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Abstract
This article presents a competitive learning-based Grey Wolf Optimizer (Clb-GWO) formu-
lated through the introduction of competitive learning strategies to achieve a better trade-off
between exploration and exploitation while promoting population diversity through the design
of difference vectors. The proposed method integrates population sub-division into majority
groups and minority groups with a dual search system arranged in a selective complementary
manner. The proposed Clb-GWO is tested and validated through the recent CEC2020 and
CEC2019 benchmarking suites followed by the optimal training of multi-layer perceptron’s
(MLPs) with five classification datasets and three function approximation datasets. Clb-GWO
is compared against the standard version of GWO, five of its latest variants and two modern
meta-heuristics. The benchmarking results and the MLP training results demonstrate the
robustness of Clb-GWO. The proposed method performed competitively compared to all its
competitors with statistically significant performance for the benchmarking tests. The perfor-
mance of Clb-GWO the classification datasets and the function approximation datasets was
excellent with lower error rates and least standard deviation rates.

Keywords Competitive learning-basedGreywolf Optimizer (Clb-GWO) . Greywolf Optimizer
(GWO) . CEC2020 andCEC2019 .Multi-layer perceptron training

1 Introduction

1.1 Introduction to meta-heuristics

Optimization through meta-heuristics has emerged as a prominent trend for problem-solving and
systematic resource management in multi-disciplinary research and real-world scenarios with
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numerous applications. Optimization has been adopted and encouraged by researchers and experts
apprehensive of its simplicity and efficacy in solving complex problems with a greater degree of
success [1, 10, 11, 13, 36, 45]. The development of Genetic algorithm (GA) [38], Particle swarm
optimization (PSO) [74] marks a watershed in the history of optimization with a myriad of other
techniques to follow soon. The optimization techniques iterate sequentially to determine the best
optimal solutions concerning the objective function as it explores a complex labyrinth of peaks and
valleys known as the “search-landscape/search space”. With a fraction of the knowledge required
to determine the solutions while considering the ambivalent state of the problems, optimization is a
promising aberration and has been at the forefront of themany-sided research avenues that continue
to thrive toward the perfection of the existing and forthcoming systems [45].

1.2 A review of meta-heuristics in multimedia applications and artificial intelligence

Literature in recent times [11, 23, 71] provides an outlook on the widespread applications of meta-
heuristic-based stochastic optimizers in multimedia tools and artificial intelligence (AI). The
adaption of meta-heuristic solvers coupled with IoT [58] in big-data data analytics [52], block-
chain [11], video games [10], artificial intelligence [24], feature selection [15], machine learning
[14, 53], and deep learning has gained immense popularity on account of its simplicity, accuracy
in training and testing and robustness to entrapment [7, 58]. Figure 1 provides a classification of
various areas within the realm of multimedia and AI adopting meta-heuristic algorithms.

Moreover, multiple other domains including medicine and health sectors have been increas-
ingly relying on the utilization of AI and multimedia tools to improve their accuracy and
efficiency while working with large datasets. A few examples from the literature lately include
the development of a multi-feature fusion convolution neural network (CNN) framework to
represent the complex morphology and gene expression patterns [68], fall prediction based on
key points of human bones through bone map dataset and CNN to prevent the damage to the
elderly [70] etc. Computing systems for image and vision integrate AI to enhance the detection
capabilities and these include a neural network-based edge-oriented framework for saliency
detection enhancement for complex images [69], Deep Convolutional Generative Adversarial
Networks (DCGAN)with TensorFlow deep learning framework for virtual face generation [31]
etc. The financial engineering domain with AI-based prediction has been of increasing concern
as they help to track and predict the trends of various markets and effectively design strategic
products and services to maximize profits. For example, the research at [67] developed a novel
mobile personalized recommended method based on the money flow model for the stock

Fig. 1 Application of meta-heuristic optimization to various domains in multimedia and AI
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exchange to provide investors with reliable practical investment guidance and receive more
returns. Machine learning strategies based on two-dimensional numerical models in financial
engineering [66] to reduce the prediction error and improve forecasting precision for major U.S.
stock market index fall under the same category.

The efficacy of meta-heuristics in multimedia tools and AI has been well-researched and
documented in the literature. Compared to the traditional solvers such as the gradient-
descent method or back-propagation method where the initial solutions play a crucial role
in the outcome of optimization, the stochasticity of meta-heuristics forms its major strength
in exploring the various possibilities of solution combinations with very little to no
dependence on the initial guess. Examples include (i) a continuation approach for training
Artificial Neural Networks (ANNs) with meta-heuristics by J. R-Delado et al. in [55]
including Particle Swarm Optimization (PSO), Firefly Algorithm (FA) and Cuckoo Search.
The execution times were lowered by about 5–30% without statistically significant loss of
accuracy for the public benchmark datasets and this was achieved by the accelerated
convergence of the meta-heuristics. (ii) Automated fine-tuning compiler heuristics through
meta-optimization and machine learning to reduce compiler design complexity and tedium
of heuristic tuning is implemented in [61]. The resulting framework improved the average
speedup of the heuristic compilation by 23% with an average performance improvement of
25% on the training set and 9% on the test set. (iii) In other works, ANN training integrating
a hybrid meta-heuristic combining the exploration and exploitation capabilities of Invasive
Weed Optimization and Differential Evolution (DE) was realized in [46]. Benchmarked
against the 5 and 10-layered multi-layer perceptron training, the hybrid algorithm lowered
the training and testing errors by about 5 to 10% for the three different datasets with a faster
rate of convergence. (iv) In a similar development, S. Benabderrahmane in 2017 [5],
combined machine learning and swarm intelligence for real-time object detection and
tracking to accelerate time processing and enhance the extraction efficiency of the classi-
fier. Experimenting with genetic algorithms (GA), particle swarm optimization (PSO),
random walk and a novel hybrid combination of these methods, significant improvements
were observed in computation time, efficiency and accuracy. (v) Interactive software
design incorporating meta-heuristic algorithms for search engines with user-provided
evaluation and rating systems to develop Interactive Evolutionary Algorithms (IEAs) is
implemented in [59]. A comparative analysis between greedy local search, an evolutionary
algorithm and ant colony optimization (ACO) showed that ACO-based interactive search
outperformed the latter for the software design problem.

Examples of integration of meta-heuristics for the optimization of multimedia tools include
(i) An optimized network flow wavelet-based image coding for multipath selection to maxi-
mize the received multiple description coding (MDCs) in a lossy network model in [28]. The
multi-objective optimization problem was tackled using GA and PSO-based simulations for
various random network topologies. PSO delivered the most optimal routings with reduced
packet loss and increased throughput. (ii) In other works, a video watermarking scheme for
anti-piracy protection incorporates Squirrel Search Algorithm (SSA) with constraints on video
quality and other thresholds [6]. The embedded watermarking scheme utilized the frame
selection method on five different videos and the proposed SSA-based framework recorded
a Peak Signal to Noise ratio (PSNR) of 71.06 dB outperforming eight methods from the
literature. (iii) In similar developments, phishing website detection integrating a support vector
machine and an Improved spotted hyena optimization (ISHO) algorithm is proposed to select
proper features for classifying phishing websites [56]. Compared to PSO, FA and bat
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algorithm-based SVM classifiers, the ISHO-based SVM achieved higher classification accu-
racy compared to others.

1.3 Challenges associated with meta-heuristic algorithms

Although the efficacy of the swarm-based nature-inspired optimization algorithms is imputed to
its multifarious search mechanisms, the same mechanisms are prone to a myriad of problems and
complications that require addressal for these algorithms to maximize their potential. The search
mechanisms devised to mimic the processes in nature, which account for the core of any nature-
inspired meta-heuristic, may not be competent at optimizing every class of optimization problem.
Even though they are meticulously crafted, the crucial and conflicting case of exploration and
exploitation has been eluding researchers and motivating them towards the realization of a near-
perfect optimization strategy. Grounding on this, lately, there has been a gold rush for the
development of better/improved variants of nature-inspired algorithms best suited to the search
landscape of the problem being dealt with. Simultaneously, there is an upsurge in the publications
relating to the development of better/improved variants tackling the following aspects.

& The deterioration in the performance (stagnation of fitness or sluggish convergence character-
istics) of an optimization technique with the increasing number of problem dimensions is more
often than not ascribed as “the curse of dimensionality”, coined by Richard E. Bellman. The
manifold reason is that there could be several possibilities of every decision variable for each
combination of values and the fitness of all such possibilities are to be computed within a
present number of function evaluations resulting in solutions very far from the global optimum.

& The swarm intelligent optimization algorithms are inherent to the conflicting case of the
balancing of exploration (global search) and exploitation (local search). An ideal trade-off
between exploration (diversification) and exploitation (intensification) is needed such that
the algorithm is capable of understanding the condition to explore further or improve the
existing solutions [2, 23].

& Another issue managed through the improvement of meta-heuristics is the near-perfect
coordination of the tuning criterion (otherwise called “algorithm-specific parameters”)
and, notably, the requirement to tune several of such parameters to extract the best possible
performance is often a tedious and time-consuming one and improper or inappropriate
tuning has often been the major reason for the algorithms’ failure.

& Algorithms excelling at unconstrained cases may not perform equally well for a
constrained problem and similarly, algorithms with quick convergent characteristics may
not deliver the best optimality compared to others. Furthermore, algorithms designed to
explore efficiently over complex landscapes may not be efficient at local search and vice-
versa. This is commonly alluded to as the “No free lunch theory” [64], which expresses
that the perfect optimization algorithm is not practically realizable and no meta-heuristics
can deliver the best performance for every optimization task.

To address the aforementioned issues and extract the best performance for the chosen
optimization problem, several improved/upgraded meta-heuristics have been proposed and
have gained significance owing to their superior performance in terms of optimality, consis-
tency and robustness [8]. The improvement of any meta-heuristic algorithm for the specific
application is predominantly done through the introduction and empirical establishment of
special techniques/operators that advance the exploration to newer areas within the search
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space while at the same time balancing the exploitation/local search. This procedure of altering
a meta-heuristic to upgrade its existing abilities for better and more robust performance is
known as “improving” or “enhancing” or “modifying” [9]. Researchers frequently turn towards
improvisation and improving the existing meta-heuristics to guarantee that a near-perfect
compromise between the exploration and exploitation is achieved to a good extent such that
the need for the tedious tuning process is reduced through adaptive techniques that are capable
of dynamically adapting to the search landscape and also work towards restructuring them to
eliminate the algorithms’ weaknesses in dealing with complex optimization tasks. This is
represented in Fig. 2.
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algorithms
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1.4 Contributions of the proposed work

In this work, Grey Wolf Optimizer (GWO) has been studied extensively with its merits and
demerits have been analysed and an improved version is realised to overcome the various
shortcomings associated with it. The proposed algorithm has been named Competitive-
learning GWO (Clb-GWO) and it employs four major modifications.

1. Dual search mechanisms with new techniques for global and local search have been
devised and arranged in a selective complementary fashion.

2. Population sub-grouping into major and minor groups is considered to dedicate sections of
the population to learn and adapt with respect to the problem landscape.

3. Novel difference vectors are designed to promote population diversity and prevent
population stagnation.

4. Non-linear hunting and competitive learning strategies are formulated and integrated
systemically with adaptive mechanisms to achieve equilibrium between exploration and
exploitation.

The underlying reasons for the choice of GWO over the other optimization paradigms are as
follows. (1) GWO is one of the most successful state-of-the-art optimization techniques with
impeccable performance in multi-disciplinary applications and stands unabated with incredible
competence outperforming other paradigms as outlined in the literature survey. (2) The simple
structure of GWO is easier to be realized in any programming language of choice and can be
deployed to various optimization problems in accordance with the researchers’ interests. (3) There
exists a plethora of publications wherein the performance of GWO has been greatly improved
through either application-specific enhancements or hybridization indicating a greater scope of its
re-usability for a potentially robust variant of GWO for the many-sided research avenues. (4) The
tuning of GWO has been experimented with quite often to improve the accuracy, population
diversity, lower its susceptibility to “the curse of dimensionality”, overthrow local entrapment etc.
There is always room for improvement considering the applicability of the variant aimed at, e.g.,
complex constrained optimization problems with a higher dimensional count could require
additional modifications to the algorithmic structure and dynamic tuning resulting in a greater
search gradation. (5) The selection and population updating strategies and their coherence to the
performance of the algorithms, and the outcome of the optimization have been reviewed and
analysed leading to a multitude of variants that exploit various population selection and updating
techniques to leverage the algorithm’s full potential.

1.4.1 Highlights of the current work

The highlights of the proposed work are outlined as follows.

& A novel version of GWO immune to the curse of dimensionality and premature conver-
gence is designed through multi-population and adaptive learning mechanisms

& Extensive testing through the latest benchmarking (2020 and 2019) suites is carried out to
determine the suitability and effectiveness of the proposed algorithm while proving an
updated overview of GWO’s performance for the latest benchmarking standards.

& Comprehensive comparisons are made with the recent and advanced variants of GWO
with have been evaluated for older benchmarking (2005) suites so far. This study
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compares multiple aspects of the variants of GWO to establish their performance standards
for the latest in benchmarking.

& The validation of the proposed method’s performance for complex real-world problems in
multimedia tools and artificial intelligence is established through MLP training (5 classi-
fication datasets and 3 function approximation datasets).

