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Abstract
Multilevel image thresholding using Expectation Maximization (EM) is an efficient
method for image segmentation. However, it has two weaknesses: 1) EM is a greedy
algorithm and cannot jump out of local optima. 2) it cannot guarantee the number of
required classes while estimating the histogram by Gaussian Mixture Models (GMM). in
this paper, to overcome these shortages, a novel thresholding approach by combining EM
and Salp Swarm Algorithm (SSA) is developed. SSA suggests potential points to the EM
algorithm to fly to a better position. Moreover, a new mechanism is considered to
maintain the number of desired clusters. Twenty-four medical test images are selected
and examined by standard metrics such as PSNR and FSIM. The proposed method is
compared with the traditional EM algorithm, and an average improvement of 5.27% in
PSNR values and 2.01% in FSIM values were recorded. Also, the proposed approach is
compared with four existing segmentation techniques by using CT scan images that Qatar
University has collected. Experimental results depict that the proposed method obtains
the first rank in terms of PSNR and the second rank in terms of FSIM. It has been
observed that the proposed technique performs better performance in the segmentation
result compared to other considered state-of-the-art methods.

Keywords Image segmentation .Multilevel thresholding . Expectationmaximization . Salp
swarm algorithm . Artificial intelligence

1 Introduction

Image processing plays a critical role in digital applications like damage detection and visual
recognition. Image segmentation is the first step of image analysis which separates an image
into several regions with similar properties. Several segmentation approaches have been
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suggested in the literature, such as edge-based [15, 19, 26, 44, 47], region-based [12, 13, 22,
41, 46], deep-learning [21, 38], and histogram thresholding [8, 35].

Edge-based segmentation methods try to distinguish between areas according to
boundary localization. In this method, edges are detected by rapid changes in the gray
level in adjacent regions. Edge detection techniques are useful for images with high-
contrast areas where regions are clearly separated. In other cases, this method generates
ill-defined and discontinuous edges which do not lead to closed curves. Moreover, it is
not immune to noise and produces worse results compared to other segmentation tech-
niques. Several studies addressed the edge detection issue in literature [11, 17, 24, 27, 42].
Tchinda et al. proposed a novel segmentation of blood vessels based on edge detection
techniques in retina images [31]. Baltierra et al. used the Ant Colony algorithm to identify
edges in noisy images [5].

Region-based segmentation methods classify pixels with similar properties, such as inten-
sity and neighborhood. There are two categories for region-based techniques: region growing
and region splitting. In the region-growing method, a pixel is considered a seed point, and
neighbor pixels with similar intensity join the seed point. In region splitting, pixels would be
divided into two groups if they do not have sufficient segmentation properties. Region-based
methods are noise-robust and have good results with homogeneous images. However, they are
both expensive in the memory usage and execution time.

Moreover, the segmented image is not unique because the output depends on initial
points, which are known as seed points. In recent years, several applicable methods have
been reported for region-based segmentation such as document images [37], medical
images [10, 25, 40, 43], and farm images [20]. Guo et al. suggested a region-growing
framework based on a multi-information fusion network with good results on chest CT
scans [14]. Chauhan and Goyal considered color burn images and introduced a region
segmentation algorithm with 93.4% of accuracy [7].

Artificial Neural Network (ANN) simulates human-brain interactions and is known as deep
learning. Recently, various type of deep-learning segmentation methods has been developed in
the literature [34]. ANN learns and adjusts weights and can segment images by training. The
sequence is simple, and the network works in parallel mode. However, the training procedure
is lengthy, and initialization affects the output image.

Moreover, overfit may occur during the training set. Different methods have been devel-
oped for medical images to apply segmentation using the ANN method. Huang et al. intro-
duced novel deep learning for medical data segmentation to reduce high dimensional
complexity [18]. In another research, different models of deep-learning networks were com-
pared on Colorectal cancer images [16].

Thresholding is a simple and fast segmentation method that does not need prior
knowledge about images. Thresholding-based segmentation methods are used to extract
objects from the background by assigning pixel intensities to various levels. Similar to
other segmentation methods, thresholding techniques have disadvantages too. It does not
yield acceptable results on images with flat histograms. Also, the thresholding method
does not consider spatial details, and output regions will not be contiguous. Recently,
various thresholding methods have been reported that use a meta-heuristic algorithm to
find the best solutions, such as cuckoo search [6], whale optimization [1, 3], and Particle
Swarm Optimization (PSO) [45].
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This paper presents a novel segmentation method based on EM (Expectation Maximization)
and GMM (Gaussian Mixture Model). The significant contributions of this study are summa-
rized as follows:

& A novel approach is proposed to correct image segmentation based on EM. Expectation
Maximization tries to estimate a histogram by GMM. In this procedure, some gaussian
distributions may be covered and have no chance of being selected as a threshold level. In
this case, the number of classes is reduced and desired threshold levels cannot be obtained.
To overcome this drawback, a mechanism is considered in this study to maintain the
number of desired levels.

