
https://doi.org/10.1007/s11042-023-15082-w

1228: ADVANCES IN LIFELOG RETRIEVAL AT THE LIFELOG SEARCH
CHALLENGE 2021

A tale of two interfaces: vitrivr at the lifelog search
challenge

Silvan Heller1 · Florian Spiess1 ·Heiko Schuldt1

Received: 29 April 2022 / Revised: 1 February 2023 / Accepted: 2 March 2023 /

© The Author(s) 2023

Abstract
The past decades have seen an exponential growth in the amount of data which is pro-
duced by individuals. Smartphones which capture images, videos and sensor data have
become commonplace, and wearables for fitness and health are growing in popularity.
Lifelog retrieval systems aim to aid users in finding and exploring their personal history.
We present two systems for lifelog retrieval: vitrivr and vitrivr-VR, which share a com-
mon retrieval model and backend for multi-modal multimedia retrieval. They differ in the
user interface component, where vitrivr relies on a traditional desktop-based user interface
and vitrivr-VR has a Virtual Reality user interface. Their effectiveness is evaluated at the
Lifelog Search Challenge 2021, which offers an opportunity for interactive retrieval sys-
tems to compete with a focus on textual descriptions of past events. Our results show that
the conventional user interface outperformed the VR user interface. However, the format of
the evaluation campaign does not provide enough data for a thorough assessment and thus
to make robust statements about the difference between the systems. Thus, we conclude by
making suggestions for future interactive evaluation campaigns which would enable further
insights.

Keywords Lifelog retrieval · Lifelog search challenge · Interactive retrieval system
evaluation · Virtual reality

S. Heller and F. Spiess have contributed equally to this work.

� Silvan Heller
silvan.heller@unibas.ch

Florian Spiess
florian.spiess@unibas.ch

Heiko Schuldt
heiko.schuldt@unibas.ch

1 Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland

Published online: 6 April 2023

Multimedia Tools and Applications (2023) 82:37829–37853

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15082-w&domain=pdf
http://orcid.org/0000-0001-5386-330X
http://orcid.org/0000-0002-3396-1516
http://orcid.org/0000-0001-9865-6371
mailto: silvan.heller@unibas.ch
mailto: florian.spiess@unibas.ch
mailto: heiko.schuldt@unibas.ch


1 Introduction

With the increasing availability, affordability and quality of smart, wearable devices, such
as smartwatches, fitness trackers, and body cams, the ability of individuals to continuously
record their lives in the form of images, videos, audio, and biometric data has increased
greatly within the last two decades. Whether to ensure no social-media-worthy situation
goes unrecorded, to analyze personal fitness, or simply to keep a digital record of ones
experiences, the practice of recording streams of such data, called lifelogging, has become
more commonplace with this increased affordability and availability of recording devices.
Depending on the frequency and scope of data collection during lifelogging, collections
generated in this way, so-called lifelogs, can reach exceptionally large volumes very quickly,
making manual management impractical. As such, with the increasing size of lifelogs, it
becomes increasingly difficult to analyze and gain insight or retrieve a specific piece of
information without efficient computational methods, especially due to the multi-modal
nature of lifelog data.

Lifelogs traditionally contain a variety of data with implicit and explicit relations, ranging
from videos, to images and structured data such as GPS or heart rate. Lifelog retrieval
systems should thus ideally support multiple types of data, and query interfaces supporting
different modalities lend themselves well for this use case.

One way to evaluate contributions in the area of multimedia retrieval systems is through
interactive retrieval competitions, where different user-system combinations compete with
each other. The Lifelog Search Challenge, “modelled on the successful Video Browser
Showdown (VBS) [13]” [8], offers such a platform. While there are many different config-
urations for such evaluations [18], LSC has so far focused on Known-Item Search Tasks,
where users are provided textual hints and use their retrieval system to find a target lifelog
moment. Thanks to advances in tools [28, 33], these evaluations have also been held online
in the past years [13, 27].

Recent evaluation campaigns have also shown that in addition to traditional desktop user
interfaces, novel user input methods such as Virtual Reality (VR) can provide new and
intuitive retrieval interfaces, while offering competitive performance [9, 13].

In this paper, we present two systems which have participated at LSC in past years:
vitrivr1 [31] with its conventional desktop user interface, vitrivr-ng and its Virtual Reality
counterpart, vitrivr-VR.2 Both systems use the same retrieval engine [30] and database [4],
but offer different query and interaction methods. vitrivr-VR builds upon the vitrivr system,
which has been used in a variety of contexts such as cultural heritage [20, 22, 34], retrieval
for speech transcription [39], and video retrieval [11].