The remainder of this article is organized as follows. Section 2 focuses on the working of
GWO followed by a discussion of its merits and demerits. Section 3 discusses the formulation
of the competitive learning-based GWO technique with a detailed description of its various
attributes. The performance of Clb-GWO with ten different meta-heuristics (including five
variants of GWO, two modern meta-heuristics and two state-of-the-art advanced meta-heuris-
tics) is analysed in Section 4 through CEC2020 and CEC2019 benchmarking suites. Addi-
tionally, Section 4 analyses the sensitivity of the various tuning parameters on the outcome of
optimization and the effect of population size, and number of iterations on the exploration and
exploitation. Section 5 analyses the performance of the proposed method with real-world
complex optimization tasks (MLP training for five classification datasets and three function
approximation datasets). The conclusion, merits and demerits of Clb-GWO potential applica-
tions and the future scope of the current work are given in Section 5.

2 Grey wolf Optimizer

Grey Wolf Optimizer, referred to as GWO, is a swarm-based, nature-inspired meta-heuristic
optimization algorithm based on the leadership hierarchy and hunting mechanism of grey
wolves (Canis lupus). Developed in 2014 by Seyedali Mirjalili, Seyed Mohammad Mirjalili
and Andrew Lewis, GWO has risen to become one of the prominent state-of-the-art
optimizers. [42]. GWO is unique with its excellently crafted social hierarchical system as
it groups the grey wolves into alpha, beta, delta, and omega and explores and exploits the
search space. The tuning requisites of GWO constitute the basic specification of the
population size and iteration count and an optional control vector. The balance of the
exploration and exploitation is achieved through a linearly decreasing nature of the control
vector which is set to decrement from 2 to 0 over the course of iterations. The simplicity of
its algorithmic structure and its outstanding performance towards optimization of both
unconstrained and constrained with good convergence properties has attracted researchers
and practitioners from various fields to opt for it. Computer Science, Machine Learning and
Artificial Intelligence, Engineering, Mathematics, Energy, Materials Science, Physics and
Astronomy, etc., are some of the applications of GWO across various disciplines.

2.1 Working of GWO

To understand the working of GWO, it is essential to gain insight into how the social hierarchy
of wolves is considered in mathematical modelling. GWO considers the alpha wolves
(male/female) as the leader (the dominant wolves) as they dictate the functioning of the group
and are predominantly responsible for decision-making and managing the group. The second-
order consists of the beta wolves which are the subordinates and the advisors and also
command the other lower order of wolves. The third in the line-up is the omega wolves which
form the lowest ranking group and often assume the roles of a scapegoat or a babysitter.
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Additionally, the delta wolves which don’t identify themselves as alpha, beta or omega are the
Scouts, sentinels, elders, hunters, and caretakers in the group. The delta wolves dominate the
omegas but obey the betas and alphas forming an intermediate between the beta wolves and
delta wolves. The collective foraging activity based on the social hierarchy forms the core of
GWO. Figure 3 depicts the social dominance based hierarchical system of the grey wolves.

In GWO, the best solution is considered as the alpha, the second-best solution is beta and
the third-best solution is delta respectively. The latter of the population is considered the
omegas. A comprehensive description of the various aspects of the mathematical modelling of
GWO is as follows.

Encircling the prey The first phase of GWO is aimed at determining the position of the prey.
Initially assumed to be unknown, the algorithm explores the search space considering that the
prey’s position is located near the optimal solution. Once, the location of the prey is found,
they encircle it as a part of the hunting process. To locate a better solution, grey wolves explore
the area around the location of prey.

Eq. (1) and Eq. (2) constitute the mathematical model for the encircling of the prey in GWO.

Pgw
��!

t þ 1ð Þ ¼ Pp tð Þ���!
−A! :d

! ð1Þ

d
!¼ E

!
:Pp tð Þ���!

−Pgw tð Þ����!��� ��� ð2Þ

where, Pgw
�!

is the position of the grey wolf, A
!
and E

!
are coefficient vectors, t is the present

iteration, Pp tð Þ���!
is the position of the prey, || is the modulus operator to determine the absolute

value and’.’ represents multiplication in an element-to-element manner.

Eq. (3) and Eq. (4) describe themathematical formulation of the co-efficient vectors A
!

and E
!
.

A
!¼ 2 a!: rand1

����!
− a! ð3Þ

E
!¼ 2: rand2

���! ð4Þ

Fig. 3 Social dominant hierarchy of the grey wolves
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where, a! is the control vector whose value tends to linearly decrease from an initial value of 2
to a final value of 0 over the course of iterations and rand

���!
denotes a random vector in [0, 1].

Hunting As soon as the location of the prey has been recognized, the hunting proves
commences guided by the alpha. Supported by the beta, delta and on rare occasions by the
omega, the positions of the omegas are updated in conjuncture with the mean position of the
alpha, beta and delta. The best three solutions obtained are saved as described in the
hierarchical dominance of the wolves to further estimate the location of prey and guide the
omegas to update their positions around it in the subsequent iterations.

The distances between the current grey wolf and the three dominant wolves are given in Eq.
(5) and the positions formulated based on the distances are given in Eq. (6).

dα
�! ¼ E1

�!
: Pα
�!−Pgw

��!��� ���
dβ
�! ¼ E2

�!
: Pβ
�!−Pgw

��!��� ���
dδ
!¼ E2

�!
: Pδ
�!−Pgw

��!��� ���
ð5Þ

P1
�! ¼ Pα

�!− A1
�!

: dα
�!� �

P2
�! ¼ Pβ

�!− A2
�!

: dβ
�!� �

P3
�! ¼ Pδ

�!− A3
�!

: dδ
!� � ð6Þ

Finally, the position of the grey wolf is given by Eq. (7)

Pgw
��!

t þ 1ð Þ ¼ P1
�!þ P2

�!þ P3
�!

3

" #
ð7Þ

where, Pgw
�!

is the position of the grey wolf, Pα
�!

, Pβ
�!

and Pδ
�!

represent the positions of the

alpha, beta and delta wolves, A
!

and E
!

are the co-efficient vectors.

2.2 Demerits of the canonical GWO

Although efficient in several applications, the shortcomings of GWO include a lack of
population diversity, local entrapment, premature convergence, lack of a stronger exploitation
system etc. to name a few. Several review articles [14, 21, 22, 26, 44, 49] have outlined the
limitations of GWO and there has been a greater focus towards the improvement of GWO to
achieve a reliable and robust variant.

A summarization of the critical limitations of GWO from various review and work articles
has been listed below

& GWO has been susceptible to the curse of dimensionality in several benchmark and real-
world applications. The performance has been deteriorating in problems with multiple
constrained and higher independent decision variables owing to the selection and the
population updating strategy. The algorithm’s inability to manage multiple dimensions as
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it may not reposition all its search agents appropriately has been researched extensively to
realise a better variant immune to such drawbacks.

& The convergence speeds are slower compared to other algorithms depending on sorting
techniques for benchmarking and real-world scenarios.

& The system of splitting iterations aimed at an explorative search for the first half and
exploitative intensification for the next half does not necessarily guarantee that the
majority of the search space has been covered and the conflicting aspects of exploration
versus exploitations have not been perfectly balanced despite its good performance
compared to the classical paradigms.

& Complex and multi-modal search landscapes have been a challenging aspect as the
algorithm is more likely to fall prey to local entrapment leading to premature convergence.

& The exploration system being robust initially, narrows down to the location of the three
dominant wolves with the progression of iterations and the wolves may not move far away
from each other beyond the initial stages resulting in premature convergence.

& The higher dependence on the three dominant wolves in the wolf pack localizes the
population towards the end of iterations causing local entrapment inevitable. If entrapment
occurs at an earlier stage, there are no adaptive techniques to escape it.

3 Proposed method: Competitive learning-based Grey wolf Optimizer

In this work, a competitive learning GWO is proposed after a comprehensive analysis of
GWO, its other state-of-the-art variants, review articles, and publications related to GWO and
its applications. The improved algorithm, named Competitive-learning based GWO is devised
to address the various limitations of GWO as mentioned previously to improve its immunity to
the curse of dimensionality and local entrapment with an accelerated convergence towards the
global optimum and to achieve the desired equilibrium between the global (exploration) and
local search (exploitation) with an enhanced population diversity.

3.1 Analysis and deductions from the previous publications aimed at improving GWO

Although very successful at multi-disciplinary optimization, GWO has its fair share of criticism
and controversies surrounding its algorithmic structure for having a one-sided search system
known to favour the geometric centre of the search landscapes. There have been several publica-
tions demonstrating its demerits that have pointed out it’s weaknesses, including the lack of a
strong exploration system for multi-modal and complex landscapes. The population progression
system in GWO favours diversity in the initial stages and quickly converges to the surroundings of
the dominant wolves leading to stagnation and loss of population diversity. The analysis at [50]
demonstrated this tendency of GWO to slide to the geometric centre (Functions with 0 as the
location of the global optimum in the publication) and proposed a verificationmethod through a set
of nine modified test functions with varying degrees of shifted global optimum positions. The
study concluded that the performance deterioration of GWOwas proportional to the degree of shift
in the global optimum from 0 and deduced the linearly decreasing nature of the control variable as
one of the possible reasons. Multiple works have focussed on improving the population diversity
with the intent of lowering the algorithm’s dependence on the three dominant wolves in the wolf
pack [4, 34, 73]. This has also been referred to as the reason for the algorithm’s premature
convergence which happens a result of local entrapment [19, 76]. The algorithm’s lack of
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immunity towards the curse of dimensionality has also been the centre of focus as well, with
studies indicating the excessive dependence on the dominant wolves and the lack of elitism among
the population as the reasons for a poor exploratoty sysem [21, 22, 26, 44]. Slower convergence
has been reported in several cases as the algorithm accepts all the population members to replace
the older population (Mu, Lambda (μ,λ) selection) despite their inferior fitness [63].

On the other hand, several publications have credited the linear control strategy as it
provided a basic foundation that can be further improved to ensure robustness in the perfor-
mance of GWO for other complex landscapes. Reference [47] adopted the standard GWO
foraging techniques with an additional dimensional learning strategy based on Euclidian
distance and greedy selection to improve the performance of GWO for complex landscapes
with an improved GWO algorithm. The performance of IGWO has been verified against the
CEC2017 benchmarking suite where none of the benchmarking functions had their global
optimum at ‘0’. In [16], one of the more popular variants of GWO, a random walk GWO with
greedy selection is proposed and tested against the CEC2014 suite (also with functions having
no optima located at ‘0’) and demonstrated its robustness with complex landscapes. Addition-
ally, selective opposition-based GWO in [12] incorporating the Spearman coefficient in an
opposition-based learning scheme to improve the fitness of omegas with respect to the
difference between the alpha and omegas is proposed. In [75], hybridization of GWO with
Biogeography-Based Optimization (BBO) algorithm to enhance the population diversity of
GWO and accelerate the convergence speeds has been proposed. It compared the hybrid GWO
with EPSDE, SHADE and SinDE for the CEC2014 benchmarking suite where it outperformed
them by a large margin for the thirty benchmark functions.

In other developments, non-linear control strategies have been very popular to establish a
solid balance between exploration and exploitation for several multi-disciplinary applications.
W.Long et al. in [32] proposed an exploration-enhanced GWO by experimenting with multiple
non-linear modulation indices for the control parameter ‘a’ and deduced that an initial value of
1 or higher nearer to 1.5 is promising for multi-modal landscapes. The article at [73] proposed
an improved GWO with exponential control vectors based on the current and final iterations to
enhance the exploration quality for the truss optimization. Research has also been directed at
balancing the exploration and the exploitation system of the GWO through the introduction of
chaotic strategies to mitigate local entrapment [3, 18, 27, 33, 51, 57]. Hybridization/
combinatorial variants of GWO with the existing swarm and evolutionary algorithms have
been an ongoing trend since the publication of GWO. The combinatorial variants operate in
synergy combining the best aspects of both their parent algorithms with robust and consistent
performance across all standards and have considerable performance improvement for the
conflicting cases of exploration versus exploitation [60, 63, 77].

3.2 Motivation

In addition to the aforementioned aspects and a myriad of publications of GWO, the motiva-
tion for the current work is as follows:

1. Although GWO is a relatively old meta-heuristics, its search process can be efficiently
improved to enhance its robustness and consistency for multi-modal and complex
landscapes.
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2. To combat the demerits associated with the linear exploration method, other non-linear
schemes can be experimented with and incorporated into the search mechanism to
promote the diversity of the population.

3. A balance between exploration and exploitation can be promoted through the design of
suitable difference vectors which can be incorporated strategically and systematically at
different stages in the search process.

4. The segregation of the population into two groups has not been experimented with GWO
so far to dedicate smaller sections of the population to achieve a specific purpose. The
previous multi-strategy ensemble variants have aimed at modifying the structure of GWO
completely and have not experimented with population sub-division as of lately.

5. The inclusion of a second position updation strategy and greedy selection has been proven
to be beneficial for most complex search spaces and grounding on this the competitive
learning phase with distinct strategies is laid out.

6. Success and failure-based strategy adaption, the most popular with the state-of-the-
variants of DE have been experimented with to allow the algorithm to learn and adapt
to any possible scenario.

