of the studies were represented; M represents Metric; TA represents textural Analysis; DL
represents Deep Learning; A represents Accuracy; R represents Recall; LR represents Logistic Regression;
NPPS represents Nucleotide Pair Position Specificity; GMMs represents Gaussian Mixture Models.
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consensus to create a gold standard (reference standard), it is still possible that mislabeling
happens and the performance of the proposed method might be degraded.

Finally, the results of this paper and related works which research combined features
are presented in Table 12. As a result, the contribution of deep features to classification
performance is evident in other studies, as in this study.

6 Conclusion

Throughout the study, a hybrid method based on combining deep and textural features was
proposed in a six-way multi-label classification task for the Yellow-Rust-19 dataset. Deep
features were obtained by the pre-trained network DenseNet. Different models on different
datasets with different classifiers were developed. Test accuracy, as well as other perfor-
mance metrics on the test set, such as precision, recall, F1 score, indicate that combined
methods are promising (Table 10). Although the textural features alone are not sufficient,
it has been proved that it improves sensitivity when combined with deep features. In future
studies, the results can be compared by testing different pre-trained networks other than
DenseNet. In addition, other texture analysis methods other than CGLCM used in this study
can be tested and their contribution to success can be discussed.
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