Our contribution is threefold: First, we describe in detail how the shared backend of
vitrivr and vitrivr-VR handles the lifelog data used at LSC, which features are used and how
the retrieval model works. Second, we describe the user interfaces vitrivr-ng and vitrivr-VR
for lifelog retrieval, and the implications on the retrieval approach. Third, we compare and
analyze the performance of the two interfaces at LSC, providing insights into the differences
between the traditional desktop-based system and the VR system for lifelog retrieval. The
fact that both systems use a common retrieval engine allows for an interesting comparison.
All components of vitrivr and vitrivr-VR are fully open-source.

1https://vitrivr.org
2https://github.com/vitrivr/vitrivr-vr

37830 Multimedia Tools and Applications (2023) 82:37829–37853

https://vitrivr.org
https://github.com/vitrivr/vitrivr-vr


The rest of this article is structured as follows: In Section 2, we describe the data and
retrieval model used by both systems. Section 3 compares the architecture of the two
systems, introducing common components and highlighting key differences. The user inter-
faces are described in Section 4, Section 5 analyses the results of the participation at LSC
2021, and Section 6 concludes.

2 Data and retrieval model

In 2021, vitrivr participated for the third time [12, 14, 26] with its traditional desktop inter-
face vitrivr-ng, and vitrivr-VR for the first time [38] in the LSC. Between 2019 and 2021,
our conceptual approach to lifelog retrieval has evolved, and this section describes our
model for the 2021 iteration in detail.

This section contains our data model, the internal representation of the dataset, in
Section 2.1, which is followed by an in-depth look at the retrieval model for multi-
modal lifelog retrieval in Section 2.2. The content draws from previous LSC participations
[12, 14, 26, 38] and existing work on the conceptual underpinnings of vitrivr [5–7, 15, 23].
It contains some simplifications compared to the actual implementation due to the focus on
lifelog retrieval.

2.1 Datamodel

Fundamentally, we are provided with two different types of data for the LSC: The images
captured by the lifeloggers and the metadata accompanying each image3. In our data model,
the smallest unit of retrieval is called a segment, and segments are grouped into objects.
This distinction comes from the focus of vitrivr on multimedia, and enables us to easily
distinguish different result aggregations such as ranking segments individually, or sorting
by object. In the context of lifelog retrieval, each individual image is considered a segment,
and each day is an object consisting of all segments within that day. Figure 1 shows an
example of two objects (days), each consisting of multiple segments (images).

2.1.1 Multimedia data

As our retrieval model is centered on multimedia retrieval, there are different types of seg-
ments and objects depending on the type of multimedia. For example, in video retrieval the
original videos are represented as objects, on which we perform shot segmentation to gen-
erate partial video sequences (shots) which are represented as segments. At the LSC we are
provided with individual images with the associated timestamp of capture, which we use as
our smallest unit of retrieval, and thus consider each image a segment. Different summa-
rizations are possible, such as by week, month, or semantic events. We have chosen to select
a day as our abstraction level, which is illustrated in Fig. 1.

We assign to each object o, i.e., each day, a unique identifier and store the path path

where all images for that day are located.4 No content is stored for an object, as the actual

3Provided annotations by external APIs, e.g., OCR data and textual descriptions can be considered as
metadata in this context.
4If our data model would only consider the LSC dataset, we would not necessarily need the object abstraction,
but as the model and systems are built for general purpose multimedia retrieval, we need to select an object
abstraction.

37831Multimedia Tools and Applications (2023) 82:37829–37853



Segment 160923_1224:
23.09.16 20:06

Segment 160923_523:
23.09.16 11:26

Segment 160923_1033:
23.09.16 18:23

Segment 160924_523:
24.09.16 10:22

Segment 160924_853:
24.09.16 13:26

Segment 160924_1404:
24.09.16 19:17

Object 160923 (23.09.16)

Object 160924 (24.09.16)

Fig. 1 The data model groups segments (individual images) into objects (days). The figure shows selected
segments from two consecutive days which are grouped into two different objects. A segment is our smallest
unit of retrieval

content (images) is stored per segment. All segments for a given object are stored in a single
folder, which is stored as path.

o := 〈objectId, path〉
Since each segment s is part of an object, we generate a unique identifier per segment
and store it alongside the objectId, the sequence number (i.e., its index within a day), and
its timestamp. The actual image is stored in the file system and fetched on demand. For
example, the segment with the tea cup in Fig. 1 has the sequence number 1224, is taken at
20:06 and belongs to the object 160923 (all images from the 23rd of September 2016)

s := 〈segmentId, objectId, sequenceNum, timestamp, path〉

2.1.2 Metadata

We separate provided metadata into two categories: metadata which is used for Boolean
retrieval, and metadata which is used for content-based retrieval (e.g., text).