Hence, based on the above developments, the current study proposes an improved GWO with
an ensemble of strategies to improve population diversity and exploration quality. The
following aspects have been considered for the development of the proposed method:

1. The proposedmethod is built on themerits of the standardGWO linear hunting scheme and a
second learning phase with greedy selection follows it as has been the most successful for
composite and complex landscapes as seen with the various improved variants.

2. The proposed method follows the population sub-division and is implemented in two
phases with each phase complimenting the other in terms of the search strategy and
selection mechanisms.

3. The enhancement of population diversity has been the core of the current method.
4. A non-linear control strategy and competitive learning strategy have been added to the

standard GWO to improve its robustness and immunity against the curse of dimensionality
5. Benchmarking is done through the recent CEC2020 suite and CEC2019 suites, neither of

which have been considered for benchmarking so far and none of the benchmarking
functions in them has their global optimum located at ‘0’.

6. Comparisons are not only made against the advanced variants of GWO but also with the
state-of-the-art advanced meta-heuristics from the literature and these algorithms are kept
consistent throughout the entire benchmarking and real-world testing.

3.3 Implementation

Clb-GWO is implemented in two phases and in both phases, the population is divided into two
subgroups. The algorithm’s phases and population groups are structured in a selective
complementary fashion with the aim of promoting population diversity over convergence.
The population is divided into a majority group with 90 % of the wolves and a minority group
with 10 % of the remaining wolves. The majority group is mainly responsible for the large-
scale exploration and exploitation while the minority groups are reserved to promote diver-
gence and convergence as per their formulation. The advantages of population sub-division
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have been highlighted in several of the state-of-the-art advanced meta-heuristics such as EPSO
[35], EPSDE [37], MPEDE [65] etc.

3.3.1 Modified GWO phase

i) Majority Group 1 / Hunting group:

As discussed earlier, the linear hunting strategy from the standard GWO has its own set of
merits and demerits and grounding on this, the first phase considers a linear hunting scheme
complemented by a non-linear hunting scheme. The hunting scheme, either linear hunting or
non-linear hunting is selected with a random probability such that both the schemes contribute
to the generation of a new population as represented by Eq. (8).

Phunt
���!

t þ 1ð Þ ¼
Linear GWO hunting Pgw

lin
���!� �

pr1 > 0:5

Non−linear GWO huting Pgw
nl

���!� �
otherwise

8>><
>>: ð8Þ

where, Phunt
���!

t þ 1ð Þ is the updated position of the grey wolf through the various hunting
schemes, pr1 is a random number in 0 and 1 generated through uniform distribution.

Linear hunt The linear hunting scheme is the same as the encircling and hunting of prey
technique from the standard GWO algorithm. The distance and position vectors are described
in Eq. (9) and Eq. (10) respectively.

dα
�! ¼ E1

�!
: Pα
�!−Pgw

��!��� ���
dβ
�! ¼ E2

�!
: Pβ
�!−Pgw

��!��� ���
dδ
!¼ E2

�!
: Pδ
�!−Pgw

��!��� ���
ð9Þ

P1
�! ¼ Pα

�!− A1
�!

: dα
�!� �

P2
�! ¼ Pβ

�!− A2
�!

: dβ
�!� �

P3
�! ¼ Pδ

�!− A3
�!

: dδ
!� � ð10Þ

The coefficient vectors are described by Eq. (11) and Eq. (12) respectively.

A
!¼ 2 a!: r1�!− a! ð11Þ

E
!¼ 2: r2�! ð12Þ

The positions of grey wolves are updated as per Eq. (13)

Pgw
lin

���!
t þ 1ð Þ ¼ P1

�!þ P2
�!þ P3

�!
3

" #
ð13Þ
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where, Pgw
lin

���!
is the updated position of the grey wolf through the linear hunting scheme, Pgw

�!
is

the position of the grey wolf, Pα
�!

, Pβ
�!

and Pδ
�!

represent the positions of the alpha, beta and

delta wolves, A
!

and E
!

are the co-efficient vectors, a! is the control vector whose value
tends to linearly decrease from an initial value of 2 to a final value of 0 over the course of

iterations ‘t’ and r! denotes a random vector in [0, 1].

Non-linear hunt The non-linear hunting scheme is considered to improve the population diversity
based on an exponentially decreasing vector through the course of iterations. This strategy includes
the worst solution to form the differential vector while also considering the selection of randomized
omega wolves to prevent local stagnation which is often the result of the dominant wolves
converging quickly to a single point in the search space. The non-linearity associated with the
control vector prevents the solutions from sliding towards the geometric centre of the search space
which has been known to severely impact its performance for shifted and rotated benchmark
functions. The distance and position vectors are described in Eq. (14) and Eq. (15) respectively.

dα
�! ¼ Pα

�!−PW
��!h i

−Pgw
��!��� ���

dβ
�! ¼ Pβ

�!−PW
��!h i

−Pgw
��!��� ���

dδ
!¼ Pδ

�!−PW
��!h i

−Pgw
��!��� ���

ð14Þ

P1
�! ¼ ϕ:

!
Pω r1ð Þ
���!−r3!: dα

�!� �
P2
�! ¼ ϕ:

!
Pω r2ð Þ
���!−r4!: dβ

�!� �
P3
�! ¼ ϕ:

!
Pω r3ð Þ
���!−r5!: dδ

!� � ð15Þ

where, PW
��!

position of the grey wolf with the worst fitness value, ϕ
!

is the control vector
whose value tends to exponentially decrease from an initial value of 1 to a final value of 0 over
the course of iterations ‘t’.

The exponential control vector decreases from 1 to 0 over the course of iterations as
described in Eq. (16).

ϕ
!¼ e −0:05�tð Þ ð16Þ

The final position of the grey wolf is the average of the three positions described by Eq. (17).

Pgw
nl

���!
t þ 1ð Þ ¼ P1

�!þ P2
�!þ P3

�!
3

" #
ð17Þ

where, Pgw
nl

���!
is the updated position of the grey wolf through the non-linear hunting scheme.

ii) Minority Group 1 / Diverging group:

The first minority group comprising the remaining 10 % of wolves is retained for re-
initialization and random repositioning to diverge the wolves and prevent local entrapment.
The divergence is achieved through the described equations in Eq. (18) chosen at random. The

divergence vector PΩ
�!

is formulated to push the wolves far away from each other.

Multimedia Tools and Applications (2023) 82:40209–4026740222



Phunt
���!

t þ 1ð Þ ¼ Pgw
��!þ Δ: PΩ

�!h i
pr2 > 0:5

lbþ r6!: ub−lb½ � otherwise

8<
: ð18Þ

where

PΩ
�! ¼ Pω rað Þ

���!−Pω rbð Þ
���!

where, is a random vector in [1, 13], PΩ
�!

denotes the difference vector of any two randomly

chosen omega wolves Pω rað Þ
���!

and Pω rbð Þ
���!

, lb and ub denote the lower and upper bounds for the

decision variables.
The diversity preserving Mu, Lambda (μ, λ) selection follows the modified GWO phase for

the population updation wherein every new solution is accepted to replace its parent solution
despite its improved or deteriorated fitness value. However, the memory of the three dominant
wolves is updated when a wolf with better fitness than their respective fitness is found.

3.3.2 Competitive learning phase

The competitive learning process follows the standard GWO procedure to further improve the
quality of solutions, expand the solution space and ensure a better balance of exploration and
exploitation. The search processes are synchronized to allow for the exploration of the search
space in both the GWO and the competitive learning phases with a higher emphasis on
exploration through the majority competitive learning group followed by a greedy selection
process to ensure those fitter solutions replace the older ones.

Similar to the first phase, the competitive learning phase also divides the population into
two sub-groups i.e., the Minority group 2 and majority group 2.

i) Minority Group 2 /Converging group:
The second minority group considered the first 10 % of the wolves to improve the local

search and accelerate the convergence in a controlled manner. Here, fitness-based reposition-
ing is implemented to guide the wolves to the promising areas of the search space. A single-
dimensional update strategy is followed to generate one random number for all the problem
dimensions as it ensures accelerated convergence for multi-modal and separable functions.

Every wolf in the second minority group is compared with a random wolf other than the
three dominant wolves and repositioned closer to the alpha wolf with respect to its fitness.
Fitter wolves are allowed to migrate slowly while the non-fitter wolves are given a higher
degree of freedom to reposition themselves much closer to the alpha. Local search around the

current position and exploitation of the best solutions is facilitated through the PΩ
gw���!

and PΩ
α��!

vectors respectively as described below in Eq. (19).

Plearn
���!

t þ 1ð Þ ¼
Pω rð Þhunt
����!þ r7!: PΩ

gw���!h i
þ r8!: PΩ

α��!h i
Fit ið Þ < Fit rð Þ

Pgw
��!−r9!: PΩ

α��!h i
Fit ið Þ > Fit rð Þ

8<
:

PΩ
gw���! ¼ Pgw

��!−Pω rð Þ
��!

PΩ
α��! ¼ Pα

�!−Pω rð Þ
��!

ð19Þ
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where, Plearn
���!

t þ 1ð Þ is the updated position of the grey wolf through the various learning

schemes, PΩ
α��!
denotes the difference vector of the alpha wolf Pα

�!
and a randomly chosen

omega wolf Pω rð Þ
��!

and PΩ
gw���!

denotes the difference vector of the current wolf Pgw
��!

and a

randomly chosen omega wolf Pω rð Þ
��!

.

The inclusion of at least one omega wolf whose position has not been modified from
the previous hunting phase is made sure to prevent the loss of diversity during the
repositioning process.

ii) Majority group 2 / Learning group:
This learning phase is selected based on the success and failure rates that serve as the

moderators to switch between the linear learning and adaptive learning techniques that have
been described below. Multi-dimensional update strategy which has been proven to be
excellent for non-separable functions has been applied to the learning group, wherein the
random numbers are unique for each dimension such that it expands the search space around
them for a stronger global search emphasis. Initially, the selection is made probabilistically,
and a learning parameter named ‘competitive rate’ controls the selection of the schemes best
suited to ensure that the exploration goes on in a smooth and undisturbed manner as per Eq.
(20). The competitive rate is the sum of the number of consecutive failures (fr) and success (sr)
corresponding to each of the strategies. A detailed description of the competitive rate and its
impact on the learning outcomes are discussed in the upcoming sub-sections.

Plearn
���!

t þ 1ð Þ ¼
Linear GWO learning Pclb

lin
���!� �

If fr > 10 or If sr > 5

Adaptive GWO learning Pclb
adapt

�����!� �
otherwise

8>><
>>:

Comp ¼ fr þ sr

ð20Þ

where, Comp denotes the competitive rate fr stands for the failure rate and sr stands for the
success rate respectively.

Linear learning The linear GWO learning scheme adopts the linearly decreasing control
vector from the standard GWO phase to search for new solutions around the most promising
areas in the search space and has a good global search ability. The second technique
comprising random omega wolves from the current and hunting population is simply added
to prevent the one-sided search progression associated with the linear control strategy and
hence has been given a lower priority. The linear search process is prone to drive the

population to the geometric centre and to avoid this the difference vectors PΩ
�!

and PΩ
hunt

����!
are designed. Linear hunting is described by Eq. (21).

Pclb
lin

���!
t þ 1ð Þ ¼

Pα
�!þ a!: PΩ

�!h i
pr3 < 0:75

Pα
�!þ r10�!: PΩ

�!h i
þ r11�!: PΩ

hunt
����!� 	

otherwise

8><
>: ð21Þ

where

PΩ
hunt

����!
¼ Pω rð Þhunt

����!−Pω rð Þ
��!
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where, Pclb
lin

���!
is the updated position of the grey wolf through the linear learning scheme, a!

is the control vector whose value tends to linearly decrease from an initial value of 2 to a final

value of 0 over the course of iterations ‘t’, Pω rð Þhunt
����!

denotes a randomly chosen omega wolf

from the previous hunting schemes and PΩ
hunt

����!
denotes the difference vector of a randomized

omega wolf Pω rð Þhunt
����!

from the hunting schemes and a randomly chosen omega wolf Pω rð Þ
��!

.

Adaptive learning The adaptive hunting scheme comprises an adaptive cooperative learning
technique (the first technique) with the alpha, beta and delta wolves to form the solution vector
while the second technique involves the selection of only randomised omega wolves from the
current and the previous hunting populations. The first technique is prioritized over the second
as the knowledge of the alpha, beta and delta can be exploited efficiently in guiding the
omegas to more promising areas. The second strategy serves the purpose of diversity en-
hancement and prevents excessive dependence on the dominant wolves at all times in the

search process through the divergence vectors PΩ1

�!
and PΩ2

�!
respectively and hence its priority

is set to be lower for its selection. Adaptive learning is achieved through the vectors PΩ
α0���!

and

Pgw
β;δ

����!
wherein the information from the three dominant wolves is used to reposition the

wolves from the previous phases. Adaptive hunting is described by Eq. (22).

Pclb
adapt

�����!
t þ 1ð Þ ¼

Pgw
��!þ R1

�!
: PΩ

α0���!� 	
− R2
�!

: Pgw
β;δ

����!� 	
pr4 < 0:75

Pω rð Þhunt
����!þ r12�!: PΩ1

�!h i
þ r13�!: PΩ2

�!h i
otherwise

8><
>: ð22Þ

R
!¼ rand 1;Dð Þ

PΩ
α0���!