& The EM algorithm is sensitive to initial points. The poor starting points results in trapping
the algorithm in local optima, and premature convergence will occur. To mitigate this
shortage, a nature-inspired algorithm, namely Salp Swarm Algorithm (SSA) is used to help
EM jump out of local areas.

This study is organized as follows: in Section 2, the theory of multilevel thresholding and
expectation Maximization based on the Gaussian Mixture Model is reviewed and Salp Swarm
Algorithm is described briefly, and necessary formulas are given. Section 3 refers to the
proposed algorithm that combines the EM algorithm with SSA to achieve better performance.
Section 4 compares the proposed algorithm to the traditional EM algorithm and four state-of-
art algorithms in image segmentation. The experimental results with evaluation criteria are
presented in this section. Finally, discussions are concluded in Section 5, emphasizing the
efficiency of the proposed algorithm for medical image segmentation.

2 Basic theory

In this section, the definition of the thresholding problem is clarified. Then, the necessary
information on Expectation Maximization (EM) is discussed, and the concept of the Salp
Swarm Algorithm is briefly explained.

2.1 Multilevel thresholding

Image thresholding is often considered one of the most challenging and intriguing segmenta-
tion techniques. Consider an image I of size m × n with L distinct gray levels. Consider an
image I of size m × n with L distinct gray-levels. The major purpose of thresholding is to
determine a threshold vector T = [t1, …, tK − 1] for an image I to separate its pixels into K
groups. Each group can be defined by

G1 ¼ x; yð Þ∈I j0≤ f x; yð Þ≤ t1−1f g
GK ¼ x; yð Þ∈I jtK−1≤ f x; yð Þ≤L−1f g ð1Þ

where Gk is kth defined group and (x, y) indicates the location of the pixel in the image I with
gray level intensity f(x, y) between 0 and L − 1. The threshold vector T can be determined by a
thresholding criterion like Otsu between classes [30]. However, this is not a proper segmen-
tation metric. In 2011, Xu et al. proved that Otsu threshold biases toward the group which has
a larger variance value [39]. Another way to segment an image is EM algorithm based on
GMM which is described as follows.
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2.2 Expectation maximization

An Expectation-Maximization algorithm is an approach for performing maximum likelihood
estimation in the presence of latent variables. It does this by first estimating the values for the
latent variables, then optimizing the model, then repeating these two steps until convergence. It
is an effective and general approach and is most commonly used for density estimation with
missing data, such as clustering algorithms like the Gaussian Mixture Model. Assume there are
N samples drawn independently from D dimensional space and denoted byX [4]

X ¼ x1;…; xNf g X∈RN�D xn∈R1�D ð2Þ
The glossary of terms and parameters with their definitions are presented in Table 1.

To decompose a histogram of an image, Gaussian Mixture Model is used which is
formulated as

p xnð Þ ¼ ∑K
k¼1πkN

�
xn μk ;Σkj Þ

∑
K

k¼1
πk ¼ 1 ; πk > 0

ð3Þ

In this formula, N is Gaussian function and μk, Σk, πk indicate mean, variance and coefficient
of N. The purpose is to estimate μk, Σk and πk which maximize the likelihood function:

L X jπ;μ;Σð Þ ¼ P X jπ;μ;Σð Þ ¼ ∏N
n¼1p xnð Þ ¼ ∏N

n¼1∑
K
k¼1πkN xnjμk ;Σkð Þ ð4Þ

where

π∈R1�K

μ∈RK�D

Σ1:K∈RD�D

Table 1 Glossary of terms and pa-
rameters for the proposed MBA symbol definition

xn n-th sample which has been drawn independently
p(xn) Probability distribution of sample xn
μk Mean of k-th gaussian function
Σk Variance of k-th gaussian function
πk Coefficient of k-th gaussian function
zn Label vector of xn
K Number of desired groups
N Number of independent samples
tk k-th threshold level
lb Lower bound
ub Upper bound
Fj food location in j-th dimension
q1,q2,q3 Random numbers drawn from the uniform distribution
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To reduce the complexity of formulas, log-likelihood of Eq. (4) is used as

LL X jπ;μ;Σð Þ ¼ ∑
N

n¼1
ln ∑

K

k¼1
πkN xnjμk ;Σkð Þ

� �
ð5Þ

However, this problem cannot be solved. Because the labels of observation are not available.
To reduce the complexity of the problem, we define a label variable as

Z ¼ z1;…; zNf g Z∈RN�D zn∈R1�D ð6� aÞ
All zn elements are 0 expect one element. zn shows the class of xn.

