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Abstract
Image segmentation is a critical stage in the analysis and pre-processing of images. It
comprises dividing the pixels according to threshold values into several segments de-
pending on their intensity levels. Selecting the best threshold values is the most chal-
lenging task in segmentation. Because of their simplicity, resilience, reduced convergence
time, and accuracy, standard multi-level thresholding (MT) approaches are more effective
than bi-level thresholding methods. With increasing thresholds, computer complexity
grows exponentially. A considerable number of metaheuristics were used to optimize
these problems. One of the best image segmentation methods is Otsu’s between-class
variance. It maximizes the between-class variance to determine image threshold values. In
this manuscript, a new modified Otsu function is proposed that hybridizes the concept of
Otsu’s between class variance and Kapur’s entropy. For Kapur’s entropy, a threshold
value of an image is selected by maximizing the entropy of the object and background
pixels. The proposed modified Otsu technique combines the ability to find an optimal
threshold that maximizes the overall entropy from Kapur’s and the maximum variance
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value of the different classes from Otsu. The novelty of the proposal is the merging of two
methodologies. Clearly, Otsu’s variance could be improved since the entropy (Kapur) is a
method used to verify the uncertainty of a set of information. This paper applies the
proposed technique over a set of images with diverse histograms, which are taken from
Berkeley Segmentation Data Set 500 (BSDS500). For the search capability of the
segmentation methodology, the Arithmetic Optimization algorithm (AOA), the Hybrid
Dragonfly algorithm, and Firefly Algorithm (HDAFA) are employed. The proposed
approach is compared with the existing state-of-art objective function of Otsu and Kapur.
Qualitative experimental outcomes demonstrate that modified Otsu is highly efficient in
terms of performance metrics such as PSNR, mean, threshold values, number of iterations
taken to converge, and image segmentation quality.

Keywords Image segmentation .Multi-level thresholding .Metaheuristics . Otsu . Kapur’s
entropy

1 Introduction

In the domain of computer vision and image processing, image segmentation is a key
component. A single image is always better than thousand words. Segmentation aims to
extract features and track information of an image. Image segmentation divides the image
into a set of non-overlapping contours based on certain properties like texture, color, homo-
geneity, and structure [37, 39]. An automatic image segmentation process always remains a
very complex procedure in image processing. This process becomes more sophisticated when
test images are natural, realistic, and degraded. An algorithm may be called a good segmen-
tation technique if it is able to differentiate among different classes of images or frontiers. The
major issue in segmentation is identifying the scene elements successfully in an image. Further
application of image thresholding is image recognition. Image thresholding can be categorized
into, i.e. single-level and multi-level thresholding methods. In single-level thresholding seg-
mentation processes, only one threshold value is needed, while in multi-level, multiple
thresholds are required. The main problem is to find the appropriate values for each picture
based on the histogram [31]. Image segmentation can be used in a wide variety of applications,
including different fields like biomedical, satellite, infrared (IR), surveillance, agricultural
images, etc. These other modalities have unique information, and therefore it is a complex
process to make a generalized automatic thresholding technique.

In 1979, Otsu proposed a thresholding method that maximizes the between-class variance
and minimizes intraclass variance to achieve optimum threshold values and generates better
results [1]. In order to perform segmentation based on image thresholding, Otsu’s between
class variance and other maximum entropy methods like Kapur’s entropy [13], Renyi’s
entropy [10], and Tsallis entropy [30] have been developed. This approach combines infor-
mation theory successfully, but the probability of a gray level value being shown primarily
affects the methodologies. Another reason for influencing or affecting the segmentation results
is to ignore the gray level value of the pixels. The brightness and contrast of an image are not
affected by the 1-D Otsu method. Furthermore, it is a procedure with less computation cost for
a small number of thresholds. Nevertheless, the algorithm primarily considers only the gray
level value; for that reason, it fails to produce optimum results in the case of noisy images.
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Tsallis in [2] suggested using the idea of moment-preserving to create a threshold approach
for a robust gray image. Kapur, Sahoo, andWong utilized histogram entropy in amethod termed
Kapur entropy to discover optimal thresholds [21] and commonly employed the approach to
detect the problem of picture threshold segmentation. Cross-entropy reduces the cross-entropy of
a picture and the segmented image [10, 26], and the optimal threshold is also utilized for
detecting the ideal thresholds. Entropy-basedmethods aremore common among all themethods
listed above. Several thresholding methods have been included in the literature [48].

In addition, these approaches may be easily applied to the segmentation of thresholding
using multi-levels. For many thresholds, however, the computational time will increase
exponentially as they hunt for the best threshold values to improve objective features, resulting
in increasingly longer calculation times. Separating objects from backgrounds is the hardest
and most complex task in image processing [1]. Background and foreground can be differen-
tiated using the segmentation process. To define multiple regions of an image, multi-level
thresholding techniques have been developed, but the computational cost also increases with
an increasing number of thresholds. Given this, it is necessary to adopt algorithms that help to
search for the optimal threshold values. The most preferred and cost-effective procedure for
thresholding is using metaheuristic or optimization algorithms [13, 37].

On the other hand, metaheuristic algorithms (MA) are used to define the process of
finding the optimal solution out of available solutions while considering different
constraints [10, 30]. This property of the optimization algorithm is used to find the
optimal thresholding value used for image thresholding. Different objective functions
like Otsu, Kapur, Renyi, Tsallis, etc. [2, 21, 26] are defined to calculate optimal
threshold values. Some recently proposed MA are the Hybrid Dragonfly algorithm
(DA) and Firefly Algorithm (FA) (HDAFA) [39], the Starling Murmuration Optimizer
[48], the Conscious Neighborhood-based Crow Search Algorithm (CCSA) [46], the
Quantum-based avian navigation optimizer algorithm (QANA) [47], the Opposition-
based Moth Swarm Algorithm (OBMSA) [32], the Archimedes optimization algorithm
(AOA) [14], to mention some.

In the related literature, metaheuristic algorithms and their improved versions are used
for multi-level segmentation. Such as artificial bee colony (ABC) [44], genetic algo-
rithms (GA) [40], honey bee mating optimization (HBMO) [17], modified firefly algo-
rithm (MFA) [15], particle swarm optimization (PSO) [30], bacterial foraging algorithm
(BFA) [45], differential evolution (DE) algorithms [25], wind-driven optimization(WDO)
[24], cuckoo search (CS) algorithms [31], ant colony algorithm (ACO) [11], grasshopper
optimization algorithm (GOA) [27], self-adaptive parameter optimization (SAPO) [8],
electromagnetism-like optimization (EMO) algorithm [16], and glowworm swarm opti-
mization (GSO) algorithms [29]. Some other interesting approaches that successfully
segment digital images are based on modern MA as the Coronavirus Optimization
Algorithm combined with Harris Hawks Optimizer [18], the improved modified Differ-
ential Evolution (MDE) [35], the directional mutation and crossover boosted ant colony
optimization (XMACO) [34], the Harris Hawks Optimizer (HHO) [36], the Mutated
Electromagnetic Field Optimization (MEFO) [4] or the Altruistic Harris Hawks Opti-
mizer [5]. From these methods it is possible to see that the use of MA for thresholding
also benefits field as medicine, where the proper analysis of the images is crucial for a
good diagnosis.

The paper aims to present a methodology for image segmentation using the Arithmetic
Optimization algorithm (AOA) [3] and Hybrid Dragonfly algorithm (DA) and Firefly
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Algorithm (FA) HDAFA using modified Otsu’s function. The results of modified Otsu’s are
compared with the standard Otsu and Kapur’s methods. The suggested approach combines
local properties performed using Otsu with the entropy of Kapur. In this context, the maximum
variance value frommultiple Otsu classes is coupled with themaximum total entropy computed
from Kapur’s entropy method. The novelty of the proposed hybrid objective function is the
combination of the between-class variance with the entropy. Since entropy is a tool that helps to
measure the uncertainty of a set of information, it clearly improves the segmentation by
selecting the appropriate thresholds that reduce such uncertainties by maximizing the entropy
and the variance at the same time.

On the other hand, due to its simple and easy application, AOA has been applied to
address various real-time problems, like encompassing the lifetime of the RFID network,
photovoltaic systems, and range-based wireless node localization [41]. In this paper, the
application of AOA is extended to multi-level digital image segmentation by thresholding.
Although randomization and static swarm behavior have a great worldwide search capa-
bility for AOA, its local search capabilities are limited and result in local optima capturing.
At the original phases, the iteration level hybridization method guarantees exploration
capability and exploitation capability in the subsequent phases and ensures an enhanced
accuracy of the global optimum [41].

