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Abstract
This paper presents a novel architecture to generate a world model in terms of mesh from a
continuous image stream with depth information extracted from a robot’s ego-vision cam-
era. We propose two algorithms for planar and non-planar mesh generation. A Cartesian
grid-based mesh fitting algorithm is proposed for mesh generation of planar objects. For
mesh generation of non-planar objects, we propose a Self Organization Map based algo-
rithm. The proposed algorithm better approaches the boundary and overall shape of the
objects compared to State-Of-the-Art (SOA). Extensive experiments done on three public
datasets show that our method surpasses SOA both qualitatively and quantitatively.

Keywords Computer vision · Robot vision · Telepresence · 3D vision · Reconstruction ·
Graphics · Cognitive vision

1 Introduction

With the advancement of Artificial Intelligence (AI) and easily available computing devices,
robots are becoming usable for various complicated tasks in our day-to-day lives. Telepres-
ence [7, 68] and teleportation robots have come to spotlight in the recent years. These robots
enable a human to operate the robot from a remote location and find significant applications
in remote teaching/meetings/surveillance etc. Given the current scenario of the COVID-19
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pandemic, telepresence robots are in much demand for hospital setups to mitigate the physi-
cal communication of medical staff with corona patients. In parallel, several applications of
digital-twin are in high demand after the publication of Industry 4.0, a holistic automation
and smart manufacturing execution architecture. For example, the images captured in the
production line can directly be utilized to generate a digital replica of the environment. This
replica can be passed to the product designer so that he/she can provide expert guidance
on improving the production process. These applications require a good structural repre-
sentation of the scene for remote assistance and guidance. XR-Aided Industry i.e. virtual
reality, augmented reality, and mixed reality technologies also need the 3D reconstruction
for base environment creation. The paper [21] beautifully reviews the importance of 3D
scene generation for telepresence, teleoperation and XR technologies.

As the robotics applications demand, the reconstructed 3D environment should not be
too sparse to understand the occupancy, it should not be too heavy to transfer over the
network for teleoperations/telepresence applications, and at the same time the geometry
of the reconstruction should be preserved properly. For high-fidelity scene reconstruction,
often LIDAR sensors [62, 63, 65, 73] are used. But these solutions are too costly. Due to
the size constraint, these sensors are often not flexible to mount on smaller robots/drones.
At the same time, the output point-clouds contain redundant points and are not suitable to
transfer over the network due to higher disk size. RGB image based reconstruction methods
work well for constraint static environments but miserably fail in texture-less / less-textured
environments. The results generated by these methods also suffer from depth inconsistency.
Recently, wide availability of cheaper and smaller depth controllers like Microsoft’s Kinect
[45], HoloLens [32], Intel RealSense[46] encourage researchers to include depth images
with RGB [10, 17, 76, 77] for better consistent 3D reconstruction. In this work, we mainly
focus to design a novel pipeline to model the world for recent robotic applications given a
set of input RGBD images of the environment.

In our proposed pipeline, we mostly exploit planar properties of the scene for pose
estimation as well as planar mesh creation. Compared to point features or volumetric repre-
sentation, the usage of higher-level features like planes always help to preserve the structural
property of the scene and thus, increase the accuracy of the pipeline. But a combination
of point and planar properties can yield even better results [29, 39, 74, 78, 80]. We seg-
ment and model planes with irregular boundary shapes or holes. We further process the
non-planar arbitrary objects of the scene to generate a triangular mesh that keeps the struc-
tural properties intact. We incrementally refine those over time to form a high-quality mesh
of the environment. We represent the world model by triangular meshes as maintaining the
point-cloud is always complex in terms of both time and space. To generate mesh from a
set of map points, the majority of the State-Of-the-Art (SOA) systems use Delaunay Trian-
gulation [9], but suffers from “curse of dimensionality” [3] i.e. the time complexity of the
system increases exponentially in a higher dimension or with a higher number of points.
In our paper, we propose two different mesh generation algorithms which are simpler and
unlike Delaunay Triangulation, work really well in higher dimensions too.

We design and develop a novel pipeline for generating a world model represented in
terms of mesh for robotic applications. The major contributions of this paper are three-fold.

• We exploit the point and planar properties of the scene for tracking and mesh gener-
ation of the planes. At the same time, we process the non-planar arbitrary objects for
completeness of the scene.