znk∈ 0; 1f g ; ∑
K

k¼1
znk ¼ 1 ð6� bÞ

p znk ¼ 1ð Þ ¼ πk ð7Þ
Probability of zn is calculated as

p znð Þ ¼ p zn1;…; znkð Þ ¼ ∏
K

k¼1
πk

znk ð8Þ

p xnjznk ¼ 1ð Þ ¼ N xnjμk ;Σkð Þ ð9Þ

p xnjznð Þ ¼ ∏
K

k¼1
N xnjμk ;Σkð Þznk ð10Þ

p xnð Þ ¼ ∑
N

n¼1
p xnjznð Þp znð Þ ¼ ∑

N

n¼1
∏
K

k¼1
πk

znkN xnjμk ;Σkð Þznk ¼ ∑
K

k¼1
πkN xnjμk ;Σkð Þ ð11Þ

The log-likelihood function is formulated as

L X jπ;μ;Σð Þ ¼ P X jπ;μ;Σð Þ ¼ ∏
N

n¼1
p xnð Þ ¼ ∏

N

n¼1
∑
K

k¼1
πkN xnjμk ;Σkð Þ ð12Þ

LL X jπ;μ;Σð Þ ¼ ∑
N

n¼1
ln ∑

K

k¼1
πkN xnjμk ;Σkð Þ

� �
ð13Þ

To solve the problem, γ is defined as the probability of assigning a sample to the specific
cluster

γ znkð Þ ¼ p znk ¼ 1jxnð Þ ¼ p znk ¼ 1ð Þp xnjznk ¼ 1ð Þ
∑K

j¼1p znj ¼ 1
� �

p xnjznj ¼ 1
� �

¼ πkN xnjμk ;Σkð Þ
∑K

j¼1π jN xnjμ j;Σ j

� � ð14Þ

derivation with respect to μ and Σ, leads to obtain optimum values
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∂
∂μk

LL X jπ;μ;Σð Þ ¼ 0 ð15� aÞ

∂
∂Σk

LL X jπ;μ;Σð Þ ¼ 0 ð15� bÞ

πk can be identifed by lagrange multiplier

∂
∂πk

P X jπ;μ;Σð Þ þ λ ∑
K

k¼1
πk−1

� �� 	
¼ 0 ð16Þ

However, we cannot find a closed-form answer for this problem. EM algorithm is used to
estimate unknown parameters which its pseudo code is shown in Fig. 1.

1- initialize parameters μk, Σk and πk.
2- E-step: compute probability of assigning a data point to a cluster

γ znkð Þ ¼ πkN xnjμk ;Σkð Þ
∑
K

j¼1
π jN xnjμ j;Σ j

� �

1- initialize parameters , Σ  and 

2- E-step: compute probability of assigning a data point to a cluster 

| , Σ

∑ | , Σ

3- M-step: update GMM parameters based on calculated 

1

Σ
1

4- check the convergence. If the log-likelihood converges, the proceture will terminate

| , , ln | , Σ

Fig. 1 EM pseudo code for GMM
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3- M-step: update GMM parameters based on calculated γ(znk)

μnew
k ¼ 1

Nk
∑
N

n¼1
γ znkð Þxn

Σnew
k ¼ 1

Nk
∑
N

n¼1
γ znkð Þ xn−μnew

k

� �
xn−μnew

k

� �T
πnew
k ¼ Nk

N
where Nk ¼ ∑

N

n¼1
γ znkð Þ

4- check the convergence. If the log-likelihood converges, the proceture will terminate

LL X jπ;μ;Σð Þ ¼ ∑
N

n¼1
ln ∑

K

k¼1
πkN xnjμk ;Σkð Þ

� �

The process can be described as follows: First, we select some initial values for the means and
mixing coefficients (μk, Σk and πk). Then, we alternate between the following two updates
called the E (expectation) step and the M (maximization) step. In the expectation step, the
current values for the model parameters are used to compute the posterior probabilities γ(znk).
In the maximization step, the responsibilities are used to estimate the model parameters (e.g.,
means and mixing coefficients). Finally, the log-likelihood is computed and checked for
convergence.

2.3 Salp swarm algorithm

Salp Swarm Algorithm (SSA) was suggested by Mirjalili et al. for solving complicated
problems based on the behavior of living salps at sea [28]. Assume population G is randomly
generated, and the good source is denoted as F. The group tries to find better food sources at
the sea. The location of the leader is changed according to the following formula:

Gf 1j ¼
F j þ q1 ubj−lb j

� �
q2 þ lb j


 �
q3≥0

F j−q1 ubj−lb j
� �

q2 þ lb j

 �

q3 < 0

�
ð17Þ

Where Gf 1j is the leader of the group (first individual of the group), j is referred to j-th
dimension of the space and Fj is denoted as the food location. q2 and q3 are drawn from the
uniform distribution. q1adjusts the exploration ability by following equation:

q1 ¼ 2e− 4 iter
max iterÞ

2ð ð18Þ
Where iter means the current iteration and the maximum number of iterations is denoted as
max _ iter. The location of follower members is changed based on the following equation

Gf ij ¼
1

2
Gf ij þ Gf i−1j

� �
ð19Þ

Where Gf ij indicates the position of i-th agent (i ≥ 2) in current iteration j. SSA has two

advantages over other metaheuristic algorithms: high convergence and escaping from local
areas. SSA performs a smooth balance between exploration and exploitation to track the global
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optimum as well as faster convergence. Also, following the leader and random walking helps
the algorithm not to trap in the local points [2].