It uses common mathematical operations such as Division (D), Addition (A), Multiplication
(M), and Subtraction (S), which are applied and modeled to execute optimization in a wide
variety of search fields. Population-based algorithms (PBA) [7] commonly launch their
improvement processes by randomly selecting several candidate solutions. A defined solution
is enhanced incrementally by a set of optimization rules and analyzed sequentially by a
particular objective function, which is the basis of optimization techniques. Although PBA
is stochastically trying to find some efficient strategy for optimization problems, a single-run
solution is not guaranteed. However, a large set of possible solutions and optimization
simulations improve the chance of an optimum global solution to the problem c. The major
contributions of this paper may be summarized as:

& Propose a modified Otsu method and use it as an objective function for image
segmentation.

& The local properties of Otsu’s between-class variance, like the maximum variance value
achieved from multiple Otsu classes, are combined with maximum total entropy calculated
from the Kapur method.

& The effectiveness and quality of solutions generated by modified Otsu’s are evaluated
using arithmetic optimization algorithm (AOA), hybrid dragonfly algorithm, and firefly
algorithm HDAFA.

& The performance of the modified Otsu has been investigated on images widely used in the
image processing literature and compared with a basic Otsu method.

& Quantitative analysis is carried out using different threshold values, PSNR, mean, STD,
and number of iterations.

The structure of this manuscript is as follows, Section 2, presents the basic concepts of image
segmentation and the modified Otsu approach. Section 3 includes AOA, motivation, explora-
tion, and exploitation stages. Section 4, provides statistical testing/ qualitative parameters,
performance evaluation and comparison, experimental results, and related comparative ana-
lysis, among other state-of-art. Finally, the paper is concluded in section 5.
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2 Image segmentation

Each local region of a picture has a distinct threshold based on its features. Histogram-based
thresholding is the most popular approach for segmenting digital pictures. The automated
separation of pictures and context is the most active and intriguing field of image processing
and pattern recognition [37]. However, it can also provide original forecasts or pre-processing
for more complicated phases.

Depending on the threshold values needed to segment the image, thresholding may be
defined by bi-level (BT) or multi-level (MT) thresholding defined by Eq. 1. Bi-level
thresholding divides an image into two distinct regions, while MT creates multiple regions
in an image.

b x; yð Þ ¼ a1←b x; yð Þ if 0≤b x; yð Þ < T
a2←b x; yð Þif T ≤b x; yð Þ < L−1

� �
ð1Þ

For a given image b(x, y) having a size (m × n) with L intensity levels, a1 and a2 are two
different classes depending on the threshold value T. While opting for bilevel thresholding,
extra care should be seen to find a suitable correct threshold value (T ). To improve segmen-
tation results, MT is used in many cases [7]. Besides, the traditional techniques are calculatedly
costly owing to the multimodality of the histogram if many thresholds are necessary. This is a
difficult question; thus, scholars have identified several ways for the pre-eminent gray
threshold [24].

2.1 Otsu’s between class variance

The between-class variance proposed by Otsu is a nonparametric automatic method for image
segmentation that employs threshold values [19]. In Otsu’s method, the intraclass variance is
calculated and it provides optimum threshold values. a1, a2, …. , an are different classes of
image with different threshold values. In this sense to employ the Otsu’s between class
variance, it is necessary to compute the probability distribution pi that is given as:

pi ¼
ni
N

ð2Þ

where ni is a number of a pixel having grey level i, and N is the total number of pixels. The
average grey level of an image I is given by

μI ¼ ∑
L−1

i¼0
iPi ð3Þ

a1 ¼ P0

ωa
;
P1

ωa
;
P2

ωa
……

PT

ωa
ð4Þ

a2 ¼ PTþ1

ωb
;
PTþ2

ωb
……

PL−1

ωb
ð5Þ

Where, ωa ¼ ∑T
i¼0pi; ωb ¼ ∑L−1

i¼Tþ1pi

40705Multimedia Tools and Applications (2023) 82:40701–40743



The average levels of μa and μb for two classes of a1 and a2 are as follows:

μa kð Þ ¼ ∑
T

i¼0

ipi
ωa

;μb kð Þ ¼ ∑
L−1

i¼Tþ1

ipi
ωb

ð6Þ

If the mean intensity of the image is given by μI then

ωaμa þ ωbμb ¼ μI ; ωa þ ωb ¼ 1 ð7Þ
Between class variance σ2B needs to be maximized to find the optimal thresholding value using
the following equation:

σ2B ¼ ωa μa−μIð Þ2 þ ωb μb−μIð Þ2 ð8Þ
Bilevel thresholding generates two separate regions based on the intensity of a single threshold
value. A further extension from bi-level to multi-level thresholding may be carried out for
Otsu. In addition, multi-level thresholding generates several regions [a1, a2, a3, ai, ……. . an]
based on the following rules:

a1←b x; yð Þ if 0 < b x; yð Þ < T1

a2←b x; yð Þ if T1 < b x; yð Þ < T 2

a3←b x; yð Þ if T2 < b x; yð Þ < T 3
ai←b x; yð Þ if T i−1 < b x; yð Þ < Tiþ1

�
�

an←b x; yð Þ if Tn−1 < b x; yð Þ < L−1

ð9Þ

where n defines the number of classes like [a1, a2, a3, ai, ……. . an] considering i as a certain
class for a given image b(x, y) having L gray levels (1,2,…, L) in the range [0, L-1]. Extended
between the class value is given by f(k) defined as the between-class variance.

f kð Þ ¼ ∑
M

i¼1
ωi μi−μTð Þ2 ð10Þ

while considering the above classes, the Otsu method can be easily extended to multi-level
thresholding forM-1 thresholding levels. Where ωi is a zeroth-order cumulative moment for ith

class and μT is mean intensity for hole image. In 2001 Liao proposed a simple and less
complex alternative method given by the following equation for k thresholds [28].

f kð Þ ¼ ωa kð Þμa
2 kð Þ þ ωb kð Þμb

2 kð Þ ð11Þ
From Eq. 11, μa and μb are average levels for classes a1 and a2 already explained. If the
between-class variance has a maximum value, then within class variable will always have a
minimum value. This methodology is described in Eq. 12

f OTSU Tð Þ ¼ ∅o ¼ Arg max f kð Þð Þ; 0≤k≤L−1 ð12Þ

where fOTSU represents fitness function, and maximizing this would correspond to optimal
intensity threshold levels. The fitness function considering i multi-level threshold values is
given by Eq. 13.

40706 Multimedia Tools and Applications (2023) 82:40701–40743



f OTSU T ið Þ ¼ ∅o ¼ Arg max f kið Þð Þ; 0≤k≤L−1; i ¼ 1; 2;……::;T ð13Þ

2.2 Kapur’s entropy

The basic concept underlying Kapur’s entropy approach is Shannon entropy. Shannon pro-
posed an entropy function based on the idea that the probability of occurrence is inversely
proportional to information [20]. The Shannon entropy for a system H is defined in Eq. 14.

H ¼ − ∑
n

i¼1
Pilog2Pi ð14Þ

WhereH is Shannon entropy, Pi is the probability of the ith gray level, and n is the total number
of pixels. Kapur’s entropy is implemented using the probability distribution of the gray-level
histogram. The maximal value of Kapur’s entropy is obtained from the optimal threshold
value. To define it, let us consider pa, pb, …. . ps as the probability distribution of gray level.
Two distinct distributions for object and background are derived from discrete values in the
range of a to m, and another value proceeds from 1 + m to n; these are symbolized by A and B
and are defined as follows:

A :
pa
pm

;
pb
pm

;……
ps
pm

ð15Þ

B :
pmþ1

1−pm
;
pmþ2

1−pm
;……

pn
1−pm

ð16Þ

The following equations define the corresponding entropies for the probability distributions
A and B:

H Að Þ ¼ − ∑
s

i¼a

pa
pm

ln
pa
pm

¼ −
1
pm

∑
m

i¼a
paln pa−paln pa

� �
¼ ln pm þ Hm

pm
ð17Þ

H Bð Þ ¼ − ∑
n

i¼1þm

pi
1−pm

ln
pi

1−pm
¼ −

1
1−pm

∑
n

i¼mþ1
piln pi− 1−pmð Þln 1−pmð Þ

� �

¼ ln 1−pmð Þ þ Hn−Hm

1−pm
ð18Þ

In order to find the optimal threshold value, a sum of these two entropies must have attained
maximum value, and the final expression is defined in Eq. 19.