¼ Pω rð Þhunt
����!−Pα

�!

Pgw
β;δ

����!
¼ Pgw

��!þ Pβ
�!þ Pδ

�!� �

where, Pclb
adapt

�����!
is the updated position of the grey wolf through the adaptive learning scheme,

R
!

is a random vector comprising random numbers in [0,1] of the size of 1 by D, with D
representing the problem dimensions.

The final step is the fitness evaluations of all the newer population members. The greedy
selection technique follows the competitive learning phase to update the population pool with
superior solutions from the competitive learning phase. The greedy selection allows for the
population members from the competitive learning strategies with better fitness compared to
the one from the modified GWO process. The survival of the fittest strategy is followed to
select the fitter population members and discard the rest. In the case of inferior solutions, the
positions from the modified GWO procedure are retained as given by Eq. (23).
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Pgw
��!

t þ 1ð Þ ¼ Phunt
���!

t þ 1ð Þ if f Phunt
���!� �

< f Plearn
���!� �

Plearn
���!

t þ 1ð Þ otherwise

8<
: ð23Þ

where, f Plearn
���!� �

is the fitness score of the decision variables obtained by the competitive

learning strategy and f Phunt
���!� �

fitness score of the decision variables obtained by the modified

GWO procedure.
The overall algorithmic structure of Clb-GWO is presented in Fig. 4.

Fig. 4 Flowchart of Clb-GWO
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3.3.3 Pseudocode of Clb-GWO

Algorithm 2 Clb-GWO

3.3.4 Analysis of the difference vectors

The difference vectors lie at the core of the proposed method and have been designed after a
meticulous study and analysis of the various possible combinations used in previous advanced
meta-heuristics. The primary function of the various vectors is to lower the dependence of the
algorithms at all times on the three dominant wolves and eventuate to increased diversity in the
population. Most of the difference vectors comprise a ransom omega wolf from the population
pool which has been deliberately planned to eliminate the clustering of the wolves at any given
time and extend the course of exploration over a greater interval of time. Although this can
result in slower convergence, the implementation of the search mechanism with them is
eliminating the one-side search system in GWO that has received a lot of criticism. The
evolution of the wolfpack can be directed in the right direction to explore and exploit
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systematically and without being susceptible to entrapment. A tabulation of the various
difference vectors designed for the proposed method is tabulated in Table 1.

3.3.5 Exploration and exploitation

The exploration in Clb-GWO is largely contributed by the two majority search groups in the
two phases simultaneously, i.e., the encircling mechanism from the linear GWO process where

exploitation is favoured for a!>1 or the diversity promoting the non-linear exponential scheme
and the competitive learning strategies wherein the higher distance between the three dominant
wolves (alpha, beta and delta) puts it to explore around them.

The exploration mechanism in Clb-GWO aims at enhancing the distribution of omega
wolves around the potentially promising areas obtained from the standard GWO process
considering the difference vectors based on randomised omega wolves. This makes up for
two simultaneous exploration processes that run in synergy following each other targeting the
various areas of the search spaces with all the new positions of the wolves entering the
population pool in the standard GWO process followed by a re-exploration in the Clb-GWO
process but with a priority at selectin only the fitter positions involving other random positions
to avoid the stagnation of the population members. The existing population is positioned
around the alpha, beta and delta from the social hierarchy-based hunt and the competitive
learning system through the inclusion of a random population from the population pool allows
re-distribution of the wolves far away from each other and converge steadily at the best
position towards the end of iterations improving the evasion of local entrapment and faster
convergence. A mechanism like this provides ample time for the search processes to effec-
tively explore covering a majority of the search space and dedicating the remaining iterations
to effectively exploit them to improve the accuracy of the solutions. This technique is different
from the conventional approaches of dedicating two separate phases for either exploration or
exploitation only. In Clb-GWO, the linear and adaptive competitive learning strategies ensure
that a smooth transition from exploration to exploitation is achieved and the elitism promoting

Table 1 Tabulation of the various difference vectors implemented in Clb-GWO

S.
No.

Name of the vector Formulation Purpose

01. Distance/Dominant-Worst-Current dα=β=γ
���! ¼ Pα=β=γ

����!−PW
��!h i��� −

Pgw
��!j

Distance vector to prevent local
entrapment

02. Position/Exp-omega rand-distance P1
�! ¼ ϕ:

!
Pω rð Þ
��!− r!: dα=β=γ

���!� �
Non-linear position update

mechanism to promote
population diversity

03. Position/omega rand-2 PΩ
�! ¼ Pω rað Þ

���!−Pω rbð Þ
���! Divergence of population and

population diversity enhancement
04. Position/current-omega rand PΩ

gw���! ¼ Pgw
��!−Pω rð Þ

��! Local search around the current
position

05. Position/alpha-omega rand PΩ
α��! ¼ Pα

�!−Pω rð Þ
��! Exploitation around the best solution

06. Position/ hunt omega rand -omega
rand

PΩ
hunt

����!
¼ Pω rð Þhunt

����!−Pω rð Þ
��! Enhancement of population

diversity
07. Position/ hunt omega rand -alpha

PΩ
α0���!

¼ Pω rð Þhunt
����!−Pα

�! Adaptive Exploration and
exploitation

08. Position/ current -beta delta Pgw
β;δ

����!
¼ Pgw

��!þ Pβ
�!þ Pδ

�!� �
Adaptive Exploration and

exploitation
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population selection prevents inferior solutions from influencing the other omega wolves and
enables the system to gain a better insight into the current state of the population members and
their knowledge of the search space. Several of the recent meta-heuristics (WOA [41], SSA
[43], ChoA [25], HHO [20], SMA [29], ALO [39] etc.) have adopted a similar strategy of
exploration-exploitation split allowing the population to diverge from each other for the first
half of the iterations and converge for the latter. These meta-heuristics have shown good
performance with better population diversity and decent convergence behaviour. In a theoret-
ical sense, there could be several other advantages with such an exploration-exploitation split
system but in a practical sense there are many limitations as well and the research towards a
perfect exploration and exploitation system is still provides a lot of room for development.

The minority population groups complement each other with the top 10 % of the population
being placed closer to the dominant wolves and the bottom 10 % spreading around the entire
search space promoting better diversity in the population. The interpreting aspect is that the
population from one group can influence the other at finding new potential areas to explore or
prevent local entrapment around a single point at various points during the search.

Hence to encourage better exploration and good population diversity, the two processes
handle the population member differently with different selection mechanisms resulting in a
robust ensemble of strategies that aid each other and allowing the population of omegas to
learn and adapt to the complex search spaces to explore and exploit optimally.

3.3.6 Time complexity and computational complexity

The position update system in Clb-GWO occurs twice i.e., the standard GWO procedure
assigns the positions to all the wolves in the wolf pack after the evaluation of the fitness of the
wolves from its previous iteration to determine the alpha, beta and delta wolves. This is
followed by the second position update following any of the competitive learning strategies.
The greedy selection follows the competitive learning strategy wherein the new position of all
the wolves updated from the competitive learning strategy are assessed to decide on preserving
the fitter solutions or discarding the inferior ones. The fitness evaluation and the position
updates are performed for all the members in the population pool twice in an iteration. Hence,
it is obvious that Clb-GWO performs double fitness evaluations (DFEs) per iteration. For an
iterative count of T iterations with a population size of N each having a D number of decision
variables/dimensions, the following are the computational complexities of individual phases.
In addition to the total computational complexity of the standard GWO process, which is
O(N×(D + T+(T × D))), the competitive learning procedure has an additional computational
complexity of O(T×(N × D)) for the competitive learning phase followed by fitness evalu-
ation of all the new position for the greedy selection with O(N × T). Summing up, the total
computational complexity is O(N×(D + 2 × (T+(T × D)))).

In the same manner, the time complexity of Clb-GWO is measured considering its total run
time i.e., ‘ttotal’ for one independent run. It is as shown in Eq. (24).

ttotal ¼ t1 � O1 þ t2 � O2 þ……:tN � ON ð24Þ

where, t1, t2…..tN are the computational times needed by GWO to complete the various
operations O1, O2…..ON for N number of wolves. The various operations and the time
requirements are presented in Table 2.

Therefore, based on analysis from Table 2, the time complexity of Clb-GWO is O(N).
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4 Results and discussion

Extensive testing and analysis employing standard benchmark functions, standard engineering
problems and real-world complex optimization problems are chosen to evaluate the perfor-
mance potential of the proposed algorithm. The benchmarking tests include the CEC2020
benchmark functions (dimensions set to 5,10,15 and 20) to assess the algorithm’s susceptibility
to the curse of dimensionality, assess the performance improvement with respect to the higher
number of function evaluations and CEC2019 benchmark functions to evaluate the algorithm’s
capability to avoid local entrapment and premature convergence. This is followed by the
application of Clb-GWO and the other competitor algorithms towards the multi-layer
perceptron training for five classification datasets and three function approximation datasets.

All the exterminations considered for the current work are performed on an
Ultrabook running the operating system of Microsoft Windows 10® Pro (Version
20H2 - OS Build 19,042.867) with 16 Gigabytes of DDR3 RAM powered by an
Intel(R) Core (TM) i7-4700MQ quad-core CPU @ 2.40GHz. MATLAB R2020a is
chosen to code all the algorithms for all the considered exterminations in the compar-
ative analysis.

4.1 Description of benchmark functions and performance evaluation criteria

The performance evaluation criteria for all the fifteen algorithms including Clb-GWO for the
different benchmarking scenarios (CEC2020, CEC2019 benchmarking suites) are as follows.
The purpose of the two benchmarking suites and their importance in the validation of meta-
heuristics is specified in Table 3.

a. The average (mean) and the standard deviation values are obtained based on 30 indepen-
dent runs for all the algorithms in comparison. In addition to them the best and the worst
fitness values are provided in certain cases (CEC2019 benchmarking suite, standard
engineering problems, the power flow optimization problems).

b. The NFEs are modified for each problem type and the population size is set based on the
NFEs. The details of these are provided prior to the results of every test case. The
computational times for the CEC2020 are computed as per the documentation at [72]
and the average computational times are provided for the other tests.

c. No additional tuning modifications to the algorithm-specific parameters have been
made for the entire benchmarking and real-world complex optimization problems.

Table 2 The time complexity of Clb-GWO algorithm

Phase Time Total Time required
for N number of wolves

Time Complexity

Random Initialization of wolves t1 t1 ×N O(N)
Fitness evaluation of the initialized population t2 t2 ×N O(N)
Linear/non-linear hunting (Modified GWO phase) t3 t3 ×N O(N)
Fitness evaluation for the Mu, Lambda (μ,λ) selection t4 t4 ×N O(N)
Competitive learning phase t5 t5 ×N O(N)
Fitness evaluation for the greedy selection t6 t6 ×N O(N)
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d. The first statical test, i.e., Wilcoxon’s rank-sum test at a 0.05 significance level is
performed for Clb-GWO concerning the other algorithms. For better performance of the
other algorithms with respect to Clb-GWO “+” symbol is used, for the similar perfor-
mance of the other algorithms with respect to Clb-GWO “≈” symbol is used and for the
inferior performance of the other algorithms concerning Clb-GWO “-” symbol is used.

e. The second statistical test, i.e., a ranking test through a non-parametric Friedman’s test is
performed to rank the best-performing algorithms.

4.1.1 Algorithms in the benchmarking framework

& The performance of Clb-GWO is compared and validated against the standard GWO algorithm
from 2014 and five of its latest state-of-the-art variants whose description is provided in Table 4.

Table 4 Description of the state-of-the-art meta-heuristics used in the comparative analysis

Categorization Name of the variant Authors Year Reference

Latest advanced variants of
GWO

IGWO (Improved Grey Wolf Optimizer) M.H.
Nadimi-Shahraki et al. 2020 [47]

MEGWO (Multi-strategy Ensemble Grey
Wolf Optimizer)

Q.Tu et al. 2018 [62]

CGWO (Chaotic Grey Wolf Optimization
algorithm)

M. Kohli et al. 2017 [27]

IGWODE (Improved Grey Wolf Optimizer
based on Differential Evolution and
Elimination Mechanism)

J. S. Wang et al. 2019 [63]

SOGWO (Selective
Opposition based Grey
Wolf Optimization)

S. Dhargupta et al. 2020 [12]

Modern meta-heuristics WOA (Whale Optimization Algorithm) S. Mirjalili,
A. Lewis

2016 [41]

ChOA (Chimp Optimization Algorithm) M.Khishe and
M.R.Mosavi

2020 [25]

State-of-the-art advanced
meta-heuristics

CLPSO (Comprehensive Learning Particle
Swarm Optimizer)

Liang et al. 2006 [30]

GABC (gbest guided Artificial bee colony) G. Zhu et al. 2010 [78]

Table 3 Significance of the CEC2020 and CEC2019 test suites in the validation of meta-heuristics

Benchmarking
Suite

Dimensionality Computational
Budget

Importance Features validated

CEC2020 (10
Functions)

Fixed at 5, 10,
15 and 20

Limited This test suite helps analyse
the performance variation
with respect to increased
dimensionality while
allocating higher
computational budgets

• Immunity to the curse of
dimensionality

• Computational budget
management

• Entrapments evasion
• Balance of exploration and

exploitation
CEC2019 (10

Functions)
Fixed at 10 Unlimited This test suite evaluates the

accuracy of optimization
for complex landscapes
with no restrictions on the
computational budget.