3 The proposed algorithm

EM algorithm based on GMM is a powerful and fast method in image segmentation. This
algorithm is formulated according to Bayes’ theorem. EM estimates a histogram with a
mixture of Gaussian functions. However, it cannot guarantee the number of pre-defined
classes. For example, Fig. 2a traces a histogram of a grayscale image with Gaussian mixture
functions, which has been estimated by the EM algorithm. EM decomposes the histogram into
three Gaussian functions properly. However, Gaussian function two is covered by Gaussian
function one and Gaussian function three. It means that the second class has no chance of
winning in the segmentation competition. In this case, we have only two classes (Gaussian
function one and Gaussian function two) instead of three classes. To overcome this shortage, a
mechanism is considered in this paper. Assume that the desired number of segmentation
regions is K and we want to segment the image into these K classes. In the process, M classes
are covered and the image is segmented into K − M groups. To compensate for this reduction,
M classes are created according to M classes which have been covered by other Gaussian

Fig. 2 Missed class in GMM and recover it

40632 Multimedia Tools and Applications (2023) 82:40625–40655



functions. Fig. 2b shows a covered Gaussian function. In this situation, a new class is created
with μi ± dist range of intensity where μi indicates the mean value of i-th covered gaussian
function and dist is distance from μi which identifies the intensity limitation of the new class. It
means that every pixel with intensity between μi ± dist is assigned to this class. This technique
recovers missed classes and improves the quality of the segmented image.

The second drawback of the EM algorithm is the convergence problem. EM is a greedy
algorithm and converges to the nearest optimum point. No mechanism is considered in this
algorithm to jump out of the local areas. For example, Fig. 3-a shows the Log-Likelihood
changes over a tuning parameter. This parameter can be a mean, variance, or Gaussian
coefficient. EM algorithm tries to climb up the curve to reach the top of the local points (P1,
P2 and P3) and no mechanism is considered in the algorithm to escape from local areas.
Therefore, the Log-Likelihood always has a saturation curve. We addressed this shortage by
a mechanism in this paper. The EM algorithm is equipped with a natural-inspired algorithm,
namely Salp Swarm Algorithm (SSA). SSA helps the EM algorithm to jump out of local areas
and find a better solution. For example, in every five iterations, SSA searches GMM parameters
(means, variances, and coefficients) and introduces a suggestion point to EM. EM algorithm
evaluates the suggested solution. If the suggested solution has a better Log-likelihood, the EM
algorithm jumps to the suggested solution and continues the convergence from this point. SSA
finds an optimum solution according to the RMSE fitness function, which is defined as follows:

fitness function ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑L−1

l¼0 histogram−∑K
j¼1π jN μ j;Σ j

� �� �2

L

vuut
ð20Þ

Fig. 3 Log-Likelihood convergence diagram a) EM convergence behavior according to different initial points b)
SSA suggests a better solution (green point) to escape from local traps
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Where L indicates the number of intensity levels, Fig. 3b shows a convergence process
where SSA finds a better solution and introduces it to the EM algorithm (green point). In
this example, EM considers the green point as the initial point and continues calculations
from this point.

The pseudo-code and flowchart of the proposed method are shown in Fig. 4 and Fig. 5,
respectively. The algorithm starts with GMM parameters initialization (μk, Σk and πk). In every
iteration, new means, variances, and coefficients are calculated (μnew

k , Σnew
k and πnew

k ). If EM
goes to the saturation area, the algorithm will be terminated. In every five iterations, SSA is
handled and finds a local solution in the search space. First, μk, Σk and πk are initialized and
SSA tries to update the location of search agancies by Eq. (19). If the termination criterion is

satisfied then SSA finishes and the best soution which is known as Gf 1j is fed into EM

algorithm. If this point has a higher Log-Likelihood than the current point, EM considers the
suggested solution as the initial point and continues the convergence process from this point.
Else, the iteration increases, and the EM algorithm calculates new GMM parameters.