φs ¼ HA þ HB ¼ ln pm þ Hm

pm
þ ln 1−pmð Þ þ Hn−Hm

1−pm
φm ¼ ln pm 1−pmð Þ þ Hn−Hmð Þpm þHm 1−pmð Þ

pm 1−pmð Þ
ð19Þ
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Notice that Max(φs) gives optimal threshold value with the well-separated object and back-
ground details.

Multi-level thresholding using Kapur’s entropy Adopting the entropy-based segmentation
can only be beneficial if multi-level segmentation is performed. Kapur’s entropymethod can be
stretched from two-level to MT. The entropy of an image is a measure of its compactness and
addresses how separationmay be carried out among different classes. An image may be divided
into different segments using multiple threshold values, as explained in the next equations.

H að Þ ¼ − ∑
t1−1

i¼a

pi
pa
ln
pi
pa
; p0 ¼ ∑

t1−1

i¼a
pi

H bð Þ ¼ − ∑
t2−1

i¼a

pi
pb
ln
pi
pb
; p1 ¼ ∑

t2−1

i¼a
pi

H cð Þ ¼ − ∑
t3−1

i¼a

pi
pc
ln
pi
pc
; p2 ¼ ∑

t3−1

i¼a
pi

H jð Þ ¼ − ∑
t jþ1−1

i¼t j

pi
p j
ln
pi
p j
; pj ¼ ∑

t jþ1−1

i¼t j
pi

H mð Þ ¼ − ∑
L−1

i¼tm

pi
pm

ln
pi
pm

; pm ¼ ∑
L−1

i¼tm
pi

ð20Þ

Where, pi is the probability that event i occurs, H denotes entropy, m represents dimensions
and pa,pb, …,pm represents the probability of grey level for different areas in a multi-
dimensional way. The optimal threshold value is chosen analogously, such the objective
function is maximized [43]. The Eq. 21 defines the Kapur’s objective function.

f Kapur thð Þ ¼ ∅k ¼ argmax ∑
m

i¼0
Hi thð Þ; 0≤ th≤L−1 ð21Þ

To extend the above expression for multi-level thresholding Kapur’s objective function is
defined as follows:

f Kapur THð Þ ¼ f Kapur thið Þ; i ¼ 1; 2; 3;…; k ð22Þ
where different thresholds are represented by TH [th1, th2, th3, …, thk − 1] and i correspond to
a specific class.

2.3 A modified Otsu’s between class variance

In Kapur’s entropy, if H(A) and H(B) are identical or similar, i.e., variance between the classes
is less than both classes are same as given below:

H Að Þ ¼ H Bð Þ ð23Þ

ln ps þ
Hs

ps
¼ ln 1−psð Þ þ Hn−Hs

1−ps
ð24Þ
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In general terms, a value of∅k will be maximum at s ¼ 1
2 n for symmetrical distribution, where

n is the total number of grey levels. However, this concept cannot be useful for images having
multiple objects superimposed on the same background. If an image has two different objects
with the same histogram level to be segmented, that image can be segmented using the
proposed multi-level thresholding method [6, 28]. In the proposed methodology, the local
properties carried out using Otsu’s variance are combined with Kapur’s entropy. In this case,
the maximum variance value obtained from different classes of Otsu is combined with the
maximum overall entropy calculated from Kapur’s entropy. The proposed method presented in
Eq. 25 is the proposed modification of Otsu. Here Kapur’s entropy function is used as a weight
function for Otsu.

ψi ¼ f OTSU T ið Þ � f Kapur thið Þ ð25Þ
Otsu and Kapur’s entropy objective functions fall under the optimization problems used in
image segmentation. Otsu maximizes the between-class variance, and Kapur’s entropy max-
imizes posterior entropy. As discussed in subsequent sections, the experimental results prove
that the proposed modified algorithm can produce better segmentation results.

3 Optimizing the proposed improved Otsu’s method

This section explains how the different metaheuristic algorithms could be used to optimize
the modified Otsu’s method proposed in the previous section. Here two algorithms are
discussed that will be used to generate an optimum value of multi-level threshold value
using various objective functions like modified Otsu, the standard version Otsu, and
Kapur’s method. Basically, the thresholding techniques are treated as optimization prob-
lems. To exemplify the implementation of metaheuristics to search for the best configu-
ration of thresholds, they are used the Arithmetic Optimization algorithm (AOA) [3] and
the Hybrid Dragonfly algorithm and Firefly Algorithm (HDAFA) [39]. The basic con-
cepts, such as optimization techniques, are explained in this section. Finally, their imple-
mentation for image thresholding is also described.

3.1 AOA to optimize the modified Otsu’s function

Considering the variations among meta-heuristic methods in population-based approaches, the
optimization process comprises two cycles: exploitation vs. exploration. The previous exam-
ples of extensive coverage are search fields utilizing search agents to bypass local solutions.
Above is the increase in the performance of solutions achieved during the exploration process,
as shown in Fig. 1.

The AOA algorithm intends to explore the search space position (optimum threshold value)
for the multi-level threshold issue that maximizes the objective function considered in Eqs. 13,
22, and 25. The intake to this method is an image, and the output indicates the optimum
threshold. As discussed in Eq. 25, ψi represents modified Otsu fitness function, and maximiz-
ing this would correspond to optimal intensity threshold levels.
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ψi Tð Þ ¼ ∅o ¼ max ψi kð Þð Þ; 0≤k≤L−1 ð26Þ

The following equations give the fitness for multi-level thresholding.

ψi T ið Þ ¼ ∅o ¼ max ψi kið Þð Þ; 0≤k≤L−1; i ¼ 1; 2;……::;T ð27Þ

A ¼

a1;1 a1;2 :: :: a1; j a1;1 a1;T
a2;1 a2;2 :: :: a2; j :: a2;T
a3;1 a3;2 :: :: :: :: ::
:: :: :: :: :: :: ::

aN−1;1 :: :: :: aN−1; j :: aN−1;T
aN ;1 :: :: :: aN ; j aN ;T−1 aN ;T

2
6666664

3
7777775

ð28Þ

The optimization method starts with selected sets denoted by A as in Eq. 28, A denotes
the whole population, and N is the number of elements in the population. The ideal set in
every iteration is created randomly and is taken as the optimum threshold value. A
grayscale image with a pixel value between 0 and 255 has the probability of a threshold
value between the above-said limit. Therefore, lower and upper limits for matrix element
a1, j is 0 and 255, respectively. Exploitation/Exploration should be carefully chosen at the
start of AOA for image segmentation. The coefficient of math optimizer accelerated
(MOA) is defined in Eq.29.

MOA Citerð Þ ¼ Minþ Citer � Max −Min
Miter

� �
ð29Þ

Fig. 1 AOA search phases [3]
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where, MOA (Citer) = ith corresponds to the iteration function value, Miter is the maximum
number of iterations,Max andMin is the accelerated function of Max. and Min. Values Citer is
the current iteration (within 1 and Miter).

Exploration stage The exploratory nature of AOA is discussed as per the AO mathematical
calculations, whether Division (D) or Multiplication (M) operators have obtained high distri-
bution values or decisions that contribute to an exploration search method. However, as
opposed to other operators, these D and M operators never easily reach the objective due to
the high distribution of S and A operators. AOA exploration operators exploit the whole image
arbitrarily through many regions based on the modified Otsu values and seek a better
alternative (threshold values) dependent on two fundamental search techniques M and
D search techniques, as shown in Eq. 30.

ai; j Citer þ 1ð Þ ¼ besta j � MOP� εð Þ � UBj−LBj
� 	� μþ LBj
� 	

; r2 < 0:5
besta j �MOP � UBj−LBj

� 	� μþ LBj
� 	

; otherwise

�
ð30Þ

Where, ai(Citer + 1) = ith is a solution for the next iteration, ai, j(Citer + 1) = jth is the position
in the current iteration, μ is a control parameter that must have a value lower or equal to
0.5. LBj and UBj are the lower and upper bound limits, ε is the smallest integer value, and
finally, bestaj is the jth position of the optimal solution (threshold value) so far. From Eq. 28 the
Math Optimizer Probability coefficient (MOP) is computed as follows:

MOP Citerð Þ ¼ 1−
Citer

1
α

Miter
1
α

ð31Þ

where,MOP(Citer) = ith is the iteration function value, Citer corresponds to the current iteration,
Miter is the maximum number of iterations.