• For non-planar arbitrary objects, we propose a Self Organizing Map (SOM) [36] based
novel mesh generation method, which is more accurate, robust and better represents the
object boundaries than the state-of-the-art (SOA) mesh creation methods.
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• We propose a simple grid fitting algorithm for planar surfaces, which is less complex
compared to the SOA.

We present our pipeline along with the proposed surface fitting algorithms in Section 3.
The results are presented and compared with SOA in Section 4. The conclusions and future
work are stated briefly in Section 5. We place our contribution with respect to the related
SOA in the next section.

2 Related works

3D reconstruction is a well-researched topic for the last two decades and is popular in both
the robotics and computer vision communities. Many research papers are published on this
topic including both geometric [35] and learning-based [33] approaches. Although, due to
the complex layout, occlusions, and complicated object interactions, indoor 3D reconstruc-
tion still poses challenges [34, 44]. Structure from Motion (SfM) [87] is one of the main
approaches for geometric reconstruction. The existing methods in the SfM literature [5, 14,
23, 75] suffer from computationally intensive steps like feature extraction and matching,
mainly due to the usage of the point features. Unlike those, we use the plane as the feature
and match the planes between consecutive keyframes. A plane consists of a set of points,
thus the matching time is significantly reduced as the number of extracted features per frame
are significantly less.

Over the last few years, another similar research topic on SLAM (Simultaneous Local-
ization AndMapping) [25, 28, 47, 51, 58, 59] has progressed a lot, but world model creation
with high fidelity objects still requires potential research. Although many methods [12, 16,
19, 28, 30, 40, 43, 54, 66, 67, 69, 71] have been proposed in this area in recent times, most of
those work for offline reconstruction and not suitable for our application. World model gen-
erated by other papers [16, 30, 66, 71] either does not preserve the structural property of the
environment or is too sparse to understand the environment. Our method applies specialized
approaches for non-planar objects and planar objects separately. This results in a reconstruc-
tion which is a combination of dense (for non-pla ar objects) and sparse (for planar objects)
mesh, good enough to preserve the structural properties of the non-planar and planar objects.
Figure 1 shows the mesh generated by our pipeline on a publicly available dataset [16].

Several deep-learning based approaches are present in the SOA that reconstruct the envi-
ronment in near real-time. As an example, the paper [38] discusses a very interesting method
using a learning model to construct textured 3D shapes with precise geometry from 2D
images. Generally supervised learning models [52] would require training on a huge labeled
dataset of textured/colored meshes which is not easy to achieve. To overcome these prob-

Fig. 1 3DMesh generated by proposed pipeline on Copyroom [16] dataset. (a): original frame, (b): generated
normal wire-frame, (c): vertex-colored 3D mesh

42643Multimedia Tools and Applications (2023) 82:42641–42659



lems, we propose an unsupervised learning based novel pipeline to generate a 3D mesh of
the environment from an ego-centric RGBD sequence. Two interesting surveys on 3D object
reconstruction under the umbrella of deep learning are presented in [33] and [26]. Recently,
Mildenhall et. al. has proposed Neural Radiance Field (NeRF) [55] as a fully-connected neu-
ral network, which is able to generate novel views of complex 3D scenes. NeRF takes 2D
observations as input and represents the environment as an implicit surface. Many follow-up
papers [6, 18, 31, 83, 85] incorporate depth with RGB and demonstrate very good recon-
struction. The major drawback of these methods is the higher training time due to the global
(non-incremental) reconstruction strategy. Thus, these methods are completely inappropri-
ate for onine robotic applications. Our method exploits the topological ordering capability
of unsupervised Self-Organizing-Map (SOM) neural network. Our proposed method does
not need a training phase and approximates complex real objects in few iterations.

Some SOA methods represent each non-planar object in the scene with a predefined
model such as CAD. The problem with such methods is getting a such huge number of
models, which is infeasible for real-life applications. Therefore, we need a more generalized
method. Some methods [42, 48, 82] in the literature use SOM-based surface fitting for such
purpose. We propose a SOM-based generalized method for generating the mesh, fitting the
surface of the objects. Our method better maintains the structure and better represents the
boundary compared to SOA. The next section, presents the overall design of our proposed
approach.