Metadata for boolean retrieval The metadata model looks the same for objects and seg-
ments. Given the unique identifier id of either one of the two, a metadata tuple m is defined
as follows:

m := 〈id, domain, key, value〉 with id ∈ {segmentId, objectId}

37832 Multimedia Tools and Applications (2023) 82:37829–37853



The most commonly used domain values are technical e.g., for resolution,
provided for metadata which is provided by external sources, but this also allows
to add e.g., exif as a domain for metadata which comes with an image. An exam-
ple tuple storing the timezone for our example segment from Fig. 1 could thus be
〈160923 1224, provided, timezone, Europe/Dublin〉.

Metadata for content-based retrieval Provided annotations such as OCR and textual
descriptions are used during retrieval along with other features which we extract ourselves,
which is discussed in the next section.

2.2 Retrieval model

At its core, our retrieval model is based on a late fusion of different features, which each con-
sider different aspects of a query. Each feature is responsible for returning the best matching
segments for a query, and the scores are fused together in a second step. More formally, each
feature produces a list of scored segments ŝ = 〈segmentid, score〉 containing a segment
identifier and the score for said segment (scores are bound, 0 ≤ score ≤ 1).

In the following, we will first introduce the features which are available, then how they
can be queried, and how different query modalities can be combined to generate a sin-
gle ranked list. Afterwards, extensions which were made to enable queries with temporal
context are briefly described.

2.2.1 Features for lifelog images

Our retrieval engine implements a variety of features for different types of media [6, 23]. In
this section we briefly list the features used for lifelog retrieval.

Visual-Text Co-Embedding: Recent evaluations have shown that features transforming
text and images into a joint embedding space are very competitive in interactive video
retrieval [13, 19], and the popularity of such embeddings for systems participating at
LSC [1] show that they are also considered essential for state-of-the-art systems support-
ing lifelog retrieval. We use a very simple yet effective visual-text co-embedding based
on pre-trained visual and textual feature encoders and embedding networks trained by
us [37]. Figure 2 shows a conceptual overview of this feature. The pre-trained feature
encoders used are the InceptionResNetV2 [40] for visual features and the Universal

Lifelog Image i

Sentence s

Pretrained Visual
Feature Encoder

Pretrained Textual
Feature Encoder

a cup of tea on
a table Textual Embedding

Visual Embedding

Visual Features

Textual Features

Co-Embedding Space

i
s

Fig. 2 Conceptual overview of our visual-text co-embedding method (adapted from [37])

37833Multimedia Tools and Applications (2023) 82:37829–37853



Sentence Encoder [3] for textual features. Our models were trained on a mixture of cap-
tioned image and video data from Flickr30k [45], Microsoft COCO [17], MSR-VTT [44],
TextCaps [36], TGIF [16], and VaTeX [43]. For regularization, the output vectors are
normalized to the 256 dimensional hypersphere. During retrieval, the similarity between
a query vector qv and a known segment vector sv is calculated as the Euclidean distance
between the two vectors transformed to a similarity score with a linear correspondence
function with a factor of 2:

scvtce(qvi, svi) = max

⎛
⎜⎝0, 1 −

√∑256
i=1(qvi − svi)2

2

⎞
⎟⎠

Boolean Metadata Retrieval: We focus on two types of metadata queries: range for e.g.,
hour and option for e.g., day or timezone. Range queries get transformed to simple
BETWEEN request to the database, and for options we support various Boolean operators
such as =, ≤, or ≥.

Concept Classification / Tag Retrieval: In contrast to the visual-text co-embedding fea-
ture, which takes free text input, this feature assumes a pre-defined set of concepts
(or tags) have been classified. In the past, we have used 3DConvNets [42] or exter-
nal APIs [32]. For LSC 2021, we have used the provided annotations and their score
which is used by our tag retrieval feature. More formally, given a set of user-provided
tags T = 〈t1, t2, . . . , tk〉, we retrieve for every tag all matching segments. Given a rele-
vance score per segment-tag combination rs(s, t), the score of a segment is computed by
summing all scores and normalizing:

sctag(s, T ) =
∑k

i=1rs(s, ti )

k

Geospatial NNS: We support simple queries in the form “near this point”, meaning
the retrieval engine takes as input a single point of the coordinate system as a query
cq = 〈

latcq , loncq

〉
. This is then compared to the coordinates of each segment, cs =

〈latcs , loncs〉, and compared using the Haversine distance hav. Transformation to a sim-
ilarity score is done using hyperbolic correspondence with a configurable value divisor

which determines the distance at which the score should be 0.55

scgeo(cq, cs) = max

(
0, 1 − 1

1 + hav(cq,cs)
divisor

)

OCR: Over the years, we have experimented with different OCR features such as a com-
bination of EAST [46] and CRNN [35] in 2019 [32], but have not used OCR in 2020 and
2021. For 2022, we will use HyText [41].