Exploitation stage To apply AOA to image processing applications, the exploitation
nature of AOA makes use of AO mathematical formulas, whether using addition (A)
or subtraction (S) as they provide high-density results. AOA exploitation operators
exploit the search field deeply through many regions of an image and seek a better
threshold value dependent on two key search techniques A and S search techniques, as
shown in Eq. 32.

ai; j Citer þ 1ð Þ ¼ besta j−MOP � UBj−LBj
� 	� μþ LBj
� 	

; r3 < 0:5
besta j þMOP � UBj−LBj

� 	� μþ LBj
� 	

; otherwise

�
ð32Þ

The description of AOA is presented in Algorithm 1, and the flow chart of the proposed
technique implemented using AOA is discussed in Fig. 2.
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Algorithm 1. Description of the steps of the AOA.

3.2 HDAFA to optimize the modified Otsu function

Dragonfly (DF) behavior follows concepts of separation, harmonization, cohesiveness, the
distraction of the opponent, and the attraction of food. The search space is the answer to every
dragon flying in the swarm. A swarm motion of dragonflies is determined by five separate
operators such as separation, alignment, cohesiveness, food attraction, and the diversion
towards hostile sources. Separation (Si) pertains to static collision prevention between indi-
viduals and persons living in the area. Alignment (Ai) is about the pace of people in the
neighbourhood matching to others. Cohesion (Ci) concerns people’s tendency to the mass
centre of the neighbourhood. The proper weights are assigned for each operator and adapted
for the convergence of DF to the best solution. The nearby range of the DF also improves with
the progress of the optimization technique. The mathematical application of DA can be
explained below. Considering the population of the N dragonfly Eq. 33 is the location of the
ith dragonfly [39].

X i ¼ x1i ; x
2
i ;…; xdi ;…; xNi

� 	 ð33Þ
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If the search space of the dragonfly i = 1, 2, 3,…, N, xdi and the search agent number N. is the
search agent. The objective function is assessed based on the starting position values altered
between the variables’ lower and higher bounds. Weighing rands (s), lines (a), cohesiveness (c),
feed (f), and adversary (e) are randomly initialized for every dragonfly. The position and speed
of dragonfly separation are estimated with Eqs. 34–36, alignment and cohesiveness factors.

Si ¼ − ∑
N

j¼1
X−X i ð34Þ

Ai ¼
∑N

j¼1 Vi

N
ð35Þ

Ci ¼
∑N

j¼1 X i

N
−X ð36Þ

Where Xi refers to the position and Vi is the speed of the person. X refers to the current
condition of persons, and N refers to the number of neighboring persons. Eqs. 37 and 38,
respectively, are computed for Fi and Ei adversary diversionfFood source attraction.

Load an image

Start

Generate random threshold, calculate energy 

and evaluate fitness values using modified Otsu

Return optimal threshold 

Check if Max 

iteration reached 

Yes

No

Initialize the dimension of population, number 

of thresholds, maximum number of iterations 
and boundary condition 

Find threshold values (T1, T2,…,Th)

Perform segmentation based on these threshold 

values 

Apply 

Metaheuristic 

Algorithm (AOA)

End

Fig. 2 Flow chart of segmentation using AOA
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Fi ¼ Xþ−X ð37Þ

Ei ¼ X − þ X ð38Þ

Here X represents the current position of the person and X+ shows the food supply and X−

shows the enemy’s source. The distance from the locality is computed with the N of Euclid
between all the dragonflies calculated and selected. The distance rij is calculated by Eq. 39.

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
d

k¼1
xi;k−x j;k

� 	2s
ð39Þ

If there is at least a DF in the area, the speed of the DF is arranged following Particle Swarm
Optimization (PSO) speed equation Eq. 40 [23]. The location of the DF is updated using Eq.
41, and this equation is comparable to PSO’s position equation.

ΔX tþ1 ¼ sSi þ aAi þ cCi þ f Fi þ eEið Þ þ wΔX t ð40Þ

X tþ1 ¼ X t þ ΔX tþ1 ð41Þ

Suppose there is no DF in the surrounding radius. In that case, the location of the DF is revised
using Levy Flight [9] as described in Eq. 42. This improves the unpredictability, messiness,
and search capacity of DF globally.

X tþ1 ¼ X t þ Levy dð ÞX t ð42Þ

This methodology fuses the Dragonfly algorithm with the Firefly algorithm (FA). In FA,
fireflies emit flashlights, and their mates attract them. The objective function is then evaluated
based on the current position and speed. The position update procedure continues until the end
condition is fulfilled.

Objective (attractiveness) and light intensity fluctuation are the major FA development
issues. The luminosity of each firefly is affected by the type of the encrypted cost function or
simply by the illumination of the fitness value or objective function. This is the problem of
maximization, where the objective function is maximized to find the optimal solution. In this
case, it is required to increase the light intensity emitted by these flies, and obviously, light
intensity decreases with an increase in distance. Eq. 43 may be used to show the intensity of
light at many distances:

I rð Þ ¼ I0exp −γ � r2� 	 ð43Þ

Where I is the provider of the luminance with distance r from the firefly and I0 is the initial
light intensity r = 0; and where γ is the factor of the absorption of light, which describes the
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(a) (b) 

(c) (d) 

Fig. 4 a Bear, b Bear’s Histogram, c Building, d Building’s Histogram, eDeer, fDeer’s Histogram, g Penguin, h
Penguin’s Histogram, i Dome and j Dome’s Histogram

Initialize the population and 

the step vector

Determine the objective 

function

Update the values of S, A, 

C, F, and E

Does the dragon fly 

have at least one 

neighboring

dragon fly?

Update position and 

velocity to get optimized 

results 

Yes

Apply FA using eq. 47

No

Fig. 3 Flowchart of HDAFA
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change of the attractiveness and the speed of convergence, and general FA effects. γ varies
typically from 0.1 to 10. As the appeal of a firefly is related to the intensity of light perceived
by adjoining fireflies, the attraction may be shown as follows (at a Cartesian distance r from
the firefly:

(e) 
(f) 

(g) 
(h) 

(i) 
(j) 

Fig. 4 (continued)
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β ¼ β0exp −γ : r2
� 	 ð44Þ

Range attraction r = 0 is represented by the function β0. In the same way, the intensity of light
I and attractiveness factor β are synonyms. Intensity is an objective measurement of the light
emitted, whereas attractiveness is a comparative measure of the light perceived by fireflies and
evaluated by other mates. Any two fireflies i and j can be separated by the Cartesian distance,
defined as the distance between them at xi and xj, respectively, as in Eq. 47.

(a) 
(b) 

(c) 
(d) 

(e) 

(f) 

Fig. 5 a Gentleman, b Gentleman’s Histogram, c Horse, d Horse’s Histogram, e Tiger, f Tiger’s Histogram, g
Sea star, h Sea star’s Histogram, i White bird and j White bird’s Histogram
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rij ¼ xi−x j
�� �� ð45Þ

Alternatively, firefly i can be attracted to another brighter firefly j as follows:

Δxi ¼ β0e
−γ:r2ij xtj−x

t
i

� 
þ ∝ Nrand−0:5ð Þ ð46Þ

From Eq. 46 t is the number of iterations in the loop. Besides, the first term in Eq. 46, which is
attributable to the appeal, appears in the equation. ∝(Nrand − 0.5) is the random sampling term,
and the search space can be widened by using it. Randomization coefficient (∝) and number
vector (Nrand) from Gaussian distribution ([0, 1]). Random number generator in ∝ ∈[0, 1].
Nrand

’s value is an evenly distributed random number generator. This is Firefly i’s next move
given by Eq. 47:

xtþ1
i ¼ xti þ Δxi ¼ xti þ β0e

−γ:r2ij xtj−x
t
i

� 
þ ∝ Nrand−0:5ð Þ ð47Þ

The initial phase is followed by a continuous series of performances, which continue until the
optimization technique is complete. Any optimization algorithm must balance exploring and

(g) 

(h) 

(i) 

(j) 

Fig. 5 (continued)

40718 Multimedia Tools and Applications (2023) 82:40701–40743



exploiting the search space to arrive at an optimal global solution. A worldwide search in the
search space is called exploration. Exploitation or intensification is a local search based on the
best available solution. Inefficient algorithms suffer from too much exploration and exploita-
tion, which increases the chance of local optima [12].