4 Results and discussions

This section considers some practical experiments on sets of medical grayscale images.
PSNR and FSIM, as two evaluating metrics, are employed in this paper to show the

1- set GMM parameters , Σ  and  with random generation 

For iter=1 to max iteration 

        Calculate , Σ  and 

        Compute log-likelihood (LL) 

If   | 1 |

Continue 
        else 
        If    every 5 iterations reaches

Initialize , Σ  and 

run SSA 

    find best , Σ  and  according to fitness function 

    apply EM and calculate LL 

   If   1

  Reset , Σ  and  to SSA solution 

End 
         End 
End 
Fig. 4 Pseudo-code of the proposed method
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superiority of the proposed method. PSNR is used to measure the robustness of segmenting
algorithms and is

PSNR ¼ 10log
2552

MSE

� �
ð21� aÞ

Where MSE is expressed as

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i¼1
∑
N

j¼1
A i; jð Þ−B i; jð Þð Þ2=MN

s
ð21� bÞ

Where A and B indicate the original and segmented image, respectively, and M and N are the
size of images. FSIM is Feature Similarity Index and is formulated as [23]

FSIM ¼ ∑x∈ΩSL xð ÞPCm xð Þ
∑x∈ΩPCm xð Þ ð22Þ

Where Ω is the entire image, SL(x) refers to similarity between the segmented image and the
original image, and PCm(x) shows the phase consistency. The higher value of PSNR or FSIM
means better segmentation quality. Similar to other optimization problems, setting the param-
eters is the first step to solve the problem. Table 2 indicates setting parameters to run EM

Fig. 5 Flowchart of the proposed method
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algorithm and the proposed method. Each algorithm is implemented in MATLAB language
environment with 2.7 GHz CPU and 8 GHz RAM memory.

A set of 16 medical lung images are utilized to measure the performance of the introduced
algorithm and are shown in Fig. 6. These images are selected from the COVID-19 Radiography
Database [36]. A team of researchers from Qatar University has created this database of chest
X-ray images for COVID-19-positive cases, along with Normal and Viral Pneumonia images.

Fig. 7 shows the histograms of Fig. 6 images estimated by the EM algorithm and the
introduced method. In this simulation, the aim is to decompose the histogram into ten classes.
In other words, the algorithms look for GMM parameters that perfectly fit the histogram. An
actual image has a discontinuous histogram which Gaussian Mixtures cannot cover with soft
changes. So, the error of estimation is inevitable.

Table 3 lists the number of missed classes covered in the EM algorithm. k indicates the
number of desired classes. For example, for image 1, we want to segment the histogram into
15 groups (k=15). However, 4 Gaussian functions are covered by the others, and we get only

a test 1 b test 2 c test 3 d test 4 

e test 5 f test 6 g test 7 h test 8 

i test 9 j test 10 k test 11 l test 12 

m test 13 n test 14 o test 15 p test 16 

Fig. 6 Lung images used in the experiments

Table 2 Setting parameters of EM
algorithm and the proposed method
under test

method parameter

EM iteration=100
limit=100

SSA max_iteration=50
population size=200
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Fig. 7 Estimation of test images histogram by EM algorithm and introduced method
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Fig. 7 (continued)
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11 classes. In the proposed algorithm, the image is segmented into 15 classes. Because the
covered functions are detected, and a range of intensity is assigned to them. In this paper,
dist=4 is considered for an intensity range (look at a covered Gaussian function presented in
Fig. 2). Generally, the probability of missed classes is increased with an increasing number of
segmentation classes.

Table 3 Number of missed classes
in EM algorithm image k EM algorithm

Test 1 10 3
15 4
20 2

Test 2 10 2
15 6
20 8

Test 3 10 0
15 4
20 2

Test 4 10 0
15 3
20 0

Test 5 10 2
15 0
20 0

Test 6 10 2
15 1
20 1

Test 7 10 0
15 0
20 2

Test 8 10 0
15 2
20 1

Test 9 10 2
15 0
20 1

Test 10 10 3
15 7
20 4

Test 11 10 0
15 0
20 4

Test 12 10 1
15 1
20 1

Test 13 10 3
15 5
20 2

Test 14 10 4
15 3
20 1

Test 15 10 1
15 1
20 5

Test 16 10 0
15 1
20 6
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Table 4 lists PSNR values of segmented test images by the EM algorithm and the proposed
algorithm. Better results are presented in boldface. From obtained PSNR values mentioned in
Table 4, we find out the proposed method has a better performance in 41 cases out of 48 cases,
while the EM algorithm performs better in only 7 cases. If an image is segmented into 255
levels, the output image will be similar to the original image and PSNR will be infinitive.
Generally, with an increasing number of segmentation parts, PSNR values will also be