• Accuracy and precision of
optimization

• Entrapments evasion
• Exploitation avoiding

stagnation
• Extended exploration
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& Additionally, two state-of-the-art advanced meta-heuristics within the swarm intelligence
namely, CLPSO and GABC, have been employed to assess the performance of the
proposed method. A brief description of the two state-of-the-art advanced meta-
heuristics is provided in Table 4.

& In addition to the aforementioned variants of GWO, two of the modern meta-heuristics are
selected for the testing and validation process. A brief description of the two modern meta-
heuristic is provided in Table 4.

& To assess the performance of the proposed methods and rank them for each benchmarking
suite, the statistical results of winners/top-performing algorithms are also added in their
sub-sections to provide a comprehensive analysis of the current standings of the proposed
method.

4.1.2 Tuning settings of the algorithms

To ensure that a fair comparison is achieved, it is required to set/tune the algorithm-specific
parameters (tuning parameters) appropriately to extract the best performance. Hence, after a
meticulous review of the various algorithms’ performances, the following tuning settings have
been finalized to ensure that the chosen algorithms deliver their best performance to the fullest
of their potential. Please note that the values of the tuning parameters provided in Table 30
(Appendix) remain the same for the entire benchmarking process and real-world problems
tackled in the remainder of the manuscript.

The basic parametric tuning for all the algorithms is shown in Table 5.

4.2 CEC2020 benchmarking suite

The first set of benchmarking tests is performed using the CEC2020 benchmarking suite
with 5, 10, 15 and 20 dimensions as per the competition rules for the functions described in
Table 6. The benchmarking allows for the exponential growth of the computational
resources (Number of function evaluations-NFEs) for the increase in the dimensionality
of the test functions and their complexity. It comprises 10 scalable benchmark problems
within the search range [−100, 100]D with the global optimum shifted and rotated based on
a rotation matrix generated from standard normally distributed entries by Gram-Schmidt
ortho-normalization.

The termination criteria for the CEC2020 test functions as defined by the documentation are
described in Table 7.

Table 5 Description of the basic tuning parameters for all the algorithms used in the comparative analysis

Algorithm N (Population Size) T (Iterations)

GWO, WOA, ChOA, CLPSO, CGWO 10×D Max NFEs/N
IGWO, MEGWO, GABC, IGWO-DE 10×D Max NFEs/2×N
Clb-GWO 5×D Max NFEs/2×N
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4.2.1 Results of benchmarking (CEC2020 test suite)

In this sub-section, Clb-GWO is compared against the standard GWO, five of its latest and
advanced variants and two of the modern meta-heuristics. The benchmarking results (mean
and standard deviation) are shown in Table 8, the p-values of Wilcoxon’s rank-sum test and
the results are shown in Table 9 and the results of Friedman’s non-parametrical test are shown
in Table 10.

Analysis of results
& Clb-GWO outperformed the standard GWO and its three variants by a significant margin

and ranked first in Friedman’s test.
& However, the performance was poor for the functions with 5 dimensions for five out of the

ten functions as it was slower to exploit within the given NFEs. This is on account of the
algorithm’s tendency to promote exploration and population diversity over exploitation
leading to slower convergence. The converging group/Minority group 2 of Clb-GWO is
solely responsible for its exploitation for most of the search and the minority groups
tendency to exploit very late in the search process are also responsible for a slow
convergence with limited computational resources.

& The performance improved greatly for the functions with a higher number of dimensions
as the algorithm was able to benefit from the increased number of function evaluations
enabling deeper exploitation towards the end of the search. This is evident with F1,
wherein Clb-GWO reached the minimum error value of IE-08 for 10D, 15D and 20D
while the others had their solutions too far away from the global optimum.

Table 6 Description of the test functions from the CEC2020 benchmarking suite

Categorization Function No. Function Fi* = Fi(x*)

Unimodal Function F1 Shifted and Rotated Bent Cigar Function 100
Basic Functions F2 Shifted and Rotated Schwefel’s Function 1100

F3 Shifted and Rotated Lunacek bi-Rastrigin Function 700
F4 Expanded Rosenbrock’s plus Griewangk’s Function 1900

Hybrid Functions F5 Hybrid Function 1 (N=3) 1700
F6 Hybrid Function 2 (N=4) 1600
F7* Hybrid Function 3 (N=5) 2100

Composition Functions F8 Composition Function 1 (N=3) 2200
F9 Composition Function 2 (N=4) 2400
F10 Composition Function 3 (N=5) 2500

*F7 is defined for 10, 15 and 20 Dimensions

Table 7 Termination criteria for the CEC2020 benchmarking suite

Dimensions Maximum NFEs Minimum error value to reach

5 50,000 1.00E-08
10 1,000,000 1.00E-08
15 3,000,000 1.00E-08
20 10,000,000 1.00E-08
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& Apart from F2, the performance of Clb-GWO has been good for the others indicative of
the influence of the difference vectors in maintaining population diversity and promoting
exploration in complex landscapes.

& The performance of the other meta-heuristics was not on par with Clb-GWO. The increase
in the problem dimensions lead to entrapment of the population members and failed to
escape it leading to poor diversity in the population. The sorting techniques adopted by
them increased the computational times and failed to produce a notable improvement in

Table 11 The time complexity (in ms) of the various algorithms in the comparative analysis for the CEC2020
benchmarking suite

Algorithm Dim T0 T1 T2 (T2-T1)/T0

GWO 5 5.22E+01 3.78E+02 1.22E+03 1.61E+04
10 5.22E+01 4.04E+02 1.41E+03 1.92E+04
15 5.22E+01 4.46E+02 1.70E+03 2.40E+04
20 5.22E+01 4.84E+02 2.02E+03 2.94E+04

Clb-GWO 5 5.22E+01 3.78E+02 2.73E+03 4.50E+04
10 5.22E+01 4.04E+02 3.42E+03 5.79E+04
15 5.22E+01 4.46E+02 4.16E+03 7.12E+04
20 5.22E+01 4.84E+02 4.97E+03 8.61E+04

IGWO 5 5.22E+01 3.78E+02 5.54E+03 9.89E+04
10 5.22E+01 4.04E+02 5.98E+03 1.07E+05
15 5.22E+01 4.46E+02 5.89E+03 1.04E+05
20 5.22E+01 4.84E+02 6.07E+03 1.07E+05

SOGWO 5 5.22E+01 3.78E+02 2.87E+03 4.78E+04
10 5.22E+01 4.04E+02 3.79E+03 6.49E+04
15 5.22E+01 4.46E+02 5.04E+03 8.81E+04
20 5.22E+01 4.84E+02 6.09E+03 1.07E+05

MEGWO 5 5.22E+01 3.78E+02 8.05E+02 8.19E+03
10 5.22E+01 4.04E+02 9.43E+02 1.03E+04
15 5.22E+01 4.46E+02 1.04E+03 1.14E+04
20 5.22E+01 4.84E+02 1.02E+03 1.03E+04

WOA 5 5.22E+01 3.78E+02 8.24E+02 8.55E+03
10 5.22E+01 4.04E+02 8.67E+02 8.88E+03
15 5.22E+01 4.46E+02 9.54E+02 9.74E+03
20 5.22E+01 4.84E+02 9.63E+02 9.19E+03

ChOA 5 5.22E+01 3.78E+02 4.75E+03 8.39E+04
10 5.22E+01 4.04E+02 8.92E+03 1.63E+05
15 5.22E+01 4.46E+02 1.28E+04 2.36E+05
20 5.22E+01 4.84E+02 1.66E+04 3.09E+05

GABC 5 5.22E+01 3.78E+02 1.23E+03 1.63E+04
10 5.22E+01 4.04E+02 1.22E+03 1.56E+04
15 5.22E+01 4.46E+02 1.25E+03 1.54E+04
20 5.22E+01 4.84E+02 1.29E+03 1.55E+04

CLPSO 5 5.22E+01 3.78E+02 2.16E+03 3.41E+04
10 5.22E+01 4.04E+02 2.25E+03 3.53E+04
15 5.22E+01 4.46E+02 2.36E+03 3.67E+04
20 5.22E+01 4.84E+02 2.49E+03 3.84E+04

IGWODE 5 5.22E+01 3.78E+02 1.16E+03 1.88E+04
10 5.22E+01 4.04E+02 1.32E+03 2.64E+04
15 5.22E+01 4.46E+02 2.14E+03 3.55E+04
20 5.22E+01 4.84E+02 2.92E+03 4.32E+04

CGWO 5 5.22E+01 3.78E+02 1.32E+03 1.81E+04
10 5.22E+01 4.04E+02 1.44E+03 2.34E+04
15 5.22E+01 4.46E+02 2.65E+03 3.54E+04
20 5.22E+01 4.84E+02 2.84E+03 3.64E+04
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the performance. Another reason could be traced back to the presence of a large number of
tuning parameters and no adaptive control strategy and out of the fourteen chosen
algorithms, WOA, GWO, IGWO required no additional tuning parameter settings while
MEGWO, SOGWO and ChOA required the tuning of special algorithm-specific param-
eters (2 to 4 parameters) whose values have been set based on their corresponding
publications. Although the empirical setting favoured performance for problems with a
lower number of dimensions as seen in [12, 18, 27, 48, 63], the same performance was not
reflected for the larger dimensional problems. One particular reason for this is to do with
the formulation of the solution set wherein every dimension/decision variable has not
achieved the global best solution leading to an imbalance in the optimization and thereby
producing highly non-optimal solutions.

& Clb-GWO’s performance is consistent through the testing with the increase in the number
of problem dimensions having very little effect on the efficiency of the algorithm as seen in
Table 8. The other algorithms’ performance dwindled over the increase in the dimensions
with IGWO being the most hard-hit followed by SOGWO and MEGWO. Although
IGWO features the greedy selection strategy, the neighbourhood construction strategy
complicates the nearest neighbour search in high dimensional space. It is not possible to
quickly reject candidates by using the difference in one coordinate as a lower bound for a
distance based on all the dimensions. This system can lead to various phenomena that arise
when analysing and organizing data in high-dimensional spaces that do not occur in low-
dimensional settings. This is evident by the performance of IGWO being better at handling
lower-dimensional problems as seen from the benchmarking.

& Furthermore, comparing Clb-GWO’s performance with IGWO and MEGWO for the 5D
test case, the results are in favour of the latter as their exploitation capabilities at lower
dimensionalities aid their convergence, accelerating intensification. One more reason for
the slow convergence of Clb-GWO for the 5D test case is the computational budget
limitation to 50,000 NFEs which limits Clb-GWO from adequately transitioning from
exploration to exploitation. Clb-GWO’s structure is majorly inclined towards exploration
over exploitation as premature exploitation tends to be a major contributor to stagnation.
This is well established by the fact that Clb-GWO attained good convergence for the rest
of the test cases i.e., 10, 15 and 20D cases as it outperformed all the competitor algorithms

Table 12 Description of the 10 CEC2019 benchmark functions (composition functions) used to determine the
algorithms’ ability to avoid local entrapment

Function
No.

Function Fi
* =

Fi(X*)
Dimensions Search Range

C1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [−8192, 8192]
C2 Inverse Hilbert Matrix Problem 1 16 [−16,384,

16,384]
C3 Lennard-Jones Minimum Energy Cluster Problem 1 18 [−4,4]
C4 Shifted and Rotated Rastrigin’s Function 1 10 [−100,100]
C5 Shifted and Rotated Griewank’s Function 1 10 [−100,100]
C6 Shifted and Rotated Weierstrass Function 1 10 [−100,100]
C7 Shifted and Rotated Schwefel’s Function 1 10 [−100,100]
C8 Shifted and Rotated Expanded Schaffer’s F6

Function
1 10 [−100,100]

C9 Shifted and Rotated Happy Cat Function 1 10 [−100,100]
C10 Shifted and Rotated Ackley Function 1 10 [−100,100]
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avoiding entrapment to a greater degree. Considering that most real-world scenarios have
higher dimensionality (D > 10 up to 1000), diversification through enhanced exploration
is the key to achieving the best optimality.

The time complexity of all algorithms in the comparative analysis has been calculated as per
the CEC2020 documentation and is given in Table 11.

The computational times for Clb-GWO are on the higher side as it employs multiple
strategies and adaptive measures that work in coordination with each other. Clb-GWO’s
computational times are slightly lower compared to that of SOGWO and IGWO which require
individual distance evaluations of all population members with respect to each other. The
higher computational times can be overcome using parallel computational capabilities with
modern computing systems as the multi-population-based algorithmic structure of Clb-GWO
can be modified to allow both the population pools to operate independent of each other. The
same modification cannot be made in the canonical GWO nor its variants as they follow a
linear structure that requires the computations to take place in a top to bottom approach as their
algorithmic structure dictates. The parallel compute capabilities of Clb-GWO can be extended
to CPU’s with virtualization technologies to further boost the computational speeds and
achieve lower computational times which is a constraint in the standard GWO and its variants.