2.2.2 Query model

Our retrieval model allows combining different query modalities such as text and Boolean
retrieval (and thus features) in different ways. We show an example query in Fig. 3. At the
highest level, users can specify temporal sequences using multiple query containers, such
as first seeing “a full plate of food” and then “a cup of tea on a table”. Each query container

5The divisor can be configured based on the dataset and user preference, and was set to 100’000 for LSC
2021

37834 Multimedia Tools and Applications (2023) 82:37829–37853



day=23 ∧ month="september"

"a cup of tea on a
table"coffee shop cup

Stage 1

Stage 2

day=23 ∧ month="september"

"a full plate of food"

Stage 1

Stage 2

Query Container 1 Query Container 2

Temporal Query

Fig. 3 The query model allows users to specify a sequence of queries. In this example, a user is looking for
images from the 23rd of September, where there is first a full plate of food and then a cup of tea on a table.
The second query container also has the tag modality

represents an information need for a single segment. We enable users to restrict the search
space of a feature by the output of a previous one, e.g., by searching only within the images
of the 23rd of September as done in both containers. We call this a staged query [15]. The
simplest combination of modalities having them on the same level with equal importance,
as done i.e., in Stage 2 of the query in Fig. 4.

coffee shop cup "a cup of tea on a table"

Query Execution: Stage 2

Tag Retrieval Text Embedding

Score Fusion

Query Execution: Stage 1

day=23 ∧ month="September"

Boolean Retrieval

day=23 ∧ month="september

"a cup of tea on a
table"coffee shop cup

Stage 1

Stage 2

Query

Fig. 4 Example of a staged query where the search space for the content-based features (tag and visual-text
co-embedding) is limited to elements on the 23rd of September. The results of the tag and text feature are
merged in the front-end to generate the final result

37835Multimedia Tools and Applications (2023) 82:37829–37853



2.2.3 Query execution model

We will now discuss how the results of the individual features are combined given the
different options from the query model, moving from simple to complex fusion. We show
an example of staged query execution in Fig. 4.

Feature fusion If multiple modalities are present in one stage, we offer a configurable
choice between max-pooling and average-pooling, i.e., given a list of similarity scores
(sc1, sc2, . . . , scj ) for a segment, either score = max(sc1, sc2, . . . , scj ) or score =
avg(sc1, sc2, . . . , scj ). For LSC 2021, vitrivr and vitrivr-VR have both used average-
pooling. In Fig. 4, the results of the tag and visual-text co-embedding feature are fused
together. Features are fused in the front-end which allows users to weigh features differently
without re-executing a query.

Staged queries For lifelog retrieval queries, there are often hard binary constraints pro-
vided, such as the day of the week or a timeframe (e.g., evening). In those scenarios, it
makes sense to limit the search space for similarity-based queries in advance. Our database
layer supports this functionality by taking a list of allowed ids as an optional query param-
eter. In the example of Fig. 4, the user specifies the Boolean query for day and month as a
first stage. Only the ids for this feature are returned, the features in the second stage start
retrieving, as they receive the list of allowed ids in addition to the user-specified query. This
necessarily takes place in the backend, but the results are still returned per feature, to allow
fusion in the front-end.

Temporal queries in lifelog retrieval Starting in 2020, we have experimented with dif-
ferent ways to allow users to specify the temporal context of their queries, and different
algorithms and architectures for these queries. This has been identified as an important
component for interactive multimedia retrieval system in the analysis of interactive retrieval
competitions, e.g., in VBS 2020 “The results reveal that the top two systems mostly relied
on temporal queries before a correct frame was identified” [19] and 2021 “[...] almost all
top performing systems [...] enable specification of temporal context in queries” [13]. Our
current approach allows users to specify a sequence of queries, each describing a desired
element. An individual query in this sequence is called Query Container.

The results of these individual queries are then fused together to rank objects higher
which fit the specified query sequence. Our approach for video retrieval is described in
detail in [10], and is adopted for lifelog retrieval with minor modifications.

Our current model has several drawbacks when applied to lifelog retrieval, such as the
fact that object-level constraints such as the date have to be specified per query container.
Additionally, we have yet to perform a thorough investigation into the performance of our
algorithms in the context of lifelog retrieval.

3 Architecture

As mentioned previously, both vitrivr and vitrivr-VR share a common retrieval engine called
Cineast [29, 30], and rely on a specialized database for multimedia and Boolean retrieval,
Cottontail DB [4]. Figure 5 shows a high-level view of the architecture of the two systems.