Table 4 PSNR values of test im-
ages obtained by EM algorithm and
the proposed method

image k EM algorithm proposed method

Test 1 10 25.05908 25.98414
15 28.02469 30.13245
20 30.66272 31.32215

Test 2 10 25.88935 26.08661
15 28.02747 28.5063
20 27.36997 32.58996

Test 3 10 25.79154 26.71942
15 25.82499 28.57268
20 28.2453 30.99427

Test 4 10 25.81481 28.03016
15 28.37107 28.38555
20 28.91406 30.74998

Test 5 10 25.88005 27.17838
15 28.7818 29.54033
20 27.63591 30.2791

Test 6 10 24.73143 27.20373
15 26.65921 29.53945
20 28.6598 31.46475

Test 7 10 27.54082 29.1209
15 28.012 29.09232
20 26.89709 29.87657

Test 8 10 25.50489 27.13319
15 27.45405 28.98491
20 27.78576 32.12245

Test 9 10 24.47371 26.58384
15 28.74001 29.59122
20 27.31787 29.73481

Test 10 10 26.8141 28.70648
15 26.78998 28.29299
20 25.62577 28.73973

Test 11 10 27.51646 28.02626
15 27.76536 27.29684
20 28.60297 29.0201

Test 12 10 28.01049 27.40895
15 26.88766 29.56389
20 28.53092 30.61925

Test 13 10 26.86211 24.8035
15 27.94284 29.83916
20 28.30494 31.86086

Test 14 10 25.42777 25.34749
15 29.25934 27.33501
20 27.57678 30.63353

Test 15 10 27.30448 26.50459
15 29.76786 30.20469
20 28.59903 30.98712

Test 16 10 28.26477 26.15956
15 28.90932 29.66074
20 29.39352 30.44784
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increased. Consequently, when some Gaussian functions are covered in the EM algorithm, and
the number of segmentation parts reduces, the PSNR metric is also degraded.

Moreover, FSIM values are calculated for test image segmentation. The results are depicted
in Table 5. The higher values are presented in boldface. It can be seen from this table that the
proposed method scores better results in most cases. Generally, higher segmentation numbers
mean less difference between the original and output images and a higher FSIM metric.

Table 5 FSIM values of test im-
ages obtained by EM algorithm and
the proposed method

image k EM algorithm proposed method
Test 1 10 0.751138 0.825896

15 0.819709 0.848132
20 0.895928 0.878413

Test 2 10 0.753366 0.794298
15 0.835035 0.836783
20 0.859425 0.912005

Test 3 10 0.779056 0.793411
15 0.791977 0.847624
20 0.878416 0.892041

Test 4 10 0.811944 0.866112
15 0.88077 0.891752
20 0.924452 0.925811

Test 5 10 0.806995 0.827842
15 0.886812 0.886822
20 0.88046 0.904579

Test 6 10 0.746627 0.79688
15 0.822181 0.863525
20 0.874514 0.908514

Test 7 10 0.808071 0.858215
15 0.85473 0.873774
20 0.827906 0.88192

Test 8 10 0.781464 0.85366
15 0.861909 0.868283
20 0.876656 0.928294

Test 9 10 0.769829 0.838953
15 0.902911 0.905329
20 0.886435 0.912708

Test 10 10 0.818342 0.845316
15 0.873449 0.859857
20 0.854296 0.872128

Test 11 10 0.827359 0.83249
15 0.865358 0.818065
20 0.89346 0.867729

Test 12 10 0.817953 0.80414
15 0.81301 0.846709
20 0.86478 0.849784

Test 13 10 0.836639 0.777745
15 0.866262 0.89481
20 0.9071 0.922665

Test 14 10 0.756644 0.795922
15 0.871152 0.809863
20 0.871134 0.897074

Test 15 10 0.783402 0.777744
15 0.837418 0.830565
20 0.849233 0.859312

Test 16 10 0.804943 0.768913
15 0.8562 0.856855
20 0.855871 0.852713
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According to Table 3, the EM algorithm yields the missed classes in most cases, which is the
main reason the EM algorithm cannot score better FSIM values.

In order to visually compare the performance of the introduced method and the EM
algorithm, segmented test images with k = 20 are shown in Fig. 8. As can be seen from the
segmented images, it is clear that the proposed algorithm is superior to the EM algorithm and
includes more details. This is because the higher level of segmentation yields smoother results
and less difference between the input image and the segmented image. For example, in Test 6,

dohtemdesoporPmhtiroglaMEegami

Test 1 

Test 2 

Test 3 

Test 4 

Fig. 8 Results of segmenting different test images by EM algorithm and the proposed approach
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the proposed algorithm’s segmented image has more details than the EM algorithm. In some
cases, such as Test 2, the EM algorithm has rough results because of missed classes.