Dragonflies traverse the search space via Levy flying. It increases the number of possible
answers and boosts the algorithm’s exploration capabilities. These factors may be adjusted

Table 1 Results after applying the AOA using Otsu’s method as an objective function over the selected
benchmark images
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with very few parameters, and adaptive tuning helps to balance the swarming algorithm’s local
and global search capabilities.
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There are several advantages to using the conventional DA method; however, there are also
some downsides, such as sluggish convergence. FA, too, looks to be a little restricted based on
the convergence rate As a result, both ideas are scheduled to be blended in a way that answers
the difficulties of optimization with greater convergence, and the DA algorithm impacts FA.

W
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e 

b
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d

Table 2 Results after applying the AOA using Kapur’s method as an objective function over the selected
benchmark images
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Eq. 40 will be used if the dragonfly does not include any neighborhoods. Algorithm HDAFA
evaluates the FA position update given in Eq. 45. Due to the poor convergence features of DA
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and FA, this change will assist overcome the current disadvantages of slow convergence
characteristics (Fig. 3).
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4 Experimental results

4.1 Experimental setup

The widely used ten benchmark images (Bear, Building, Deer, Penguin, Dome, Gentleman,
Horse, Tiger, Sea-star, and White bird) are selected to verify the correctness of the presented
approach. All the selected images are shown in Figs. 4 and 5. It can be judged from these
figures that all the images have distinct patterns and shapes of the histograms. A wide variety
of histogram images are selected to verify the diversity of the presented image. The proposed
algorithms are implemented in MATLAB 2021 using Intel(R) Core (TM) i7-3520 M CPU @
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Table 3 Results after applying the AOA using modified Otsu’s method as an objective function over the selected
benchmark images
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2.90GHz 16 GB RAMmachine. The results presented by optimization algorithms are unstable
because the required parameters depend on the random numbers and are stochastic methods.
To verify the consistency of the presented techniques, all the algorithms are tested 50 times for
different threshold values Th = 2, 3, 4 and 5.

Th=2 Th=3 Th=4 Th=5

S
ea

 s
ta

r

Th=2 Th=3 Th=4 Th=5

W
h

it
e 

b
ir

d

40731Multimedia Tools and Applications (2023) 82:40701–40743



Peak signal-to-noise ratio (PSNR) indicates the amount of noise present in the resultant
image as compared to the original image [38]. The PSNR between original or ground truth IG
and the segmented image Ith is calculated as mentioned in Eq. 48.

PSNR ¼ 20 log10
255

RMSE
dBð Þ ð48Þ

Where RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
N
j¼1 IG−I thð Þ

M X N

s
ð49Þ

Table 4 Various performance metrics for Otsu’s method using AOA for different threshold values

Image Th Thresholds PSNR Mean STD Iteration

Bear 2 77 123 16.2435 1056 4.61E-13 13
3 70 104 142 17.3682 1140 5.90E-03 21
4 63 90 118 153 19.8349 1187 5.11E-02 25
5 55 78 99 124 157 20.0268 1213 5.75E-02 28

Building 2 99 165 13.1969 2611 4.61E-13 10
3 85 133 187 14.8753 2778 1.30E-03 17
4 71 104 144 192 17.0078 2848 5.80E-02 24
5 70 102 139 178 219 17.5042 2893 4.28E-02 26

Deer 2 91 126 14.3741 527 15.7E-02 15
3 83 109 143 16.9119 588 6.92E-13 25
4 79 100 122 156 18.4367 618 2.40E-03 11
5 73 92 110 133 170 20.7031 637 5.84E-02 22

Penguin 2 71 155 14.5829 1521 2.31E-12 12
3 68 118 190 15.2107 1585 2.22E-02 19
4 54 76 120 191 16.5445 1607 1.93E-02 25
5 54 75 113 164 216 16.8059 1622 1.60E-03 30

Dome 2 119 196 10.6292 5122 0.00E+00 10
3 97 133 202 12.7253 5170 1.38E-12 15
4 68 107 145 207 18.2683 5200 4.61E-13 33
5 65 95 118 155 212 19.7144 5223 2.03E+00 25

Gentleman 2 57 139 15.5726 4874 1.65E-02 10
3 41 87 151 17.7619 5022 2.16E-02 27
4 40 85 143 198 19.2084 5125 1.58E-02 24
5 38 78 119 161 201 21.31 5172 5.75E-02 20

Horse 2 110 178 14.5189 1941 1.40E-12 15
3 102 152 194 16.1829 2071 3.07E-01 11
4 89 131 163 201 18.232 2138 8.40E-03 44
5 82 120 148 174 208 19.3001 2174 2.12E+00 12

Tiger 2 102 166 13.3475 1639 0.00E+00 11
3 88 129 184 15.9458 1798 2.64E-02 20
4 78 112 146 196 18.025 1873 1.76E-02 33
5 69 99 127 159 206 20.147 1917 6.64E-01 27

Sea-star 2 85 157 14.8134 2552 6.92E-13 22
3 69 120 178 17.3218 2784 7.66E-01 21
4 60 101 138 187 19.117 2869 2.65E-02 45
5 52 86 117 150 194 20.7072 2916 4.86E-02 27

White Bird 2 81 132 14.826 1080 9.68E-02 12
3 74 109 155 16.3037 1178 1.15E-12 14
4 65 90 119 162 18.3029 1223 3.38E+00 26
5 62 85 109 138 177 19.2958 1249 2.86E+00 25
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Where an image size is M × N, a higher PSNR value is desirable, and it represents less
amount of noise that has been added during the processing [22].

Another performance metric is Standard Deviation (STD); its ideal value should be
zero. It denotes the level of variation or deviation from its mean value and is given by Eq.
50 [42]. A lower value of STD will denote higher stability, and a higher value signifies an
unstable algorithm.

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

i¼1

σi−μð Þ2
k

s
ð50Þ

Table 5 Various performance metrics for the Kapur method using AOA for different threshold values

Image Th Thresholds PSNR Mean STD Iteration

Bear 2 109 165 11.4512 17.3619 0.0031 11
3 81 147 209 15.3368 21.7743 0.175 17
4 67 114 160 209 17.9764 26.2098 0.2707 22
5 18 90 130 169 210 16.4334 30.1074 0.3048 24

Building 2 104 177 12.8308 18.4119 0.0373 26
3 91 147 204 14.2961 22.9043 0.1782 31
4 77 124 169 215 15.9943 27.1463 0.3513 28
5 48 92 138 175 215 20.3525 31.2115 0.4789 42

Deer 2 130 187 9.0497 17.4704 0.0138 14
3 73 133 187 17.4092 21.8765 0.2715 24
4 73 126 169 208 17.9108 26.1298 0.3819 18
5 24 71 127 169 208 18.833 30.703 0.4418 20

Penguin 2 100 175 12.8199 17.8834 0.047 15
3 100 156 211 12.9247 22.3797 0.193 15
4 58 100 154 202 15.8618 26.5063 0.6478 33
5 60 100 136 175 214 15.8531 30.4966 1.6202 27

Dome 2 76 139 19.9068 17.6228 0.0426 9
3 76 116 171 21.6724 22.3318 0.3586 17
4 76 110 150 190 22.5036 26.4166 0.6253 21
5 47 77 115 169 230 22.1242 29.9646 0.5968 35

Gentleman 2 108 167 14.5599 18.3815 0.0257 9
3 69 142 202 16.9051 22.979 0.1538 30
4 64 114 166 214 18.7849 27.614 0.3287 23
5 36 75 116 166 214 21.092 31.6256 0.8569 19

Horse 2 121 181 14.301 17.8988 0.0879 20
3 33 114 191 15.9477 22.8677 0.1236 16
4 33 115 164 203 17.96 27.1198 0.1897 33
5 33 83 124 165 204 20.5256 31.28 0.3647 20

Tiger 2 88 168 14.4075 18.2613 0.0129 11
3 82 147 199 15.8568 22.8454 0.2987 20
4 67 116 158 204 18.6805 27.1328 0.7964 28
5 61 101 141 177 214 20.3121 31.1014 1.9871 29

Sea-star 2 91 170 14.3456 18.7092 0.0232 14
3 74 129 183 17.0393 23.264 0.1455 15
4 68 117 164 206 18.2243 27.4945 0.2232 30
5 55 92 131 170 209 20.264 31.4637 0.4589 24

White Bird 2 115 186 11.086 18.0389 0.0049 11
3 102 151 201 12.228 22.6531 0.11 19
4 74 115 158 205 16.365 26.8582 0.2594 26
5 24 76 119 162 207 19.2801 31.4348 0.3048 35
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Where k representsMax. iter and in the presented approachMaximum iteration value is chosen
as 150, σi represents a value of an objective function for ith run, and μ is the mean value.