37836 Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 5 Architecture of both systems, with the shared components of the retrieval engine and the database.
Adopted from [37]

In this section, we will briefly discuss how the different components are related to each
other the separation of concerns between the layers. This builds the foundation for Section 4,
where we describe the user interfaces in detail.

Database: Cottontail DB supports vector-based similarity search, text retrieval and simple
Boolean retrieval. Since it does not offer joins, metadata and segment/object information
lookup is done by the retrieval engine. As discussed in previous section, all functionality
is used, e.g., visual-text co-embedding uses vector-based similarity search and Boolean
retrieval is used for metadata.

Retrieval Engine: Cineast is responsible for feature extraction ahead of the competition
and provides a GRPC, Websocket and RESTful API for query execution.

Due to technical reasons, the systems use different API methods. vitrivr uses the Websocket
API of Cineast, whereas vitrivr-VR uses the RESTful API, but the underlying retrieval
model is the same.

vitrivr has a web-based user interface called vitrivr-ng which is implemented in Type-
script6 and uses Angular7. First introduced in [6], it also has served as the basis for LSC parti-
cipations by other teams [24, 25]. vitrivr-VR is implemented in Unity and uses OpenXR.

4 A tale of two interfaces

Having discussed the conceptual retrieval model which is shared between the two systems
and their common architectural components, we now turn to their main defining difference:
the user interface. Both user interfaces allow query formulation with different modalities
and result presentation, with the main differences being that vitrivr-VR does not support
late filters nor staged or temporal queries.

6https://www.typescriptlang.org/
7https://angular.io/

37837Multimedia Tools and Applications (2023) 82:37829–37853

https://www.typescriptlang.org/
https://angular.io/


Fig. 6 Full overview of the vitrivr-ng user interface. On the left side, users can formulate queries. The middle
part shows results, and on the right side, filters can be applied

Fig. 7 Overview of vitrivr-VR showing the modular query formulation UI surrounded by the cylindrical
results display and one result shown in detail view with the temporally neighboring images shown in the
form of a drawer of images below it. Due to the inherent nature of made-for-VR content, it is not possible to
clearly depict all aspects of vitrivr-VR in a single 2D representation

37838 Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 8 Side-by-side comparison of the entrypoints of the two systems

In this section, we will cover each user interaction aspect in one of the following subsec-
tions. While sketch queries are supported by both systems, they were not used in the LSC
context and therefore are not discussed here.

In Fig. 6 and 7, we show the two user interfaces in action, with a query already formulated
and results visible. In vitrivr-ng, query formulation happens on the left side of the screen,
and results are displayed in the center. Different result views can be toggled in the header.
vitrivr-VR takes a more free-form and modular approach to the user interface in an attempt
to make use of additional freedom in VR. The query formulation interface is separated into
panels by modality. Each of these interfaces can be grabbed by the user and rearranged in
virtual space. In vitrivr-VR, query results are displayed in a horizontally scrollable display
that wraps cylindrically around the user. Figure 8 shows a comparison of the entrypoints of
the two systems.

4.1 Query formulation

In Fig. 9, we show a comparison of the query formulation views. In vitrivr-ng, all modalities
can be toggled. Additionally, new query containers can be added by clicking on the green
plus button, which allows adding temporal context. This enables users to specify temporal

Fig. 9 Side-by-side comparison of the query formulation view

37839Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 10 Side-by-side comparison of the textual query formulation modality

sequences in their query. When multiple modalities are used within the same query con-
tainer, they can be individually pushed to a later stage by clicking on the downward arrow
next to the magnifying glass visible in Fig. 10a.

In the current version of vitrivr-VR, staged and temporal queries are not yet avail-
able, making query formulation less expressive, but also much simpler. All available query
modalities are available as individual interfaces in virtual space and are automatically used
for subsequent queries as soon as the user inputs data. The text term input, for example, is
used for queries as long as at least one text category has been selected and the user has input
text in the text field.

As highlighted in previous sections, our model for lifelog retrieval allows a seamless
combination of different modalities. The query formulation for those modalities will be
described in the following.

4.1.1 Textual queries

Both interfaces allow textual queries for OCR or visual-text co-embeddings, and a compar-
ison is shown in Fig. 10. vitrivr-ng offers traditional text input, where boxes can be checked
depending on the desired feature (e.g., OCR, textual embedding). vitrivr-VR offers a very
similar interface in VR, where different feature categories can be toggled via a set of check-
boxes attached to a text field. Text input in vitrivr-VR is facilitated through speech-to-text
and a virtual keyboard. The speech-to-text solution, based on DeepSpeech8, is particularly
useful to quickly enter long scene descriptions for the visual-text co-embedding, while the
virtual keyboard allows the input of hard-to-pronounce words and precise corrections.