Fig. 9 presents convergence curves of test images to improve understanding of the
studied algorithms’ segmentation performance. SSA equips the proposed algorithm to
jump out of local optima, while the EM algorithm does not have this mechanism. As told
in Section 3, in every five iterations, SSA starts and finds a candidate solution in the search
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Test 7 

Test 8 

Fig. 8 (continued)
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space and introduces it to the EM algorithm. If the candidate solution has a higher Log-
likelihood, the EM algorithm considers it the initial solution, jumps to this point, and
continues the convergence process. In some cases, such as Test 1, Test 2, Test 10, and Test
13, the proposed solution has a better Log-likelihood value. Hence, the EM algorithm
interrupts the previous solution and starts the process from these points. So-called test
images have discontinuous convergence curves depicted with red circles in Fig. 9. With an
increasing number of iterations, the probability of finding a better solution is reduced.
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Fig. 8 (continued)

40644 Multimedia Tools and Applications (2023) 82:40625–40655



Because the EM algorithm climbs up to reach the top of the local optimum points and in
this case, the chance of finding a solution with an upper location compared to local optima
will be reduced. Hence, in most cases, such as Test 1, Test 10, and Test 13, the break-point
occurred at the beginning of the search process.

In order to understand the speed of the proposed algorithm, the execution time of studied
methods is calculated and presented in Fig. 10 for different test images. As seen in this figure,
the computational time of the proposed algorithm is higher than the EM algorithm, which is
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Fig. 8 (continued)
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the disadvantage of the introduced method. Although SSA is a fast algorithm, its computa-
tional time is added to the total execution time. Two techniques are considered in the proposed
method to optimize the running time:

a) the fitness function is defined as Eq. (20) instead of Log-likelihood, a less complicated
formula.

b) SSA starts every five iterations instead of every iteration, saving the total time.

As discussed, most jumping points in convergence curves occur at the beginning of the
process. The execution of SSA can be limited to the first 50 iterations of a run to save more
computational time.

Fig. 9 Convergence curve comparisons of 16 test images
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Fig. 9 (continued)

Fig. 10 Comparison between EM algorithm and the proposed method in terms of execution time to obtain the
best result
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Fig. 11 Test images used to
evaluate the ability of proposed
algorithm
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In order to compare the ability of the proposed algorithms, four recent segmenting
algorithms namely ECSO [35], FCS [6], BOA [33], and EMA [32] are implemented on
medical images shown in Fig. 11 to prove the superiority of the proposed method. This dataset
contains 1000 CT scans of patients diagnosed with COVID-19 and segmentations of lung
infections made by experts [29]. This dataset aims to encourage the research and development
of effective and innovative methods to identify if COVID-19 infects a person through the
analysis of his/her CT scans.

FSIM and PSNR are selected to compare the efficiency of different methods and the
accuracy of the obtained solutions. In order to have an identical condition, the initial members
of searching methods were selected from a uniform distribution between [0, 255]. The number
of iterations was set to 100, and the population size was assigned to 200 for all algorithms to
obtain a fair comparison between searching algorithms. Other adjusting parameters are set
according to the reference papers as listed in Table 6. The goal is to segment the image into ten
classes. The segmented images are shown in Fig. 12.

It is evident from these figures that the FCS algorithm gets blurred results, and ESCO
gets better than the FCS algorithm. However, these two algorithms are less competitive
than other algorithms. Also, the BOA algorithm yields over-segmentation results in some
cases, such as in Image 5. These figures show that the EMA algorithm and the proposed
method can better segment different images. However, the main limitation of these
methods is their sensitivity to noise.

In addition, PSNR values of output images are computed to show a better perception of the
segmentation quality, and the results are listed in Table 7. The highest values are marked in
boldface. These results show that the proposed algorithm has better PSNR values than other
compared algorithms because it obtains the best results in 4 out of 8 cases.

Table 8 shows the FSIM values extracted from test images. These results indicate that BOA
obtains the first rank because it performs best in 3 out of 8 cases. The proposed method comes
in the second rank with 2 cases, and other algorithms have only one.

For further analysis, the CPU time results for each algorithm are recorded and shown
in Fig. 13. From this figure, the EMA algorithm achieves the best results. BOA obtains
the second rank followed by the FCS algorithm; it is ranked third. In contrast, the
proposed method is considered the slowest algorithm in the experiments.

Table 6 Tuning parameters used
for different algorithms algorithm Parameters

ESCO [35] Run_no=30, GP=0.5
a1=2, a2=1
V=1, pa=0.25
α=1, γ=1.5, λ=0.5

FCS [6] Number of nests=200
Rate of discovery of alien eggs=0.55
Minimum value for egg=0
Maximum value for egg=255

BOA [33] Modular modality=0.01
Power exponent=0.1 to 0.3
Probability switch=0.5

EMA [32] High fitness shareholders=6
Moderate fitness shareholders=8
Low fitness shareholders=6
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Fig. 12 Segmented test images after multilevel thresholding (levels = 10)
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Another experiment is done on studied algorithms to show the fair comparison between
algorithms, which is the Wilcoxon test [9]. This statistical test is based on two hypotheses. The
null hypothesis is described as: there is no significant difference between two algorithms where
the alternative hypothesis proves a difference. p − values are used to reject the null hypothesis.
If p − value<0.05, it indicates the significant difference between the two groups of the results.
Table 9 lists the calculated p − values of the Wilcoxon signed-rank test. Values greater than
0.05 are shown in bold. According to obtained results, it could be seen that p-values are less
than 0.05 for 30 out of 32 cases. In other words, the superiority of the proposed method is
proven in the Wilcoxon rank test.