4.3 CEC2019 benchmarking suite

The CEC2019 test suite from Special Session and Competition on Single Objective Numerical
Optimization in 2019 introduced 10 special functions to be minimized with limited control
parameter “tuning” for each function [54]. The test functions were meticulously crafted with
multiple local optima and one unique global optimal solution to ensure that the exploratory
prowess and local minima avoidance characteristics are put to test. Similar to composition
functions from the previous CEC sessions, the CEC 2019 benchmark suite presents challeng-
ing exploratory conditions with their landscape shifted and rotated to further complicate the
search process of an algorithm. It is to be noted that these functions are extremely challenging
for any global optimization algorithm to determine the global optimal solution as their
formulation is such that they are intended to trap the algorithms at local best positions,
especially for algorithms designed with a tendency to converge to the central point of the

Table 15 Ranking the eleven algorithms based on the Friedman’s for the CEC2019 benchmark functions

Algorithms Friedman’s rank Generalized rank

Clb-GWO 3.8472 1
IGWO 5.2828 2
CLPSO 5.7109 3
MEGWO 5.7719 4
GWO 6.2291 5
SOGWO 6.9104 6
GABC 7.1222 7
IGWODE 7.5165 8
CGWO 7.7684 9
ChOA 8.7428 10
WOA 10.621 11
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search landscape. Additionally, these problems have a large number of dimensions making the
search process even harder and complex and only the algorithms with a higher exploratory
tendency of the entire search space can determine the global optimal solution or generate
solutions in close proximity to the global best.

The description of the CEC2019 benchmarking suite is shown in Table 12.
The benchmarking results (mean and standard deviation) are shown in Table 13, the p-

values of Wilcoxon’s rank-sum test and the results are shown in Table 14, the results of
Friedman’s non-parametrical test are shown in Table 15 followed by the average computa-
tional times in Table 16. A maximum of 1,000,000 function evaluations were allowed for all
the algorithms with 30 independent runs.

Analysis of results
& Clb-GWO entrapment evasion capabilities helped it attain higher accuracy and precision

for the CEC2019 test suite. Compared to its competitors, it recorded lower instances of
stagnation and reached the global optima for most test functions. While its competitors,

Table 19 Comparison of mean and the standard deviation of Clb-GWO for the variations in the N:T ratio for the
CEC2020 benchmarking suite

N=710,
T=710 and
N:T=1:1

N=500,
T=1000 and
N:T=1:2

N=350,
T=1425 and
N:T=1:4

N=250,
T=2000 and
N:T=1:8

Mean std Mean std Mean std Mean std

F1 6.38E+01 4.07E+01 4.56E+00 3.65E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 3.16E+02 1.45E+02 3.13E+02 2.04E+02 3.84E+02 1.98E+02 2.63E+02 1.81E+02
F3 2.07E+01 5.28E+00 2.07E+01 5.82E+00 1.98E+01 3.89E+00 2.08E+01 5.64E+00
F4 7.99E-01 2.99E-01 8.97E-01 4.23E-01 9.45E-01 3.38E-01 9.83E-01 4.12E-01
F5 2.35E+02 1.34E+02 2.22E+02 1.15E+02 1.34E+02 1.09E+02 1.04E+02 7.35E+01
F6 6.85E-01 2.12E-01 6.45E-01 1.58E-01 6.58E-01 1.79E-01 7.35E-03 1.95E-03
F7 4.10E+01 6.36E+01 5.66E+01 6.85E+01 6.55E+01 7.64E+01 4.08E+01 1.15E+02
F8 6.03E+01 4.37E+01 5.77E+01 4.67E+01 6.83E+01 4.29E+01 9.54E+00 2.17E+00
F9 1.32E+02 8.71E+01 1.21E+02 5.36E+01 1.03E+02 3.24E+01 1.18E+02 5.86E+01
F10 3.53E+02 1.16E+02 3.71E+02 9.52E+01 3.47E+02 1.19E+02 2.81E+02 1.38E+02

Table 18 Comparison of mean and the standard deviation of Clb-GWO for the variations in the value of
Competition rate (comp) for the CEC2020 benchmarking suite

fr10/sr5 fr20/sr10 fr30/sr15

Mean std Mean std Mean std

F1 2.88E+01 1.44E+01 0.00E+00 0.00E+00 2.28E+01 5.30E+01
F2 3.29E+02 1.80E+02 2.65E+02 1.11E+02 3.03E+02 1.31E+02
F3 1.94E+01 4.14E+00 1.61E+01 2.92E+00 1.91E+01 2.91E+00
F4 8.39E-01 2.84E-01 7.73E-01 2.81E-01 8.56E+00 3.17E-01
F5 7.33E+01 4.25E+01 7.31E+01 5.70E+01 9.47E+01 9.03E+01
F6 1.06E+00 1.61E-01 5.84E-04 1.51E-03 6.63E-01 1.88E-01
F7 8.43E+01 7.62E+01 4.37E+01 2.14E+01 9.24E+01 8.76E+01
F8 7.14E+01 4.05E+01 8.44E+00 3.54E+00 6.96E+01 4.37E+01
F9 1.00E+02 1.44E-13 1.10E+02 3.24E+01 1.20E+02 4.31E+01
F10 3.39E+02 1.26E+02 3.19E+02 1.31E+02 2.99E+02 1.41E+02
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could only exploit the unimodal cases, i.e., function C1, Clb-GWO was effective for both
unimodal and multi-modal functions as well.

& No tuning modifications except the population size and iterations were made to obtain the
results.

& It is interesting to note that the performance of Clb-GWO has been poor for C7 (Shifted
and Rotated Schwefel’s Function) which is the same function as F2 in the CEC2020
benchmarking suite indicating its weakness in exploring its complex landscape.

& Compared to the variants of GWO, Clb-GWO had the best optimal fitness for C1, C4, C5,
C7, C8, C9 and C10. It is indicative of the algorithm’s exploratory and local minima
avoidance capabilities. The proposed method generated solutions closer to the global
optimal solutions for C4, C5, C6, C7, C8 and C10. For the functions C2, C4 and C5,
the prosed method outperformed the other variants of GWO and the modern meta-
heuristics.

& The learning and adaptive learning schemes are key to ensure that a thorough exploration
of the search space is achieved with the divergence and convergence groups helping Clb-
GWO to prevent clustering at local optimal points and extend the duration of exploration
for the most possible time in the search process.

Table 22 Statistical results and the test errors (TE) of the 11 algorithms for the MLP training with the three
function approximation datasets

Algorithms Sigmoid Cosine Sine

Mean Std. TE (%) Mean Std. TE (%) Mean Std. TE (%)

WOA 2.46E-01 1.12E-04 17.5337 1.77E-01 5.73E-04 4.7975 4.33E-01 1.55E-02 135.9979
ChOA 2.48E-01 1.26E-03 17.6221 1.92E-01 1.67E-02 4.9064 4.46E-01 1.60E-02 136.9244
IGWO-DE 2.47E-01 5.22E-04 17.7071 1.79E-01 2.70E-03 4.7904 4.34E-01 1.61E-02 138.6926
MEGWO 2.47E-01 1.62E-04 17.7831 1.78E-01 1.21E-03 4.7555 4.39E-01 3.83E-03 140.9139
SOGWO 2.47E-01 1.02E-03 17.5883 1.82E-01 1.07E-02 4.9302 4.46E-01 4.37E-03 143.7239
IGWO 2.46E-01 3.21E-05 17.6034 1.76E-01 3.57E-04 4.6671 4.32E-01 1.91E-02 132.5466
CGWO 2.47E-01 5.56E-05 17.7032 1.77E-01 4.31E-04 4.7364 4.38E-01 8.14E-03 135.9174
CLPSO 2.47E-01 5.92E-05 17.7824 2.71E-01 9.55E-02 4.8607 4.56E-01 3.85E-03 147.0052
GABC 2.47E-01 8.48E-05 17.6730 1.78E-01 8.08E-04 4.7718 4.31E-01 5.68E-03 142.0812
GWO 2.47E-01 7.30E-05 17.7149 1.77E-01 4.64E-04 4.8715 4.22E-01 1.19E-02 133.9117
Clb-GWO 2.46E-01 3.96E-05 17.4875 1.76E-01 3.22E-04 4.6334 4.19E-01 4.65E-03 132.2601

Table 23 Computational times (seconds) of the 11 algorithms for the MLP training for all the datasets

Algorithm XOR Balloon Iris Cancer Heart Sigmoid Cosine Sine

GWO 4.642 78.485 278.327 446.169 215.674 115.582 106.834 117.868
WOA 3.631 83.016 257.956 445.080 200.824 107.525 101.193 114.947
CGWO 5.042 88.242 254.763 436.795 203.752 108.403 102.482 115.960
IGWO 6.679 89.123 254.760 428.304 201.027 109.602 104.303 118.164
IGWO-DE 4.083 82.041 253.026 418.558 196.434 106.365 102.575 113.588
SOGWO 6.028 84.999 255.145 419.367 226.428 105.835 104.119 113.457
MEGWO 4.006 82.006 250.228 421.606 187.560 103.204 100.736 110.059
ChOA 18.567 101.218 261.798 448.081 436.681 118.178 114.410 124.201
CLPSO 4.718 83.013 243.539 409.368 191.807 104.569 100.259 112.333
GABC 4.287 81.694 243.405 396.128 181.685 104.776 99.997 111.433
Clb-GWO 4.236 80.352 259.565 435.156 195.156 105.654 103.457 114.655
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& The non-linear hunting aids in sampling vast areas of the complex landscapes promoting
diversity as the exploration switches to exploitation towards the end of the search process.
The advantage of the non-linear hunting is evident for functions C2, C6 and C10 wherein
the variants of GWO had fallen prey to local entrapment.

& C1 and C6 were the easiest followed by C10 and C2. Functions C4, C7, C8 and C9 were
the most challenging at achieving the perfect score with little to no improvement in the
accuracy of the digits within the maximum NFEs.

& As explained earlier for the CEC2020 test suite, the higher computational times of Clb-
GWO on account of its multi-population approach and adaptive measures’ can be mini-
mized through the adoption of parallel computational methods and virtualization technol-
ogies that allow multiple CPU cores to share the computational burden. The standard
GWO on account of its linear algorithmic approach requires less overall computational
times but cannot be extended to parallel systems as it has a single population pool whose
members are updated one after the other without any sub-divisions amongst them.

4.4 Sensitivity to tuning parameters

Clb-GWO incorporates two tuning /parameters namely, the non-linear control vector (ϕ
!
) to

balance exploration and exploitation phases and the Competition rate (comp) which is used to

Table 24 Comparison of the Statistical results and the classification rates (CR) of the algorithms from the
literature and Clb-GWO for the XOR classification dataset

Algorithms Ref XOR

Mean Std. CR (%) NFEs Pop Size Iterations Rank

GWO [40] 9.41E-03 2.95E-04 100 12,500 50 250 3
PSO [40] 8.41E-02 3.59E-02 37.5 12,500 50 250 5
GA [40] 1.81E-04 4.13E-04 100 12,500 50 250 2
ACO [40] 1.80E-01 2.53E-02 62.5 12,500 50 250 7
ES [40] 1.19E-01 1.16E-02 62.5 12,500 50 250 6
PBIL [40] 3.02E-02 3.97E-02 62.5 12,500 50 250 4
Clb-GWO This work 8.28E-06 1.75E-05 100 25,000 50 250 1

Table 25 Comparison of the Statistical results and the classification rates (CR) of the algorithms from the
literature and Clb-GWO for the Balloon classification dataset

Algorithms Ref Balloon

Mean Std. CR NFEs Pop Size Iterations Rank

GWO [40] 9.38E-15 2.81E-14 100 12,500 50 250 3
PSO [40] 5.85E-04 7.49E-04 100 12,500 50 250 5
GA [40] 5.08E-24 1.06E-23 100 12,500 50 250 1
ACO [40] 4.85E-03 7.76E-03 100 12,500 50 250 6
ES [40] 1.91E-02 1.70E-01 100 12,500 50 250 7
PBIL [40] 2.49E-05 5.27E-05 100 12,500 50 250 4
Clb-GWO This work 7.69E-16 4.12E-15 100 25,000 50 250 2
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adapt the competitive learning strategies over the problem landscapes. These values must be
determined through empirical analysis for the best exploration and exploitation trade-off and to
prevent local entrapment. Additionally, the ratio of the population count (N) and the number of
iterations (T) has to be assessed to analyze and deduce the optimal population count and the
number of iterations required by both algorithms to perform effectively. Hence an experimen-
tal setup through the CEC2020 benchmarking suite with 10 dimensions is chosen with
1,000,000 NFEs. Three experimentations to determine the perfect setting of the tuning

parameters (non-linear control vector (ϕ
!
), Competition rate (comp) and the N:T ratio) for

the perfect trade-off of the exploration and exploitation are opted and the mean and standard
deviations of Clb-GWO are recorded for 30 independent runs.

4.4.1 Influence of the non-linear control vector (ϕ
!
)

The non-linear control vector (ϕ
!
) balances the exploration and exploitation phases in the

modified GWO procedure and ensures are population diversity and prevents the algorithm
from drifting towards the geometric centre of the landscape It set to decrease exponentially
from 1 to 0 over the course of iterations after a comparative analysis of other linear, non-linear
and chaotic vectors as described below.