3 Our system: overview and design

Our approach exploits the point as well as planar properties of the scene for pose correction
as well as planar mesh creation. Structural reconstruction of the environment often demands
a higher level of features for better accuracy, at the same time point features can give more
granular information to achieve high fidelity. So, we choose points and planes both in dense
volumetric representations for feature matching. We use an RGBD sensor’s data (from the
robot’s ego view) as input. We process the RGB data to segment the planes and further
enhance the result using depth information. First, we use the plane segmentation results to
estimate the plane parameters in Hessian/Hesse Normal Form (HNF) [8]. Later, we use and
compare two approaches for plane tracking and pose estimation. In the first approach, we
take the plane parameters in HNF and convert it to Plane Parameter Space (PPS) [72]. Based
on the plane parameters in PPS, we match the planes between two consecutive frames and
estimate the relative pose between the frames. The other approach exploits the point and
planar properties both as described in Plane Bundle Adjustment (PBA) [84]. We further sep-
arate the non-planar points and form a point-cloud accumulating those points in consecutive
frames using estimated pose. To reduce redundancy and process the pipeline faster, we limit
our mesh creation on some selected frames, also known as keyframes. For mesh creation,
we adopt two different approaches. Firstly, we use a surface approximation-based mesh
creation algorithm on newly segmented planes in every keyframe. Whereas, for non-planar
areas, we use the point-cloud to create mesh using our novel SOM-based approach. The
neural network (SOM) based approach provides a highly parallelizable method (described
in Section 3.5) for fast output [60]. We update the created meshes incrementally using
the estimated pose from next keyframe onward. Figure 2 depicts the overall pipeline of
our proposed method. Next, we describe the major components of our simple yet robust
pipeline.
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Fig. 2 The block diagram of our proposed pipeline of robust 3D scene reconstruction from the robot’s ego
view (RGBD sensor)

3.1 Plane segmentation

We adopt the concept of Plane RCNN [49] that uses Mask RCNN [37] for plane detec-
tion and segmentation. We choose Plane RCNN as it is capable of handling any number of
planes, whereas other SOA plane segmentation pipelines like PlaneNet [50] and PlaneRe-
cover [81] need prior information about the maximum number of planes. Plane RCNN
segments only two categories, either “planar” or “non-planar”. We adopt the same concept
and use the Mask R-CNN pre-trained on ScanNet [15] dataset. We further refine the plane
boundaries using the depth information. Once the plane segmentation is done, we calcu-
late the plane parameters using a RANSAC [24] in HNF, where a plane π is represented by
[qπ , dπ ]. Here qπ is the unit normal vector [qx, qy, qz] ∈ IR3 on the plane and dπ ∈ IR is
the distance of π from the origin. As we are using a less noisy depth information coming
from a depth sensor, RANSAC works really well with less number of iterations. After plane
segmentation, we need to track planes and estimate pose.

3.2 Plane tracking and pose estimation

For plane Ttracking, we adopt the PPS [72] based plane representation for frame to frame
plane matching proposed by Sun et al.. A plane π = [qx, qy, qz, dπ ] in Cartesian coordinate
is transformed in PPS by using the (1).

⎧
⎨

⎩

θπ = arccos(qz)

ϕπ = atan2(qy, qx)

dπ = dπ

(1)

Every Cartesian plane is represented by a point in PPS and all the Cartesian points on the
plane lie on the same point in PPS. We exploit this property to find the plane correspondence
between two consecutive frames. Based on the correspondence, this algorithm estimates the
relative pose R, t between two consecutive frames. Further, we use a plane based bundle
adjustment to refine the poses as described in next sub-section.
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3.3 Pose refinement

Bundle adjustment [2] is a commonly used optimization technique for camera pose (posi-
tion and orientation) estimation. But the accuracy of this method highly depends upon the
number of feature points and the accuracy of the correspondences. On the other-hand, planes
are the high level geometric primitives of a scene and help to reduce geometrical ambiguity
caused by noisy feature points. We already have plane parameters from previous section, we
exploit those parameters along with plain points to estimate the camera pose. Zhou et. al.
[84] propose a Planar Bundle Adjustment technique (PBA) that formulates the optimization
problem using a point-to-plane cost function for pose estimation. In PBA, both the plane
and the points and their relationships are considered for pose estimation. At the same time,
if the number of plane points is large, it can lead to a large scale least-squares problem
which is efficiently addressed in [84] itself. Here, the squared distance between a plane and
plane points is used as the cost function.