Fig. 13 Comparison of CPU time consumption (in milliseconds) of studied algorithms

Table 7 Comparison of PSNR values computed by different algorithms

image ESCO FCS BOA EMA PROPOSED METHOD

1 25.95414 26.20819 27.70046 27.40433 27.95209
2 23.49535 23.56482 25.42217 26.09965 25.65212
3 25.65423 24.2795 23.30084 23.42451 24.50602
4 23.80443 25.34526 25.57568 25.59036 26.68804
5 21.31378 24.78228 24.63827 24.35431 25.16274
6 24.49708 25.12532 23.74838 22.55623 24.77639
7 22.64834 23.49659 24.53231 24.37493 25.58884
8 23.75256 25.18732 26.72065 23.41787 26.34866

Table 8 Comparison of FSIM values computed by different algorithms

image ESCO FCS BOA EMA PROPOSED METHOD

1 0.939815 0.927897 0.957938 0.955267 0.955243
2 0.90366 0.916265 0.941125 0.94419 0.937109
3 0.948436 0.941678 0.928109 0.940087 0.937109
4 0.941069 0.95108 0.942261 0.939225 0.962941
5 0.889151 0.932075 0.94753 0.949314 0.955504
6 0.934615 0.942752 0.924767 0.906163 0.939033
7 0.903793 0.91469 0.96625 0.928278 0.962373
8 0.932924 0.935618 0.964761 0.911152 0.95462
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5 Conclusion

This work suggests an improved segmentation method based on the EM algorithm. In order
to overcome shortages of the EM algorithm in image segmentation, two mechanisms are
considered: First, covered Gaussian functions are detected, and a class is assigned to each
function to compensate for missed classes. Second, SSA is applied to find new solutions.
Perhaps these candidate solutions have better fitness functions. In this case, the EM algorithm
terminates the previous answer and starts the process from these points. This helps the
algorithm to jump out of local areas. Twenty-four medical images are selected to show the
performance of the proposed algorithm. By comparing the EM algorithm and the proposed
method, obtained results on segmentation metrics such as PSNR and FSIM clearly prove the
higher accuracy of the proposed method. Also, convergence curve results demonstrate that
the proposed algorithm can fly away from local optima with SSA suggestion points. The
Wilcoxon rank test confirms the meaningful superiority of the proposed algorithm. The only
disadvantage of the introduced method is the execution time which can be improved in future
work by employing some shortcut techniques. The algorithms were sorted from good to bad
in terms of running time; it was seen that they were sorted in the order of EMA < BOA <
FCS < ESCO<proposed method. Based on FSIM values, the performance of studied
algorithms can be sorted in the order: ESCO=FCS = EMA < proposed method < BOA.
On the other hand, BOA has much better and more efficient performance in the FSIM
metric. In comparison, the proposed algorithm achieved the second rank. When the algo-
rithms were sorted from bad to good in terms of PSNR, it was seen that they were sorted in
the order of ESCO=FCS=BOA = EMA < proposed method. Therefore, it is concluded that
the proposed method performs better in the segmentation process. In contrast, the proposed
method obtained the second rank.

In future work, to further improve the segmentation quality, work on the parameter
sensitivity of SSA will be accomplished when applied to the EM algorithm. Also, the
suggested methodology would be helpful for different applications like brain magnetic
resonance image segmentation, breast cancer thermogram image segmentation, and other
natural grey-scale or RGB image segmentations.

Data availability The image data that support the findings of this study are available in “COVID-QU-Ex
Dataset” with the identifier

Table 9 Calculated p-values of the proposed method versus other algorithms

METHOD EMA BOA FCS ESCO

image 1 1.85E-04 7.98E-06 1.32E-05 4.45E-05
image 2 6.25E-02 2.69E-05 1.92E-06 2.13E-06
image 3 1.22E-04 4.15E-05 3.45E-04 2.43E-02
image 4 1.95E-03 1.29E-03 2.35E-06 4.07E-05
image 5 3.85E-04 2.94E-04 2.37E-05 1.36E-04
image 6 1.95E-03 8.93E-05 5.00E-01 3.18E-06
image 7 9.77E-04 6.27E-06 4.53E-04 2.61E-04
image 8 3.91E-03 4.28E-06 1.80E-05 5.22E-06
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ht tps : / /www.kaggle .com/da tase t s / c f77495622971312010dd5934ee91f07ccbcfdea8e2
f7778977ea8485c1914df [36].
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