4.2 Performance evaluation and comparison

To demonstrate that the modified Otsu’s is an interesting alternative for multi-level
thresholding, the proposed algorithm is compared with other similar implementations. For
each image, the PSNR, STD, and the mean of the objective function values are computed.
Moreover, the entire test is performed using Otsu’s, Kapur’s, and modified Otsu’s objective

Table 6 Various performance metrics for modified Otsu’s method using AOA for different threshold values

Image Th Thresholds PSNR Mean STD Iteration

Bear 2 79 122 17.0545 1822 3.74E-02 8
3 74 116 155 17.5968 1423 2.38E-02 12
4 72 99 124 164 19.9789 3236 3.32E-04 18
5 62 92 124 164 254 20.3422 3577 3.45E-03 20

Building 2 95 155 13.8643 8483 4.11E-02 42
3 94 144 193 14.7953 3472 4.61E-13 45
4 85 104 137 192 15.5873 6819 2.21E-13 32
5 84 100 122 154 205 17.5043 9625 3.72E-11 58

Deer 2 68 132 15.8681 8890 2.45E-01 12
3 66 100 173 15.599 2259 3.12E-03 22
4 62 111 148 224 18.2051 5719 3.79E-14 25
5 69 106 138 186 252 20.3761 8649 2.28E-01 18

Penguin 2 61 141 15.2029 5796 2.68E-03 18
3 67 104 171 15.4113 4807 3.43E-03 11
4 65 102 152 201 15.5829 2360 3.83E-05 41
5 65 100 142 191 232 15.6302 8654 2.28E-02 24

Dome 2 76 139 20.1046 9807 2.98E-02 8
3 76 116 171 21.6779 5850 3.88E-02 18
4 76 110 160 190 22.5583 7710 3.44E-06 9
5 77 107 145 169 230 23.1847 7440 3.09E-04 45

Gentleman 2 68 147 16.2232 9286 2.69E-15 7
3 56 114 166 18.8644 5150 3.04E-03 32
4 64 114 166 214 19.6141 9770 3.21E-03 21
5 36 75 116 166 214 21.4032 3170 3.43E-03 17

Horse 2 121 168 15.1626 5064 3.65E-04 25
3 104 154 191 15.9618 5577 9.59E-14 20
4 82 125 164 203 18.2909 5990 3.43E-03 21
5 83 123 150 175 214 19.4964 4907 3.65E-04 27

Tiger 2 98 152 14.5195 0755 2.38E-02 10
3 82 127 179 16.5166 1308 2.89E-04 20
4 67 116 148 194 19.1166 2802 3.42E-02 22
5 61 101 131 157 214 20.53 9570 2.35E-13 31

Sea-star 2 71 137 16.8248 8434 2.32E-03 6
3 64 119 183 17.3927 4724 3.52E-02 9
4 68 102 144 196 18.8662 8636 2.16E-02 15
5 55 92 131 160 209 20.8329 1477 3.01E-07 20

White Bird 2 85 156 15.2077 9171 4.02E-04 9
3 72 125 201 16.1141 6055 0.00356 8
4 74 115 158 205 18.6366 2262 2.36E-02 10
5 74 119 142 192 247 19.9358 7862 7.66E-01 11
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functions. To analyze the results of the proposed approach, different comparisons are con-
ducted. The first experiment is conducted to compare the modified Otsu’s, Otsu’s function,
and Kapur as criteria using the AOA technique. The second experiment is performed using
HDAFA as an optimization method using modified Otsu’s, Otsu’s, and Kapur’s as objective
functions. Several performance parameters like PSNR, mean, Std. Dev., and 35 iterations are
selected to verify its performance and computational effort. All algorithms run 35 times over
each benchmark image to ensure the correct results.

Tables 1, 2, and 3 show the results after applying the AOA using Otsu’s, Kapur’s, and
modified Otsu’s method as an objective function over the selected 10 benchmark images. The
results present the segmented images considering four different threshold points Th = 2, 3, 4,
and 5. Tables 1, 2, and 3, provide the segmented images, histogram along with threshold

Table 7 Various performance metrics for Otsu’s method using HDAFA for different threshold values

Image Th Thresholds PSNR Mean STD Iteration

Bear 2 77 123 16.2435 1493 2.65E-02 15
3 70 104 142 18.068 1588 4.86E-02 25
4 63 90 118 153 20.0129 1574 2.31E-12 32
5 54 77 98 124 157 22.4513 1633 2.22E-02 15

Building 2 99 165 12.412 2631 1.93E-02 32
3 85 133 187 13.8643 2836 1.60E-03 25
4 71 104 144 192 14.9609 2856 9.68E-02 25
5 69 101 139 178 219 15.3049 3089 1.15E-12 13

Deer 2 91 126 12.5328 339 3.38E+00 12
3 83 109 143 15.8681 422 2.86E+00 36
4 78 99 121 155 17.1915 545 1.65E-02 24
5 71 91 109 132 168 18.2071 643 2.16E-02 13

Penguin 2 71 155 12.7269 916 1.58E-02 15
3 68 118 190 15.2029 1211 4.61E-13 45
4 54 76 120 191 15.4087 1466 5.90E-03 12
5 53 74 112 161 213 15.5805 1676 5.11E-02 34

Dome 2 119 196 10.7073 3163 5.75E-02 23
3 97 133 202 12.7253 4034 4.61E-13 45
4 68 107 145 207 18.2683 4764 1.30E-03 67
5 65 95 118 155 212 19.7144 5423 5.80E-02 22

Gentleman 2 57 139 16.4194 3139 4.28E-02 12
3 41 87 151 16.2232 4007 15.7E-02 45
4 40 84 143 198 18.8644 4828 6.92E-13 56
5 38 77 118 161 201 19.6457 5614 2.40E-03 32

Horse 2 57 139 14.3376 1333 5.84E-02 19
3 41 87 151 15.1325 1666 0.00E+00 16
4 40 85 143 198 17.7745 2032 1.38E-12 34
5 38 77 118 161 201 18.3161 2060 4.61E-13 24

Tiger 2 102 166 12.9429 1078 2.03E+00 12
3 88 129 184 14.5195 1169 1.40E-12 15
4 77 111 145 196 16.5166 1258 3.07E-01 22
5 67 97 125 157 204 18.9816 1496 8.40E-03 18

Sea-star 2 85 157 14.1464 1605 2.12E+00 6
3 69 120 178 16.8248 1703 0.00E+00 5
4 60 101 138 187 17.2935 1768 2.64E-02 9
5 52 86 117 150 194 18.9737 1864 1.76E-02 16

White Bird 2 81 132 14.0106 750 6.64E-01 63
3 74 108 154 15.2077 908 6.92E-13 37
4 65 90 119 162 16.1153 1062 2.65E-02 39
5 62 84 108 136 175 16.8453 1137 4.86E-02 28
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values, and convergence graphs showing the number of iterations required to achieve stabi-
lization. The segmented images provide evidence that the outcome is better with the 4 and the
5; however, if the segmentation task does not require to be extremely accurate, then it is
possible to select the 3. It is depicted from the results that most of the time, modified Otsu’s as
objective function stabilizes or achieves convergence under 50 iterations only. Tables 1, 2, and
3 gather segmented images for qualitative analysis and from each technique to graphically
contrast them. It is feasible to note that the algorithm’s overall performance using modified
Otsu’s as an objective function for thresholding is more accurate to a human expert’s
assessment of the findings in Table 6.