Let us assume, Ri and ti are the rotation and translation respectively to transform ith
frame from local coordinate system to a global coordinate system. Also assume pijk ∈ IPj ,
where IPj is the set of K number of points which are sampled from ith frame and lie on
j -th plane πj . Note that there may exist multiple planes in one frame. The signed distance
between a point pijk and corresponding plane πj can be written as (2).

δijk = [qx, qy, qz]j .(Ripijk + ti ) + dπj (2)

Here, ‘.’ represents a dot product and δ2ijk is the point-to-plane cost. We use PBA to perform
a motion only optimization to get a refined camera pose [Ri , ti] by minimizing the point-
to-plane cost. In the next sub-section we discuss the 3D mesh creation technique.

Algorithm 1 Generate 3D mesh for plane π = [qπ , dπ ].
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Fig. 3 Planar mesh generation using diagonal grid

3.4 3Dmesh propagation for planes

Delaunay triangulation [9] is a well-known technique to generate triangular meshes in IR2,
but its complexity is high with large number of points [3, 53]. Thus, it is not suitable for finer
mesh creation. So we avoid it and devise a Cartesian grid based mesh fitting algorithm as our
own contribution as described in Algorithm 1. By changing the grid dimension represented
by dgrid we can control the generated mesh quality from coarse to finer. Figure 3 shows a
sample input and output of our algorithm. While Algorithm 1 is suitable for faster meshing
of planes, for non-planar objects we need a non-planar generalized method. Next, we present
our proposed method for generating meshes for non-planar objects.

3.5 3Dmesh creation for non-planar objects

Given a non-planar object point-cloud extracted from a sequence of RGBD images, we need
to approximate the object surface with a mesh. For getting this object point-cloud, we do
the following. Given the RGB image, we apply object segmentation method such as Mask
RCNN [1] that provides the mask of the object. Using the mask, from the RGBD image, we
segment out the point-cloud of the object. Figure 4 illustrates this with an example.

We compare the mesh with a fishing net with fixed number of knots with elastic edges.
We cover the entire object (point-cloud) with the fishing net by stretching its nodes. The
amount and direction of this stretch is directed by the distribution of the points in the object.

Given the topology-preserving universal approximation capability of Kohonen’s Self
Organizing Map (SOM) [36], we adopt a two-dimensional lattice (for understanding see
Fig. 5(a)) of SOM as our base method for mesh approximation.

Let us assume that the point-cloud of the given object consists of l points represented by
X = {xi ∈ R3}, i = 1, .., l, the 2D lattice consists of M = m × m nodes where the set of
nodes is represented by set of weight vectors W = {wj ∈ R3}, j = 1, ..,M . The xi acts as
the activation pattern. Given xi , the nodes wj compete among each other. The winning node
i(x) learns the pattern of xi following a learning rate η(n) and cooperates with the neigh-
boring nodes for learning. The neighborhood is defined by hj,i(x)(n) = exp (−d2/2σ 2(n)),
where d is the Euclidean distance between i(x) and j th node, σ is the spread of the neigh-
borhood function and n is epoch number. A number of epochs N arranges the nodes of the
2D lattice such that it covers the surface of the object. The base SOM algorithm is given
in [36].

Since, SOM [36] is an unsupervised clustering algorithm, a set of input points (xi) are
represented by a central mesh node (wj ). Thus, general SOM algorithm does not extend
the mesh to the exact boundary of the input point-cloud and does not represent the bound-
ary well (see Fig. 5). Therefore, we propose to modify the conventional SOM algorithm
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Fig. 4 Different steps of non-planar mesh approximation given an RGBD image. (a): Input RGB image of
the scene, (b): object segmentation, (c): depth map, (d): point-cloud of the object extracted from the scene
RGB of (a), segmentation mask of (b) and depth map of (c), (e): initialization of the mesh nodes and (f):
approximated mesh

Fig. 5 Showing boundary effect due to conventional SOM and the proposed SOM. (a): Schematic diagram
depicting a 2D 5× 5 lattice of mesh nodes (the numbers represent the node index), (b): condition of 10× 10
mesh after initialization, (c): input cap point-cloud, (d): result of applying conventional SOM, (e): result of
applying proposed Algorithm 2, (f): (e) overlayed on (d), (g): (d) and (e) overlayed on (c), the red curve
shows the boundary of (d)
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Algorithm 2 Algorithms to generate a mesh addressing boundary condition given a point-cloud.