4.1.2 Boolean queries

vitrivr-ng mainly supports two types of Boolean queries, shown in Fig. 11a: simple drop-
downs, either with a provided list of options or dynamically generated based on distinct

8https://github.com/mozilla/DeepSpeech

37840 Multimedia Tools and Applications (2023) 82:37829–37853

https://github.com/mozilla/DeepSpeech


Fig. 11 Side-by-side comparison of the Boolean query formulation view

column values, or range queries for e.g., hour of the day. Additionally, the same query
modality offers text retrieval e.g., for segment ids as a convenience feature.

vitrivr-VR supports the same two types of Boolean queries through sliders for ranges and
drop downs for single selections, but also supports multiple-response style selection e.g.,
to select the days of the week. This multiple-response style selection results in a Boolean
expression specifying a segment’s membership in the selected set of options. As seen in
the month selection in Fig. 11b, multiple-response style selections indicate if data fitting a
certain value even exist by disabling the options that do not represent any data.

4.1.3 Geographical queries

For information needs with a spatial context, vitrivr-ng supports the simple use case of
putting a pin on the map and searching for segments in proximity. This is implemented using
Leaflet9 and OpenStreetMap10, and the leaflet-geosearch package11 is used for location
lookup independent of the dataset, i.e., searching for “Dublin”. Figure 12 shows the query
formulation view of both systems.

In vitrivr-VR the geospatial query interface consist of three parts: a globe-like mini-map,
a flat detail-map and a pin-box. Geospatial queries are formulated by grabbing a pin from
the pin-box in virtual space and sticking it into the detail-map. To specify locations outside
of the detail-map’s default view, it can be dragged with one hand to pan the map and zoomed
through a pinching gesture using both hands. To quickly change the location displayed by
the detail-map without having to zoom the map out and in again, a pin can be placed on
the globe mini-map, which immediately sets the detail-map to focus on the corresponding
location. All parts of the geospatial query interface can be grabbed and placed anywhere
in virtual space and even disabled, allowing users to customize the query interface to their
individual needs.

9https://leafletjs.com/
10https://www.openstreetmap.org
11https://github.com/smeijer/leaflet-geosearch

37841Multimedia Tools and Applications (2023) 82:37829–37853

https://leafletjs.com/
https://www.openstreetmap.org
https://github.com/smeijer/leaflet-geosearch


Fig. 12 Side-by-side comparison of the geospatial query formulation view

4.2 Result presentation

Having formulated the queries, the retrieval engine returns results per segment and feature12,
allowing the user interface to determine the result view and final ranking.

Both interfaces allow two different result presentation views: A ranked segment list,
shown in Section 4.2.1, and views which groups segments together and aggregates their
score, shown in Section 4.2.2. The UI for inspecting segments is shown afterwards in
Section 4.2.3.

The result presentation of vitrivr-ng and vitrivr-VR differs in the details of presentation,
but there are also some bigger functional differences between the two interfaces. While the
result displays offered by vitrivr-ng are more interactive and allow additional configuration
through late filtering, only the result set of the most recent query can be viewed. vitrivr-
VR, by comparison, does not support late filtering, but preserves the results from previous
queries, allowing users to return to previous result set including their scrolling position
within the results. Furthermore, by allowing results to be pulled out of a results display and
placed anywhere in virtual space, vitrivr-VR allows specific results to be kept independently
from the query results from which they were taken, and to be used as reference or for
comparison while viewing results from a different query.

4.2.1 Ranked segment list

The default view for both interfaces orders individual segments (that is, individual images
in our context) by their fused score. Shown in Fig. 13, this is a classic 2D-grid in vitrivr-ng
and a horizontally scrolling 2D-grid that wraps cylindrically around the user in vitrivr-VR.
While additional results can be viewed in vitrivr-ng via vertical scrolling, in vitrivr-VR
results scrolled beyond 360 degrees around the user are hidden from the display and replaced
with new results in decreasing order of similarity score. This interaction is performed
through regular scrolling in vitrivr-ng, while it is performed through the primary touchpad
or joystick in vitrivr-VR.

12Features are grouped by the backend into so-called categories, and technically results are returned per
category. That implementation detail is not particularly relevant, as often categories only contain a single
feature. Categories can also be thought of as hierarchical features.