Firstly, its value is tested using the sinusoidal and exponentially decreasing and oscillating
vectors in the range 0 and 1. Additionally, two chaotic Logistic map and Tent map (which
have been the most opted chaotic maps in several chaotic variants of GWO) are chosen to

Table 26 Comparison of the Statistical results and the classification rates (CR) of the algorithms from the
literature and Clb-GWO for the Iris classification dataset

Algorithms Ref Iris

Mean Std. CR NFEs Pop Size Iterations Rank

GWO [40] 2.29E-02 3.20E-03 91.33 50,000 200 250 2
PSO [40] 2.29E-01 5.72E-02 37.33 50,000 200 250 5
GA [40] 8.99E-02 1.24E-01 89.33 50,000 200 250 3
ACO [40] 4.06E-01 5.38E-02 32.66 50,000 200 250 7
ES [40] 3.14E-01 5.21E-02 46.66 50,000 200 250 6
PBIL [40] 1.16E-01 3.64E-02 86.66 50,000 200 250 4
Clb-GWO This work 2.22E-02 1.65E-03 91.33 25,000 50 250 1

Table 27 Comparison of the Statistical results and the classification rates (CR) of the algorithms from the
literature and Clb-GWO for the Cancer classification dataset

Algorithms Ref Cancer

Mean Std. CR NFEs Pop Size Iterations Rank

GWO [40] 1.20E-03 7.45E-05 99.00 50,000 200 250 2
PSO [40] 3.49E-02 2.47E-03 11.00 50,000 200 250 6
GA [40] 3.03E-03 1.50E-03 98.00 50,000 200 250 4
ACO [40] 1.35E-02 2.14E-03 40.00 50,000 200 250 3
ES [40] 4.03E-02 2.47E-03 6.00 50,000 200 250 7
PBIL [40] 3.20E-02 3.07E-03 7.00 50,000 200 250 5
Clb-GWO This work 1.11E-03 2.03E-05 99 25,000 50 250 1
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generate values between 0 and 1. The mean and standard deviations of the selected test
functions for the two experimentations are provided in Table 17 and it can be observed that
the exponentially decreasing vector in the range 1 to 0 provided a better balance of population
diversity and intensification.

4.4.2 Influence of competition rate (comp)

The Competition rate (comp) is one of the key parameters to be tuned appropriately to ensure
that the algorithm switches between linear and adaptive learning based on the complexity of
the landscapes. The Competition rate is based on the failure rate or the success rate of the given
learning strategy. The failure rate is a measure of the number of consecutive failures associated
with the learning strategy and the success rate is vice-versa. The given learning strategy must
fail a higher number of times before switching to the other learning strategy as the inferior
solutions are ruled out from entering the population pool. At the same time, setting the success
rate to a higher value than the failure rate deprives the population of diversity and lead to
stagnation associated with the repetition of the same learning strategy. This setting is very
crucial such that the linear learning strategy is capable of balancing the exploration and
exploitation on its own based on the linear descent rate and is more likely to drive the
population to the geometric centre. On the other hand, adaptive learning is dependent on the
three dominant wolves and leads to entrapment if not adjusted. Hence the failure rate and

Table 28 Comparison of the Statistical results and the classification rates (CR) of the algorithms from the
literature and Clb-GWO for the Heart classification dataset

Algorithms Ref Heart

Mean Std. CR NFEs Pop Size Iterations Rank

GWO [40] 1.23E-01 7.70E-03 75.00 50,000 200 250 3
PSO [40] 1.89E-01 8.94E-03 68.75 50,000 200 250 5
GA [40] 9.30E-02 2.25E-02 58.75 50,000 200 250 2
ACO [40] 2.28E-01 4.98E-03 0.00 50,000 200 250 7
ES [40] 1.92E-01 1.52E-02 71.25 50,000 200 250 6
PBIL [40] 1.54E-01 1.82E-02 45.00 50,000 200 250 4
Clb-GWO This work 8.23E-02 2.54E-02 87.5 25,000 50 250 1

Table 29 Comparison of performance of various mechanisms for ANN training from the literature and Clb-
GWO

Ref, Year Datasets Optimization
Algorithm

Mechanism Evaluation
metric

Standard
Deviation

2019 DS2OS traffic
traces

NA LR, SVM, DT, RF,
ANN

Accuracy
LR: 98.3%
SVM: 98.2%
DT: 99.4%
RF: 99.4%
ANN: 99.4%

LR: 0.0055
SVM: 0.0064
DT: 0.016
RF: 0.014
ANN: 0.021

Current
work

XOR Clb-GWO MLP-FNN CR=100% 1.75E-05
Balloon Clb-GWO MLP-FNN CR=100% 4.10E-15
Iris Clb-GWO MLP-FNN CR=91.33% 1.65E-03
Cancer Clb-GWO MLP-FNN CR=99% 2.03E-05
Heart Clb-GWO MLP-FNN CR=87.5% 2.54E-02
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Fig. 5 Convergence characteristics of the 11 meta-heuristics for the MLP training for (a) XOR dataset
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success rate follow the ratio fr:sr = 2:1 and their sum gives the competition rate which is
always a multiple of 15. To assess the variation of the optimization outcomes, testing is
performed with the competitive rate set to 15, 30 and 45 respectively and the results are shown
in Table 18. It can be observed that the setting comp to 30 with ‘fr’ at 20 and ‘sr’ at 10 yields
the best balance between the learning strategies.

4.4.3 Influence of the N:T ratio

The optimal ratio of the population size and iterations to match the NFEs can play an important
role in determining how effectively these numbers translate to optimality. Clb-GWO is
formulated with a dual search strategy and it relies on two function evaluations in every
iteration and four ratios have been experimented with to determine the optimal ratio for the
algorithm to effectively corresponds to optimal resource utilization. From Table 19, it has been
observed that the ratios 1:4 and 1:8 have been the most successful at delivering a perfect
balance between the global and local search within the set NFEs.

5 Multi-layer perceptron training

In order to demonstrate the effectiveness of the proposed algorithm towards handling of
complex real-world with higher problem dimensions, five classification datasets and three
function approximation datasets for the MLP training from the recent literature have been
considered. The same algorithms are chosen with the previously set configurations for the
algorithm tuning settings and a comprehensive comparative analysis is provided below.

5.1 Problem description

The MLP training is accomplished through Feedforward neural networks (FNNs) with input,
hidden and output layers. The optimization algorithms are then integrated to determine the
optimal combination of weights and biases within the given upper and lower bounds to
achieve the highest classification/prediction accuracy. The optimal solution vector to be
determined by the optimization algorithm is an array of weights and biases represented by
Eq. (25).

S
!¼ W

!
; B
!n o

¼ W1;1;W1;2;…;Wn;n;B1;B2;…;Bn
�  ð25Þ

where, S
!

denotes the solution vector containing the weights and biases, W
!

is the sub-vector

containing all the weights and B
!

is the sub-vector with all the biases, Wi, j denotes the
connection weight between the ith and jth nodes, n is the total number of input nodes, Bj

denotes the bias (threshold) of the jth hidden node and j = 1,2,…,h denotes the jth hidden
node and h denotes the total number of hidden nodes.

Following it, the weighted sums of inputs are calculated as per Eq. (26).

ω j ¼ ∑
n

i¼1
Wi; j:I i

 �

−Bj ð26Þ

where, ωj is the weighted sum of inputs for the jth hidden node, Ii is the ith input.
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Table 30 Description of the algorithm-specific tuning parameters for all the algorithms used in the comparative
analysis

Algorithm Tuning / Algorithm-specific
Parameters

Value

Standard
variant

GWO Control Vector ( a!Þ to balance
exploration and exploitation
phases

Follows a linearly decrementing nature from
an initial value of 2 to a final value of 0
over the progression of iterations.

Modern
meta--
heuristics

WOA Control Vector ( a!Þ to balance
exploration and exploitation
phases

linearly decreased from 2 to 0 over the
course of iterations

Coefficient Vector (A
!Þ Randomized in the interval [−1, 1]

ChOA Chaotic Vector (m) Tent chaotic map
Control Vector (f) reduced non-linearly from 2.5 to 0 through

the iteration process
Latest advanced

variants of
GWO

I-GWO Control Vector ( a!Þ to balance
exploration and exploitation
phases

Follows a linearly decrementing nature from
an initial value of 2 to a final value of 0
over the progression of iterations.

Radius (Ri) Euclidean distance
CGWO Control Vector ( a!Þ to balance

exploration and exploitation
phases

Follows a linearly decrementing nature from
an initial value of 2 to a final value of 0
over the progression of iterations.

Chaotic Map Chebyshev map
MEGWO Scale factor (ρ) Set between 0.5 and 0.12 based on ρ∼N(0.5,

0.12)
Global-best guidance rate (GR) 0.8
Dispersion rate (DR) DRmax=0.4, DRmin=0
SR SRmax=1, SRmin=0.6
Control Vector ( a!Þ to balance

exploration and exploitation
phases

Follows a linearly decrementing nature from
an initial value of 2 to a final value of 0
over the progression of iterations.

IGWODE Control Vector ( a!Þ to balance
exploration and exploitation
phases

Follows a linearly decrementing nature from
an initial value of 2 to a final value of 0
over the progression of iterations.

Crossover Probability (CR) 0.8
Dynamic Scaling Factor (F) F ¼ f min þ f max− f minð Þ � T− t−1ð Þ

T

h i
where
fmax and fmin are the maximum and minimum

values of the scaling factor (2 and 0)
Elimination Factor (R) random integer between N/(2×ε) and N/ε

through
R ¼ N

ε ;
N
0:75� ε

� �
where
ε is scale factor of wolves updating

SOGWO Spearman’s correlation coefficient
(rR) Set between 0 and 1 through rR ¼ 1−

6� ∑
i
dið Þ2

D� D2−1ð Þ

2
4

3
5

Control Vector ( a!Þ to balance
exploration and exploitation
phases

Follows a linearly decrementing nature from
an initial value of 2 to a final value of 0
over the progression of iterations.

Threshold variable decreased linearly with iteration from a!
State-of-the-art

advanced
CLPSO Acceleration constants (cc1 and cc2) Both set to 1.49445

Inertia weight (w) 0.9 – [1 to NFEmax]×(0.7/ NFEmax)
Refreshing gap (m) Set to 7

Multimedia Tools and Applications (2023) 82:40209–40267 40257



The output of every individual hidden node is then computed as shown in Eq. (27).

H j ¼ Sigmoid ω j

 � ¼ 1

1þ exp −ω j

 �
 � ð27Þ

where, Hj is the output of the jth hidden node.
The weighted sum outputs of the hidden nodes are then calculated as per Eq. (28).

ok ¼ ∑
h

j¼1
wj;k :H j

 �

−Bk
0 ð28Þ

Where, ok is the weighted sum of inputs for the kth output node, wj, k denotes the connection
weight between the jth and kth nodes, Bk

′ denotes the bias (threshold) of the kth output node.
The output of every output is then computed as per Eq. (29).

Ok ¼ Sigmoid okð Þ ¼ 1

1þ exp −okð Þð Þ ð29Þ

The objective function is simply formulated as Mean Square Error (MSE) where a given set of
training samples is applied to the MLP and the difference between the desired output and the
value that is obtained from the MLP. Finally, the performance of an MLP is evaluated based
on the average of MSE over all the training samples as denoted by Eq. (30).

Minimize : F S
!� �

¼ MSE ð30Þ
where,

MSE ¼ ∑
T

t¼1

∑
Y

y¼1
aty−d

t
y

� �2

T

Table 30 (continued)

Algorithm Tuning / Algorithm-specific
Parameters

Value

meta--
heuristics

Learning Probability (Pc) Particles from 1 to 30 have a Pc value
ranging from 0.05 to 0.5 based on

Pci ¼ 0:05þ 0:45� exp 10 i−1ð Þ
ps−1ð Þ−1½ �

exp 10ð Þ−1ð Þ
GABC Strategy ABC/best/1

Limit 0.6×SN×D
where,
SN stands for population scale and
D is the number of problem dimensions

Φ random number in the range [−1,1]
Chaotic iteration (K) with a

sinusoidal iterator
300

Clb-GWO Control Vector (Φ
!Þ to promote

population diversity

Follows an exponentially decrementing
nature from an initial value of 1 to a final
value of 0 over the progression of
iterations.

Competition rate (comp) fr+sr
where fr=20, sr=10
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where, t = 1, 2, …,T denotes the current training sample and T denotes the total number
of training samples, y = 1, 2, …,Y denotes the current input and Y denotes the total
number of outputs, aty is the actual output of the yth input unit when the tth training

sample appears in the input, dty is the desired output of the yth input unit when the tth

training sample appears in the input,

5.2 Experimental setup

A detailed description of the datasets is presented in Table 20 and the optimization is
terminated upon reaching the maximum NFEs for 10 independent runs. In order to have a
fair comparison, all the algorithms are given 25,000 NFEs with an initial population of 50. The
statistical results of the optimization are given in Table 21 and Table 22 for the classification
datasets and the function approximation datasets respectively. The computational times are
given in Table 23.