[36] such that the mesh nodes near the boundary have greater learning rate and less elastic-
ity. As a result, the boundary nodes move freely, almost independent of their neighboring
inner nodes, towards the input points on the boundary. Thus, the resulting mesh covers the
boundary of the object well.

The existing literature [36] partitions the entire SOM iterations into two phases: (1)
ordering, and (2) convergence. We look at SOM iterations as consisting of three phases: (1)
unfurling phase where from the state of complete un-organizations (Fig. 5(b)), SOM mesh
unfurls itself, (2) ordering phase where the unfurled mesh approximates the point-cloud sur-
face and (3) convergence phase where the ordered mesh reaches out to the boundary. For
accelerated result, in the unfurling phase, both the learning rate η and the spread represented
by σ of neighborhood should be very high initially. Then they both should decrease very
quickly so that the unfurling process happening in the first iteration should not get undone
in the subsequent iterations. For similar reason, in the convergence phase the learning rate
should decrease very fast. The σ value should also be very small in the ordering phase so
that the boundary nodes of the lattice can approach the boundary points of the object and
does not affect already ordered inner points of the lattice. The decay functions of η and σ

in conventional SOM [36] do not satisfy these requirements. Equations (3) and (4) present

42649Multimedia Tools and Applications (2023) 82:42641–42659



the conventional decay functions and (5) and (6) present the modified decay functions that
satisfy our need.

η(n) = η0 exp(−n/τ1), n = 1, 2, .., N .τ1 = N (3)

σ(n) = σ0 exp(−n/τ2), n = 1, 2, .., N .τ2 = N/ log σ0. (4)

η(n) = n−0.2ξ(n), n = 1, 2, .., N . (5)

σ(n) = σN + ξ(n)(σ0 × 0.05n/N − σN)n−0.25, n = 1, 2, .., N . (6)

Here, ξ(n) = 1 − exp (5(n − N)/N), σ0 and σN represent the desired spread of the
neighborhood function at iteration 0 and iteration N . At the start of iterations, we want that
almost all the nodes must be affected by the update. Since, we are considering a 10 × 10
lattice, we set σ0 = 5. At the end of iterations, we want that the winning node does not
affect its neighborhood, thus we set σN = 0.5. The two constants 2.5 and 2.0 in steps 9,
10, 12 and 13 of Algorithm 2 are set empirically. Figure 6 compares the modified vs. the
conventional decay functions for η and σ .

By the end of ordering phase both the η (learning rate) and σ become low. In the conver-
gence phase, we want the boundary nodes to have higher η so that they can move towards
the input boundary points. We want them to have smaller σ (less elasticity) so that they
do not make huge alteration to the already arranged inner nodes. We propose Algorithm
2 as our novel contribution that satisfies the above mentioned requirements and addresses
boundary condition. Note that the main update at steps 11 and 15 of Algorithm 2 can be
implemented in a parallel fashion for all the nodes in the lattice. This helps in acceleration
of algorithm execution.

For further refining the mesh shape in local areas having sudden change in normal, we
do the following. After running Algorithm 2, for each node w, we find the set X′ = {xi , i =
1, ..., r : xi ∈ X,w = argminj ||xi − wj ||, j = 1, ...,M} Then we get the average using
x′ = ∑r

i=1xi/|xi |. If the Euclidean distance between w and x′ is greater than a threshold,
we apply ARAP [41] deformation keeping w as source and x′ as destination. One example
is shown in Fig. 1 in the supplementary material. Next, we evaluate the efficacy of our
approach.