37842 Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 13 Ranked segment list result display. Images from different days and events are scored individually,
and ranked by score

4.2.2 Segment aggregation views

Both interfaces offer a result view which is based on object scores, which is a score for a
given day in the LSC context. The two interfaces differ both in the way these object scores
are calculated and how they are displayed. In vitrivr-ng, objects are scored through average-
pooling of the segment scores, i.e., given all scored segments Ŝo = (ŝ1

o , ŝ2
o , . . . , ŝn

o ) for an
object o, the score is determined as follows:

scoreo =
∑n

i=1score
(
ŝi
o

)
n

vitrivr-VR uses the maximum score of all segments to rank objects in its segment aggre-
gation results view. In this results view, each object (in the case of the LSC dataset, each
day) is assigned a position in the cylindrical grid, ordered by the maximum score of the seg-
ments it contains. A fixed number of segments of this object is then shown in this position,
one behind the other, ordered by segment score. These views are shown in Fig. 14.

Fig. 14 Object-based result display in vitrivr-VR in a cylindrical grid (query formulation UI disabled for
clarity) and in vitrivr-ng as a list, with object (days) separated by double grey lines

37843Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 15 The drawer view of the segments of a day in chronological order

Both vitrivr-ng and vitrivr-VR support different additional segment aggregation views.
vitrivr-VR provides an additional drawer view, showing the segments of an object neighbor-
ing the selected segment in chronological order inside a virtual box, which can be moved
by the user. This view is shown in Fig. 15. By moving their hand into this virtual box and
hovering over a segment image, users can take a closer look at individual segments, which
are then shown above the box. By quickly moving their hand through this virtual box, users
can ‘riffle’ through the segments, producing an effect similar to that of a flip-book. The
virtual box containing the segment images can be moved around. Moreover, users can also
elongate the box to simplify segment selection, by grabbing and pulling the handle, similar
to the action of pulling out a drawer.

In addition to its regular segment aggregation view, vitrivr-ng offers a temporal scor-
ing view, which computes sequences of segments which match the user-specified query
sequence as discussed previously. In our context, this means that for a given day, there can
be multiple sequences each with their individual score. The result view shown in Fig. 16
looks similar to that for objects, which makes sense given that it can also be looked at as a
different way of aggregating segment scores.

4.2.3 Segment inspection

If a user is interested in closely inspecting a segment to see whether it matches their infor-
mation need, both user interfaces offer the ability to look at accompanying metadata, and
vitrivr-ngalso shows extracted features. We show a side-by-side comparison of the views in
Fig. 17.

37844 Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 16 vitrivr-ng also allows specifying temporal context, and groups segments together which match the
order of the query

Fig. 17 Segment inspection which allows looking at metadata

37845Multimedia Tools and Applications (2023) 82:37829–37853



4.2.4 Filtering of result sets

Given that in LSC, new hints appear over time, it is useful to have front-end filters
which avoid reformulation and execution of a query. vitrivr-ng has added this functionality
specifically for LSC. Two types of late filters are supported: checkboxes which are
dynamically generated based on the available metadata, and range filters for e.g., time of
day.

5 LSC 2021 result analysis

Our analysis focused on the results of LSC 2021, both due to the scope of the special issue
and the fact that this was the first year vitrivr-VR participated, which allows for a compar-
ison of the two participants. We use logs provided by the competition server DRES [28],
and post-process them into an SQLite database which makes for easier analysis. The final
database was provided to all teams. Our analysis is based on the methodology of the VBS
2021 analysis [13]. We first compare the relative performance of the two systems through
analysis of the solved tasks, then analyze and discuss indicators of browsing efficiency, and
finally provide recommendations for improving the data collection with the goal of enabling
more in-depth analyses in the future. The data and results show that limited robust conclu-
sions can be drawn, which is why in Section 5.3 we discuss recommendations for future
iterations of LSC and similar interactive evaluations.

5.1 Solved tasks

Table 1 shows an overview of correctly solved tasks by the two teams. Even though both
systems shared the same features and retrieval model, the operator of vitrivr solved three
tasks that the operator of vitrivr-VR did not solve, but vitrivr-VR also solved one tasks
which was not solved by vitrivr. Due to the similarities between system capabilities, these
differences in solved tasks can be most likely attributed to operator behaviour, such as query
formulation and browsing strategies. While the low number of samples we can analyze is
partly because both systems together were only able to solve nine of the twenty-four tasks,
LSC could benefit from having multiple independent operators for each system. Such an
increase in sample size was already shown to increase the statistical robustness of interactive
evaluations [27].

Table 1 Tasks which were
solved by at least one of the two
systems, together with the time in
seconds until correct submission

Task vitrivr vitrivr-VR

01 168 97

04 36 60

06 101 282

07 260 –

08 166 –

13 194 –

15 94 47

24 294 278

23 – 53The faster system has its time
highlighted in bold

37846 Multimedia Tools and Applications (2023) 82:37829–37853



Due to the low number of data samples, it is difficult to make any conclusive statistical
statements, however the data we do have indicates, that there are no clear system specific
patterns with regards to task solve time. Neither system-operator combination clearly out-
performs the other with regards to the time to solve a task, with only a very slight tendency
of vitrivr solving more tasks than vitrivr-VR.