Tables 4, 5, 6, 7, 8, and 9 show threshold values, PSNR, Mean, STD, and iteration required
to achieve convergence using Otsu’s, Kapur’s entropy and modified Otsu’s method for AOA

Table 8 Various performance metrics for the Kapur method using HDAFA for different threshold values

Image Th Thresholds PSNR Mean STD Iteration

Bear 2 109 165 11.3464 17.3636 0.0031 12
3 81 147 209 15.3383 22.7765 0.1750 19
4 67 114 160 209 17.9782 26.2124 0.2707 20
5 18 90 130 169 210 16.4350 32.1104 0.3048 25

Building 2 104 177 12.8321 18.4137 0.0373 27
3 91 147 204 14.2975 22.9066 0.1782 31
4 77 124 169 215 15.9959 26.1490 0.3513 28
5 48 92 138 175 215 20.3545 31.2146 0.4789 45

Deer 2 130 187 9.0506 18.4721 0.0138 14
3 73 133 187 17.4109 21.9787 0.2715 24
4 73 126 169 208 17.9126 26.9324 0.3819 18
5 24 71 127 169 208 18.8349 31.7061 0.4418 20

Penguin 2 100 175 12.8212 17.8852 0.0470 15
3 100 156 211 12.9260 22.3819 0.1930 17
4 58 100 154 202 15.8634 26.5090 0.6479 33
5 60 100 136 175 214 15.8547 30.4996 1.6204 27

Dome 2 76 139 19.9088 17.6246 0.0426 19
3 76 116 171 21.6746 22.3340 0.3586 17
4 76 110 150 190 22.5059 26.4192 0.6254 21
5 47 77 115 169 230 22.1264 29.9676 0.5969 35

Gentleman 2 108 167 14.5614 18.3833 0.0257 11
3 69 142 202 16.9068 22.9813 0.1538 30
4 64 114 166 214 18.7868 27.6168 0.3287 23
5 36 75 116 166 214 21.0941 31.6288 0.8570 21

Horse 2 121 181 14.3024 17.9006 0.0879 20
3 33 114 191 15.9493 22.8700 0.1236 16
4 33 115 164 203 17.9618 27.1225 0.1897 33
5 33 83 124 165 204 20.5277 31.2831 0.3647 23

Tiger 2 88 168 14.4089 18.2631 0.0129 11
3 82 147 199 15.8584 22.8477 0.2987 20
4 67 116 158 204 18.6824 27.1355 0.7965 28
5 61 101 141 177 214 20.3141 31.1045 1.9873 29

Sea-star 2 91 170 14.3470 18.7111 0.0232 14
3 74 129 183 17.0410 23.2663 0.1455 15
4 68 117 164 206 18.2261 27.4972 0.2232 34
5 55 92 131 170 209 20.2660 31.4668 0.4589 24

White Bird 2 115 186 11.0871 18.0407 0.0049 10
3 102 151 201 12.2292 22.6554 0.1100 19
4 74 115 158 205 16.3666 26.8609 0.2594 26
5 24 76 119 162 207 19.2820 31.4379 0.3048 33
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and HDAFA algorithm for 10 test images. These tables show significant conclusions con-
cerning the PSNR and mean value for modified Otsu’s method over other objective functions.
It can be noticed that many approaches find the same threshold values, especially during
segmentation with a small number of thresholds. Image thresholding’s goal is to provide high-
quality pictures that have a specific number of thresholds. The PSNR is a quality statistic that
is frequently used to evaluate the quality of a processed signal relative to the original, as
mentioned in the previous subsection. To assess multi-dimensional signals, in this case,
images, PSNR has been expanded. In Tables 4, 5, 6, 7, 8, and 9, a higher mean PSNR value
denotes better image segmentation when considering the threshold values of a specific
algorithm.

Table 9 Various performance metrics for modified Otsu’s method using HDAFA for different threshold values

Image Th Thresholds PSNR Mean STD Iteration

Bear 2 77 123 16.9108 1712 2.70E-02 10
3 70 104 142 18.0863 1621 5.83E-02 15
4 63 90 118 153 21.5983 2624 2.77E-12 20
5 54 77 98 124 157 23.0286 3234 2.66E-02 10

Building 2 99 165 13.1969 2197 2.32E-02 22
3 85 133 187 14.8753 8483 1.92E-03 25
4 71 104 144 192 17.0078 3564 1.16E-01 12
5 69 101 139 178 219 17.6531 3564 1.38E-12 8

Deer 2 91 126 14.3741 5515 4.06E+00 12
3 83 109 143 16.9119 8890 3.43E+00 22
4 78 99 121 155 18.7545 2262 1.98E-02 14
5 71 91 109 132 168 21.2919 5688 2.59E-02 8

Penguin 2 71 155 14.5829 6493 1.90E-02 7
3 68 118 190 15.2107 5796 5.53E-13 11
4 54 76 120 191 16.5445 4806 7.08E-03 32
5 53 74 112 161 213 17.0817 2354 6.13E-02 23

Dome 2 119 196 10.6292 8827 6.90E-02 4
3 97 133 202 20.1046 9807 5.53E-13 15
4 68 107 145 207 21.6779 5850 1.56E-03 9
5 65 95 118 155 212 22.413 7690 6.96E-02 22

Gentleman 2 57 139 15.5726 9512 5.14E-02 7
3 41 87 151 17.7619 9286 1.88E-01 26
4 40 84 143 198 19.2022 5150 8.30E-13 16
5 38 77 118 161 201 21.2983 9710 2.88E-03 17

Horse 2 57 139 15.5726 3177 7.01E-02 5
3 41 87 151 17.7619 5063 0.00E+00 16
4 40 85 143 198 19.2084 5522 1.66E-12 17
5 38 77 118 161 201 21.2983 5901 5.53E-13 24

Tiger 2 102 166 13.3475 9665 2.44E+00 10
3 88 129 184 15.9458 2555 1.68E-12 15
4 77 111 145 196 18.1711 1895 3.68E-01 22
5 67 97 125 157 204 20.4013 8794 1.01E-02 18

Sea-star 2 85 157 14.8134 7649 2.54E+00 6
3 69 120 178 17.3218 4434 0.00E+00 5
4 60 101 138 187 19.117 6418 3.17E-02 9
5 52 86 117 150 194 20.7072 1868 2.11E-02 16

White Bird 2 81 132 14.826 8204 7.97E-01 9
3 74 108 154 16.3092 9171 8.30E-13 8
4 65 90 119 162 18.3029 6052 3.18E-02 10
5 62 84 108 136 175 19.3053 2235 5.83E-02 11
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In contrast to the mean value, a lower STD value is preferred because it shows less range in
the outcomes produced by each approach. The STD value often rises when the number of
threshold values has been increased. Most sample images demonstrate that modified Otsu’s
method outperforms Otsu’s and Kapur’s entropy functions. During experimentation, it is
found that the result for two-level thresholding is always better for all source images in
AOA and HDAFA. It is noticeably observed for the entire dataset the modified Otsu’s method
achieved the best metric values for maximum cases.

The number of iterations in Table 10 provides evidence that the AOA and HDAFA using
modified Otsu’s stabilizes the system in less time. Modified Otsu’s using both AOA and
HDAFA optimization requires a low number of iterations depending on the dimension of the

Table 10 Comparison of the number of iterations required to converge

Image Th AOA
(Modified Otsu’s)

AOA
(Otsu’s)

AOA
(Kapur)

HDFA
(Modified Otsu’s)

HDFA
(Otsu’s)

HDFA
(Kapur)

Bear 2 8 13 15 10 15 13
3 12 21 23 15 25 20
4 18 25 27 20 32 26
5 20 28 30 10 15 13

Building 2 42 10 12 22 32 27
3 17 17 19 25 25 25
4 32 24 26 12 25 19
5 8 26 28 8 13 11

Deer 2 12 15 17 12 12 12
3 22 25 27 22 36 29
4 25 11 13 14 24 19
5 8 22 24 8 13 11

Penguin 2 18 12 14 7 15 11
3 11 19 21 11 45 28
4 41 25 27 32 12 22
5 23 30 32 23 34 29

Dome 2 8 10 12 11 23 14
3 14 15 17 15 45 30
4 9 33 35 9 67 38
5 45 25 27 22 22 22

Gentleman 2 7 10 12 8 12 10
3 32 27 29 26 45 36
4 21 24 26 16 56 36
5 17 20 22 17 32 25

Horse 2 5 15 17 5 19 12
3 20 11 13 16 18 17
4 21 44 46 17 34 26
5 27 12 14 24 24 24

Tiger 2 10 11 13 10 12 11
3 20 20 22 15 15 15
4 22 33 35 22 22 22
5 16 27 29 18 18 18

Sea- star 2 6 22 24 6 8 9
3 9 21 23 15 10 14
4 15 45 47 16 12 13
5 21 27 29 16 18 21

White 2 9 12 14 9 63 36
bird 3 8 14 16 8 37 23

4 10 26 28 12 39 25
5 14 25 27 11 28 20

Bold values represent minimum number of iterations required to converge
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problem provided. Under such circumstances, it is demonstrated that the computational cost of
modified Otsu’s is lower than Otsu’s and Kapur’s entropy for multi-level thresholding
problems. Out of the total of forty experiments, twenty-four times modified Otsu’s using
AOA, and HDAFA optimization achieved the best score. It is clearly concluded from the
evaluation of metric scores proposed that modified Otsu’s method outperforms in terms of the
number of iterations required to achieve optimum value.