Fig. 6 Comparing the modified vs. the convention decay functions for σ (left) and η (right). Notice that
during the initial and towards the end of iterations the modified σ decreases faster. The value of modified η

is also less in the ordering phase compared to the conventional one
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4 Experimental results and evaluation

4.1 Datasets and setups

We use three known datasets to evaluate our pipeline and the individual components. The
ScanNet [15] datset is used for plane segmentation part. For non-planar objects, we also
use ShapeNet [11]. Finally for the entire pipeline evaluation we use, Apt0 [4], Copyroom
[13] and Office3 [61] datasets. All the experiments are done w.r.t. a Double2 [20] robot
mounted with a RealSense [64] camera for RGBD data. The pipeline is run on an edge
device connected to our robot having single-core CPU and 6GB RAM.

4.2 Results on 3Dmesh creation for non-planer objects

To test the efficacy of the proposed Algorithm 2, we have done extensive experiments, both
qualitative and quantitative, on two types of data. The first type consists of object point-
clouds extracted from real RGBD images (Copyroom and Office3 datasets). The second
type consists of object point-clouds taken from CAD models (ShapeNet dataset [11, 22]).
Whereas, the point-clouds from CAD model are expected to be ideal with no noise or hole,
the point-clouds extracted from RGBD images are expected to contains noise, holes and
uneven density of points. Our algorithm smoothens noise, fills the holes and works well for
uneven density. The run time of our proposed algorithms is proportional to the size (l) of
the input point-cloud. Therefore, to reduce the size while preserving the shape and topology
of the input point-cloud, we apply voxel grid filter. This filtering also helps us to tackle
the issue of uneven density of input point-clouds. The resolution of the generated mesh is
determined by the number M = m × m of nodes in the approximating 2D lattice. Greater
the value of M , greater is the resolution of the generated mesh. The upper limit of this
resolution is restricted by the resolution of the input object point-cloud. We select this M

such that the generated mesh is dense enough to represent the structure of the object and
sparse enough for low cost storage. Tables 1 and 2 show some results on real and CAD
objects. We also compare our results with that of the SOA [70] which also utilizes SOM for
approximating object surface. Comparing the third and the fourth columns of Tables 1 and 2
we observe that our method better approximates the surface shapes of the input objects.
Column five overlays the result of [70] on that of ours. These results in column four shows
that our method stretches the mesh boundary to the object boundary better as compared to
[70]. The first row of Tables 1 and 2 shows one example where our method can be seen to fill
the hole.

In Tables 3 and 4 the two quantitative metrics (as in [27]) are defined as follows. Accu-
racy: distance d such that a given percentage of the reconstruction is within d from the
ground truth model. Completeness: percentage of the ground truth model that is within a
given distance from the reconstruction. For accuracy, we define given percentage as 90%.
Different point-clouds can be in different scales. Therefore, for completeness, we define
given distance as one tenth of the maximum distance between any two points along x, y and
z axis. Note that smaller the value of accuracy, the better it is. Similarly, bigger the value
of completeness, the better it is. From Tables 3 and 4 we can say that our method generates
better result compared to SOA [70] both qualitatively and quantitatively.

For the sake of completeness and to have an idea of the overall performance of our
approach on the whole datasets, we have done two sets of experiments. In the first set,
we have taken the non-noisy point-clouds of 30 objects from three different sources [56,
57, 86]. In the second set, we have extracted (segmented) the point-clouds of the objects
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Table 1 Qualitative comparison of our method with [70] for object point-clouds extracted from real RGBD
images

Obj. Input point-cloud Our mesh Mesh by [70] [70] on our

Dustbin

Keyboard

Chair back

Bottle

Bottle

Table 2 Qualitative comparison of our method with [70] for object point-clouds from CAD models

Obj. Input point-cloud Our mesh Mesh by [70] [70] on our

Sofa

Cap

Lamp

Vase

Chair
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Table 3 Quantitative comparison of our method with [70] for object point-clouds extracted from real RGBD
images

Obj. Input point-cloud Acc. Our↓ Acc. [70]↓ Com. our↑ Com. [70]↑

Dustbin 0.0375 0.066 99 92

Keyboard 0.013 0.026 100 91

Chair back 0.021 0.027 100 99

Bottle 0.009 0.02 99 88

Bottle 0.009 0.023 100 80

Acc.: Accuracy, Com.: Completeness

Table 4 Quantitative comparison of our method with [70] for object point-clouds from CAD models