It is evident from Table 21 that the classification training and testing efficiencies of
Clb-GWO are excellent with similar computational times to its competitors. The perfor-
mance of Clb-GWO was best for the XOR and balloon datasets and it managed to
achieve the least MSE for both with 100% classification rates. Furthermore, the MSE
obtained by Clb-GWO has been the least for all five of the classification datasets
indicating its superiority in training neural networks. One important outcome of the
optimization has been the effective handling of problem dimensions by Clb-GWO and
this is clearly demonstrated in the Heart dataset where the highest classification rate of
87.5% was achieved by Clb-GWO with the least training MSE. Compared to the
canonical GWO, the classification rate has more than doubled while the other variants
of GWO excluding SOGWO and MEGWO fail to achieve higher classification rates. A
major reason for their poor performance is the lack of strong exploration capabilities with
the necessary adaptive frameworks to support the hunt of grey wolves to advance their
hunt during the search process. Furthermore, the Heart dataset helps evaluate the
proposed algorithm’s immunity to the curse of dimensionality and highlights the excel-
lent solution diversification system in Clb-GWO. In addition to these, the lower standard
deviation rates for Clb-GWO help affirm its consistency in dealing with multi-modal
large dimensional problems with enhanced exploration and exploitation.

The performance of Clb-GWO for the function approximation datasets (from Table 22) was
more or less similar to its competitors and it can be observed the proposed methods present a
slight advantage in training and testing with the least possible error rates. However, Clb-GWO
remained the most consistent of them with the least possible deviation rates for all three cases.
Given that the search landscapes for the function approximation datasets are composed of
multiple peaks and valleys, most algorithms often converge to local optimal solutions as seen
with the current testing. The convergence to the global optimal solution in these cases requires
higher computational budgets well above the current considerations and while requiring
additional training samples to improve the accuracy of testing. Nevertheless, the function-
approximation datasets provide a good platform to validate the consistency of the meta-
heuristic and it can be concluded that Clb-GWO is the most consistent of the testing group.

The computational times recorded by Clb-GWO are quite similar to the standard GWO
despite its adaptive frameworks and multi-strategy approach. A closer inspection reveals
that in all the cases except the balloon dataset, the computational times of Clb-GWO are
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lower than GWO by about 2 to 5%. This is on account of the greedy selection integrated
into the competitive learning strategies that avoid population updation in case of an inferior
solution. The standard GWO on the other hand updates the population of all its members
irrespective of their fitness levels requiring higher computational times for larger dimen-
sional problems.

Tables 24, 25, 26, 27 and 28 compare the statistical results of Clb-GWO with several other
algorithms including GWO, PSO, GA, Ant Colony Optimization (ACO), Evolution Strategy
(ES) and Population-based Incremental Learning (PBIL) from [40].

On comparing Clb-GWO’s performance with the other algorithms for the five classification
datasets from the literature, it can be found that the overall efficiency of Clb-GWO is higher as
it ranks on the top for all the datasets. Excluding the balloon dataset, Clb-GWO ranked first in
terms of training and classification efficiency. Despite the fact that the competitor algorithms
for XOR and Balloon datasets utilized half the computational budget, the performance to
budget ratio of Clb-GWO is better as it recorded better mean and lower deviation rates
accounting for its enhanced precision. For the latter, the MSEs and classification rates obtained
by Clb-GWO are better than the rest as it utilized half the computational resources. The
classification rate of Clb-GWO has never fallen below 85% indicating its superiority in
training neural networks with larger datasets. The classification rate achieved by Clb-GWO
at 87.5% for the Heart dataset has been the highest so far and it manages to reach the same with
half the number of function evaluations compared to the methods from the literature.

A comparison of the performance of other methods such as Logistic Regression (LR),
Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Artificial
Neural Network (ANN) from [17] are provided in Table 29.

From Table 29, the performance of Clb-GWO for MLP-FNN training is on par with the
other contemporary mechanisms as it achieved higher classification rates of 99% or above for
three datasets. Furthermore, the lower standard deviation rates achieved for the MLP FNN
training indicates the consistency and reliability of Clb-GWO for MLP training.

The convergence curves for the various datasets comparing all the algorithms are provided
in Fig. 5.

Observing the nature of convergence, the proposed method has quicker convergence
capabilities compared to its competitors. The convergence speeds for the five classification
datasets have been dominated by Clb-GWO as it surpassed its competitors demonstrating its
enhanced exploitation capabilities. It can also be observed that at times of stagnation, the
adaptive triggers in Clb-GWO enable it to diversify the population such that stagnation is
avoided. This is clearly seen in Fig. 5 (a), (b), (c) and (e) where the MSE drops down in
sequences as the feedback system tunes the search direction to prevent entrapment as seen with
ChOA and GWO. Similar convergence characteristics were obtained for all the algorithms
with the function approximation models. However, Clb-GWO remained the fastest as it
managed to converge within the least possible time span.

6 Conclusion

This article realizes an improved meta-heuristic optimization technique known as Clb-GWO
with dual search strategies and population sub-division structured in a selective complimentary
arrangement to improve population diversity through the development of difference vectors and
learning strategies. The proposed method has a better performance in handling constrained and
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unconstrained problems and has been effective at avoiding local entrapment in complex search
landscapes. A better balance of exploration and exploitation with accelerated convergence has
been witnessed across the various test cases with statistically significant performance.

Furthermore, the benchmarking analysis of the CEC2020 test functions proved that Clb-
GWO was quite capable of effectively utilizing the increased computational resources and
delivering optimal solutions for the increments in the problem dimensions. The results
obtained were statistically significant (Wilcoxon’s rank-sum test) and Clb-GWO ranked first
in most test cases in Friedman’s test. Clb-GWO stood immune to the curse of dimensionality
and had little to no performance deterioration for the increased number of problem dimensions.
Ten special benchmark functions from the CEC2019 benchmark suite to validate the explor-
atory skills and avoidance of local optima with challenging search landscapes comprising of
several calculatedly placed local optimal solutions. The performance of Clb-GWO in compar-
ison to GWO, its variants and the modern meta-heuristics was better having mean values
closer to the best values and also having the least standard deviation. The proposed method
avoided local entrapment with good exploratory capabilities in several cases compared to its
competitors most of which fell prey to the local entrapment while recording lower computa-
tional times in most cases. The MLP training for different cases was dominated by Clb-GWO
in terms of optimality, computational times and lower deviation. In terms of solution optimal-
ity and accuracy, Clb-GWO’s performance was superior compared to the meta-heuristics from
the literature with higher performance to computational cost ratio. This indicates that the
proposed method can effectively handle problems with multiple constraints and a large number
of dimensions.

6.1 Merits and demerits

The improvement and enhancement techniques in meta-heuristics have contributed to the
betterment and have aided researchers to push the potential of optimization to new heights.
These advancements although unique to one specific meta-heuristic can be experimented with
the other algorithms and have opened up greater opportunities in the pursuit of the perfect
optimization paradigm. Although quite successful and efficient in many cases, the improve-
ment techniques have their fair share of criticism and complications. The “No free lunch
theorem” summarizes that the perfect optimization algorithm for every optimization task is not
practically feasible and an optimization technique that excels with one class of optimization
problems may not perform adequately when deployed for other classes of optimization
problems. Hence, to have a fair and unprejudiced view, the merits and the demerits associated
with the proposed method are discussed below.

6.1.1 Merits

& The increasing problem complexity with the dimensions of the problem did not affect the
performance of Clb-GWO for CEC2020 functions. The same performance could not be
witnessed in the standard GWO algorithm nor its variants and the two modern meta-
heuristics chosen from the comparison indicates that Clb-GWO is immune to the curse of
dimensionality. This is attributed to the competitive learning phase and the greedy
selection strategy promoting elitism and avoiding local entrapment while effectively
repositioning the position of the wolves from the modified GWO process. The balance
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of exploration and exploitation system by the various competitive leaving strategies is the
other reason for its dominant performance in most benchmarking scenarios.

& The population sub-division into the majority and minority groups dedicated to a specific
purpose following the dual search strategy has been the stronghold of the proposed
method. Exploration and population diversity with the algorithm’s dependency on the
three dominant wolves has been balanced through this structuring of the algorithm.

& A good exploration and exploitation balance has been possible through the empirically set

values of the non-linear control vector (ϕ
!Þ and competition rate (comp). The proposed

method delivered solutions at the global optimum or closer to it in most complex
benchmarking cases avoiding local entrapment and also had good convergence character-
istics with the empirically tuned parametric settings.

& The system of double fitness evaluations (DFEs) has been a positive reinforcement
allowing the modified GWO procedure and the competitive learning procedure to syner-
gistically work with respect to each other and help reposition the omega wolves with
increased population diversity encouraging better coverage of the search landscape.

& The linear and adaptive competitive learning strategies coupled with the greedy selection
strategy promoted elitism by selecting the best wolves and the best solution is assigned as
the alpha wolf and passed on to the standard GWO procedure in the next iteration to
further refine and explore the solutions and help the algorithm to gain a better knowledge
of the search landscape. An example of this can be seen in the CEC2019 benchmarking
test and the standard engineering problems where Clb-GWO avoided local entrapment and
delivered better optimal solutions while maintaining a minimal standard deviation of its
results.

& The dependence of GWO on the alpha, beta and delta wolves to reposition every omega
wolf is lowered in Clb-GWO. The formulation of unique difference vectors with the
inclusion of randomised omega wolves allows for better information exchange between
the different wolves and prevents local entrapment associated with a lower diversified
population system.

& The greedy selectins strategy adopted in the competitive learning phase allows only the
solutions with superior fitness to enter the population pool for the next generation. This
system promotes elitism allowing the algorithm to concentrate its search on the potentially
best areas within the search landscape. Global search is prioritised through the greedy
selection and local search is prioritised through the initial Mu, Lambda selection the
standard GWO procedure.

6.1.2 Limitations

& The incorporation of double fitness evaluations (DFEs) although beneficial to the perfor-
mance of Clb-GWO, requires the lowering of the population size or the number of
iterations for predefined NFEs. This has been witnessed in all the benchmarking and other
testing scenarios where the population size had to be lowered by half to match the required
NFEs while the iteration count was the same. Lower population size may result in reduced
population diversity and the worst cases lead to local entrapment. Although Clb-GWO
showed a greater capability at dodging the local entrapment, the choice to either drop the
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population size or iteration count to match the other algorithms with single fitness
evaluations (SFEs) has to be dealt with by the practitioner through meticulous planning.

& Despite the fact that the empirically set values for the non-linear control vector (ϕ
!Þ and

competition rate (comp) resulted in good optimization outcomes, but the scope for
additional tuning and modification persists. The performance of Clb-GWO for the
CEC2019 was better only for seven out of the ten functions and for the others, the
solutions were in close proximity to the global optimal solution. This indicates that through
additional tuning management, a better performance suited for the problems’ search
landscape is possible.

& Although Clb-GWO benefits from a higher iterative count, its performance was compar-
atively better for the MLP training with only 250 iterations. The benchmarking for the
CEC2020 with 5D test case was the only limiting condition as the lower number of
functions evaluations prevented it from fully converging.

& The dependence of Clb-GWO on the random omegas (at least 7 different omega wolves)
mandates the population size to be set above seven at all times. The algorithm may fail to
run with a population size lower than seven.

6.2 Future scope

Clb-GWO can be deployed to a wide spectrum of problems falling under artificial intelligence,
power systems, machine learning etc. Practitioners are free to modify the proposed method as
per their requirements and hence to encourage such an extendibility, simplicity has been
embraced in the design of Clb-GWO. The proposed method can be applied to various other
optimization areas in power systems such as elective vehicle (EV) optimization, power
electronics, smart grid integration, distribution systems, power dispatch problems, control
systems, power quality enhancement etc. In computer science, the proposed method can be
deployed toward neural network (NN) training (convolution NNs). Image classification, data
classification, pattern recognition etc. can be optimized through the proposed methods. A plan
to deploy the current method for the infection detection of COVID-19 from the X-ray images
via a support vector classifier is in its roots. Feature selection is a potential area of application
of the proposed methods through the formulation of a binary version of Clb-GWO. The
realization of a multi-objective variant is a possibility for tackling problems requiring a Pareto-
optimal front. The idea to develop a multi-objective variant for the optimization of energy
management in EVs has been planned as a project. In electrical engineering, Clb-GWO can be
adopted and modified for parameter estimation in photovoltaic cells and battery management
systems. While penalty function has been considered for most of the benchmarking with the
current method, other constraint handling techniques can be integrated and experimented with
for several of the existing problems. The proposed competitive learning strategies can be
extended to other meta-heuristics for experimental analysis towards its improvement.

Furthermore, Clb-GWO can be deployed to tackle problems at strategic, tactical and
operational levels for ride-sharing systems like Uber, Ola etc. Optimal carpooling is another
possibility that can be realized through Clb-GWO as it can effectively handle problems with
higher dimensionality. Real-time optimization in several domains including automated sens-
ing, sensor fusion, and electric vehicles can benefit from the exploratory capabilities of Clb-
GWO and artificial intelligence techniques.
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Appendix

Availability of source codes:

& The MATLAB code of Clb-GWO is available at the GitHub repository:
https://github.com/VAMSIKRISHNA-Optimization/A-Competitive-learning-based-Grey-
Wolf-Optimizer-for-Engineering-Problems-and-its-application-to-Pow.git

& The MATLAB code of CEC2020 test suite is available at the GitHub repository:
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark

& The MATLAB code of CEC2019 test suite is available at the GitHub repository:
https://github.com/P-N-Suganthan/CEC2019

& The MATLAB code of MLP training for all the eight datasets is available at:
https://in.mathworks.com/matlabcentral/fileexchange/52273-grey-wolf-optimizer-for-
training-multi-layer-perceptrons-all-classification-and-function-datasets?s_tid=ta_fx_
results
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