PSNR provides information related to the peak signal-to-noise ratio, and it is a measure
to represent peak error. It is used to verify the similarity that exists between the original
and the segmented image. To compute the PSNR, it is necessary to use the Root Mean
Square Error (RMSE) pixel to pixel. PSNR results in Table 11 provide evidence that the

Table 11 Comparison for PSNR

Image Th AOA (Modified Otsu’s) AOA
(Otsu’s)

AOA
(Kapur)

HDFA (Modified Otsu’s) HDFA
(Otsu’s)

HDFA
(Kapur)

Bear 2 17.0545 16.2435 11.4512 16.9108 16.2435 11.3464
3 17.5968 17.3682 15.3368 18.0863 18.068 15.3383
4 19.9789 19.8349 17.9764 21.5983 20.0129 17.9782
5 20.3422 20.0268 16.4334 23.0286 22.4513 16.4350

Building 2 13.8643 13.1969 12.8308 13.1969 12.412 12.8321
3 14.7953 14.8753 14.2961 14.8753 13.8643 14.2975
4 15.5873 17.0078 15.9943 17.0078 14.9609 15.9959
5 17.5043 17.5042 20.3525 17.6531 15.3049 20.3545

Deer 2 15.8681 14.3741 9.0497 14.3741 12.5328 9.0506
3 15.599 16.9119 17.4092 16.9119 15.8681 17.4109
4 18.2051 18.4367 17.9108 18.7545 17.1915 17.9126
5 20.3761 20.7031 18.833 21.2919 18.2071 18.8349

Penguin 2 15.2029 14.5829 12.8199 14.5829 12.7269 12.8212
3 15.4113 15.2107 12.9247 15.2107 15.2029 12.9260
4 15.5829 16.5445 15.8618 16.5445 15.4087 15.8634
5 15.6302 16.8059 15.8531 17.0817 15.5805 15.8547

Dome 2 20.1046 10.6292 19.9068 10.6292 10.7073 19.9088
3 21.6779 12.7253 21.6724 20.1046 12.7253 21.6746
4 22.5583 18.2683 22.5036 21.6779 18.2683 22.5059
5 23.1847 19.7144 22.1242 22.413 19.7144 22.1264

Gentleman 2 16.2232 15.5726 14.5599 15.5726 16.4194 14.5614
3 18.8644 17.7619 16.9051 17.7619 16.2232 16.9068
4 19.6141 19.2084 18.7849 19.2022 18.8644 18.7868
5 21.4032 21.31 21.092 21.2983 19.6457 21.0941

Horse 2 15.1626 14.5189 14.301 15.5726 14.3376 14.3024
3 15.9618 16.1829 15.9477 17.7619 15.1325 15.9493
4 18.2909 18.232 17.96 19.2084 17.7745 17.9618
5 19.4964 19.3001 20.5256 21.2983 18.3161 20.5277

Tiger 2 14.5195 13.3475 14.4075 13.3475 12.9429 14.4089
3 16.5166 15.9458 15.8568 15.9458 14.5195 15.8584
4 19.1166 18.025 18.6805 18.1711 16.5166 18.6824
5 20.53 20.147 20.3121 20.4013 18.9816 20.3141

Sea- star 2 16.8248 14.8134 14.3456 14.8134 14.1464 14.3470
3 17.3927 17.3218 17.0393 17.3218 16.8248 17.0410
4 18.8662 19.117 18.2243 19.117 17.2935 18.2261
5 20.8329 20.7072 20.264 20.7072 18.9737 20.2660

White 2 15.2077 14.826 11.086 14.826 14.0106 11.0871
bird 3 16.1141 16.3037 12.228 16.3092 15.2077 12.2292

4 18.6366 18.3029 16.365 18.3029 16.1153 16.3666
5 19.9358 19.2958 19.2801 19.3053 16.8453 19.2820
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outcome is better with the 4th and the 5th level of thresholding. Similarly, a comparison of
the mean among modified Otsu’s, Otsu’s, and Kapur using AOA and HDAFA is presented
in Table 12. All algorithms run 35 times independent runs of the same algorithm over each
benchmark image, and the average value is reported to ensure the correct results.

Two different metaheuristic approaches test these three objective functions and in maxi-
mum cases proposed objective function produces not only quantitatively superior images but
also good in terms of qualitatively results.

Table 12 Comparison of the mean of the objective function values

Image Th AOA (Modified Otsu’s) AOA
(Otsu’s)

AOA
(Kapur)

HDFA (Modified Otsu’s) HDFA
(Otsu’s)

HDFA
(Kapur)

Bear 2 1822 1056 17.3619 1712 1493 17.3636
3 1423 1140 21.7743 1621 1588 22.7765
4 3236 1187 26.2098 2624 1574 26.2124
5 3577 1213 30.1074 3234 1633 32.1104

Building 2 8483 2611 18.4119 2197 2631 18.4137
3 3472 2778 22.9043 8483 2836 22.9066
4 6819 2848 27.1463 3564 2856 26.1490
5 9625 2893 31.2115 3564 3089 31.2146

Deer 2 8890 527 17.4704 5515 339 18.4721
3 2259 588 21.8765 8890 422 21.9787
4 5719 618 26.1298 2262 545 26.9324
5 8649 637 30.703 5688 643 31.7061

Penguin 2 5796 1521 17.8834 6493 916 17.8852
3 4807 1585 22.3797 5796 1211 22.3819
4 2360 1607 26.5063 4806 1466 26.5090
5 8654 1622 30.4966 2354 1676 30.4996

Dome 2 9807 5122 17.6228 8827 3163 17.6246
3 5850 5170 22.3318 9807 4034 22.3340
4 7710 5200 26.4166 5850 4764 26.4192
5 7440 5223 29.9646 7690 5423 29.9676

Gentleman 2 9286 4874 18.3815 9512 3139 18.3833
3 5150 5022 22.979 9286 4007 22.9813
4 9770 5125 27.614 5150 4828 27.6168
5 3170 5172 31.6256 9710 5614 31.6288

Horse 2 5064 1941 17.8988 3177 1333 17.9006
3 5577 2071 22.8677 5063 1666 22.8700
4 5990 2138 27.1198 5522 2032 27.1225
5 4907 2174 31.28 5901 2060 31.2831

Tiger 2 0755 1639 18.2613 9665 1078 18.2631
3 1308 1798 22.8454 2555 1169 22.8477
4 2802 1873 27.1328 1895 1258 27.1355
5 9570 1917 31.1014 8794 1496 31.1045

Sea- star 2 8434 2552 18.7092 7649 1605 18.7111
3 4724 2784 23.264 4434 1703 23.2663
4 8636 2869 27.4945 6418 1768 27.4972
5 1477 2916 31.4637 1868 1864 31.4668

White 2 9171 1080 18.0389 8204 750 18.0407
bird 3 6055 1178 22.6531 9171 908 22.6554

4 2262 1223 26.8582 6052 1062 26.8609
5 7862 1249 31.4348 2235 1137 31.4379
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5 Conclusion

In this study, modified Otsu’s method is proposed for the multi-level thresholding approach
using metaheuristic algorithms AOA and HDAFA for image segmentation. Otsu’s as an
objective function is modified by hybridizing the features of Otsu’s and Kapur’s entropy
algorithms. The proposed modified Otsu’s function combines the capability to find the
optimum threshold value that maximizes the overall entropy from Kapur’s and the maximum
variance value of the different classes from Otsu’s method. The efficiency of the proposed
objective function is checked over existing Otsu’s and Kapur’s entropy functions to find
optimum multi-level threshold values required for image segmentation using AOA and
HDAFA optimization algorithms. The experiment uses four levels of threshold values, i.e.,
2,3,4, and 5, over ten standard benchmark images widely used for segmentation. The
quantitative analysis for the maximum sample images demonstrates that modified Otsu’s
method outperforms Otsu’s and Kapur’s entropy functions using both metaheuristic methods.
During experimentation, it is found that the result for two-level thresholding is always better
for all source images in both AOA and HDAFA. Moreover, using the proposed modified
Otsu’s function, the results for higher threshold values are superior using AOA as compared to
HDAFA. The modified Otsu’s algorithm may be implemented for many image processing
applications, for example, surveillance, biomedical imaging, industrial implementations, and
pattern recognition. In future work, more complex concepts of entropy algorithms may be
explored to make them durable for colored images. Also, the algorithm may be able to segment
biomedical images like MRI and other thermal images.
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