Obj. Input point-cloud Acc. Our↓ Acc. [70]↓ Com. our↑ Com. [70]↑

Sofa 33.91 49.51 99 92

Cap 5.03 8.26 98 89

Lamp 24.53 42.54 100 100

Vase 161.02 234.55 99 96

Chair 44.19 101.24 99 81

Acc.: Accuracy, Com.: Completeness
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Table 5 Quantitative comparison of our method with [70] for point-clouds of synthetic objects from [56, 57,
86] and noisy point-clouds extracted from Copyroom3 indoor scene dataset [13]

Input point-cloud Acc. Our↓ Acc. [70]↓ Com. our↑ Com. [70]↑

Copyroom3 [13] 1.79 3.24 99.6 90.0

[56, 57, 86] 9.1 11.2 99 91.6

Acc.: Accuracy, Com.: Completeness

from the indoor scene of the Copyroom3 dataset as explained in Section 3.5 and also in
Fig. 4. Since these object point-clouds in the second set are processed from RGBD images
of indoor scenes, these point-clouds contain noise. In these two set of experiments, we have
run our Algorithm 2 and also the approach by Steffen et. al., [70] on the objects from the
whole of two datasets. The results are compared in terms of two quantitative measurements
namely accuracy and completeness (defined in Section 4.2). The results are presented in
Table 5. Since the volume of different objects are different, instead of mentioning the abso-
lute distance d for which 90% of the reconstructed points are within d, we have mentioned
accuracy as d × 100/(maximum distance between any two points in that object). Table 5
shows that our method is better in terms of both accuracy and completeness. The modified
Algorithm 2 for better boundary approximation, especially the two (5) and (6) are the reason
behind this improvement with respect to the SOA.

4.3 Final mesh results

The world model containing planar and non-planar object meshes generated by our novel
pipeline holds the structural property of the environment and thus perfect for remote virtual
navigation and manipulation. Figure 1(c) shows the reconstructed environment mesh. The
mesh normal in Fig. 1(b) clearly shows a smooth output as desired. Figure 7 shows the
complete generated mesh by our proposed pipeline on three different publicly available
datasets. Some other results are presented in the supplementary material.

4.4 Execution time

Plane extraction, plane matching, planar and non-planar mesh generation are four computa-
tional building blocks of our pipeline. As we design our system to process only keyframes
and the Double2 robot movement speed is not on the higher side, we need to process 2-3
keyframes per second. For plane extraction, we use Plane RCNN, which is a learning-based

Fig. 7 Vertex colored 3D mesh generated by our pipeline on (a): Office3, (b): Apt0, (c): Copyroom
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plane segmentation algorithm and generates output in near real-time [79] in our experimen-
tal setup. For plane matching, we wisely exploit PPS-based plane representation and are
able to track the planes in real-time. For planar mesh generation, instead of using computa-
tionally expensive Delaunay triangulation, we use a much faster grid fitting algorithm. Any
indoor environment mostly has planar objects like walls, floors, and ceilings. So, the usage
of a less expensive mesh generation algorithm for the most part of the environment helps to
minimize the run-time of the pipeline. For non-planar regions, we modify the SOM-based
clustering algorithm, which is highly parallelizable. The main updates of steps 11 and 15 of
Algorithm 2 can be done in parallel for all the M nodes of the lattice. Thus, can be imple-
mented easily in multi-threaded CPU / GPU. We have implemented the customized SOM
to run in several threads in a CPU-based Edge device. In the CPU-based edge device, our
whole pipeline is able to run at 3 frames per second, which is sufficient for a keyframe-
based pipeline (3 key-frames per second) in a constrained indoor environment. Utilization
of GPU will increase the speed further.

5 Conclusion and future works

We have proposed a complete pipeline for the representation of a 3D world model in terms
of triangular meshes given a continuous sequence of RGBD images of the scene captured
from the robot’s ego view. Our method being simplistic, can be easily integrated into any
robotic platform. The method does not have any training phase and does not require a huge
training set as required by supervised learning based methods. Thus, this method is general-
ized to any indoor environment. Our mesh approximation of the objects in the scene better
represents the shape and size of the object compared to SOA. Both qualitative and quan-
titative results done on multiple datasets establish the efficacy of our method compared to
the SOA.

The main limitation of this work is the inclusion of proper texture information in the
generated 3D scene and its objects. This module can be stitched into the existing pipeline
easily in the future.
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