5.2 Browsing efficiency

Our main tool to investigate the difference between the two systems is the result logs
that both systems submitted to DRES. This allows us to compare the browsing efficiency
between the two systems in two key aspects: We can compare the time it takes between the
appearance of a correct item in the result view until the operator submits it, and if there were
items in the result views that would have been correct, but were not submitted.

To compare the two systems based on how fast result sets can be browsed and correct
results can be found, we can look at two different metrics: The time delta between the first
time the correct result appears in the results and submission time, and between the last time
the correct result appears before submission and submission time. The first option gives us
insights into cases where the correct result would have been already in the results, but the
operator chose to reformulate the query, while the second option really tells us about the
time it took to browse the final result set before submission. Both cases are shown in Fig. 18.

As can be seen from Table 1, vitrivr solved eight tasks, while vitrivr-VR only solved six,
however, both plots in Fig. 18 only contain four data points for vitrivr-VR. What may appear
like an error on first glance is actually another indicator of the deficiencies of the current
data logging format. In the two cases of missing data, the correctly submitted segment never
appeared as a direct result of any query formulated through vitrivr-VR and was most likely
found as a result of the many result exploration options. In particular, what most likely led
to the correct submission in these cases, was the use of the drawer view originating from
a different segment of the same day as the correctly submitted segment. This theory is
corroborated by the log of the vitrivr-VR interaction events, which show that the use of the
drawer view was the last logged interaction before submission.

In Fig. 19, we show all cases where a correct item did appear in the result list, regardless
of whether it was submitted or not. It is clearly visible in Fig. 19 that for both systems,

Fig. 18 Time between first or last result log appearance and correct submission compared to the rank of first
or last appearance

37847Multimedia Tools and Applications (2023) 82:37829–37853



Fig. 19 Best rank of any correct
item per task and team. Red dots
are operator browsing misses,
i.e., the correct item would have
been in the results, but did not
get submitted

there were operator errors, where a correct item would have been in the results, but was
not submitted. While it is somewhat expected that for images which have a poor rank, an
operator might not browse that far, there are a significant amount of browsing misses for
vitrivr between ranks 1 and 100, which indicates operator errors as these are items that were
most likely seen during browsing. Due to the low number of data points it is difficult to
make statistically robust statements, but it appears that the queries of the vitrivr operator
led to results with a higher precision than those of the vitrivr-VR operator, but that correct
results may be easier to spot in vitrivr-VR than in vitrivr.

5.3 Recommendations for data collection

Based on our experience and results, we highlight possible areas of improvement for the
current methodology of LSC, both conceptually and for the current infrastructure.

Multiple independent participants As previously mentioned, the current format for the
LSC means that we only have data from one system instance available. Having more
instances of the same system participating independently would allow us to perform differ-
ent analyses, such as comparing inter-operator and inter-system differences as done in [27],
and increase confidence and robustness in the results while using the same methodologies
as done here.

One operator per system instance The fact that the rules allow for multiple participants to
be using the instance collaboratively, as long as there is only one operator means that some
systems could have five people searching on the same screen and brainstorming for queries,
while others could be using a single operator. This puts VR systems at a disadvantage, since
they are more challenging to be used cooperatively, but also makes results analysis more
challenging since there is an additional variable to be considered.

37848 Multimedia Tools and Applications (2023) 82:37829–37853



Data format The current data format provided by the evaluation server only allows data
analysis beyond that already provided as statistics calculated by the server after significant
data integration effort. As of the version used at LSC,13 the evaluation server provides (i) a
JSON file containing the most important information about an interactive retrieval competi-
tion event, such as the competing teams, the tasks that were used during the competition, and
the submissions per task, and (ii) a CSV file containing a number of precomputed statistics
resolved by team and task, such as the time until a correct submission was made.

While the evaluation server supports the logging of query results and interaction events,
which was encouraged but not required at the LSC’21, this data is not contained within the
standard set of analysis data provided by the server. This information is only accessible in
the form of a complete log of all server events containing query results logs, interaction
logs, submission logs, and task start and end events.

As this data, with the exception of submission logs, is only resolved by timestamp and
session ID, a number of reconciliatory steps are required to connect it with the rest of the
data and allow analysis to be performed. Two additional files are needed from the evaluation
server maintainers: 1. the audit log file containing session logins resolved by username and
timestamp, and 2. a file manually compiled by the evaluation server maintainers containing
the mapping between usernames and user IDs. To import the data into a common schema
session IDs must be resolved to usernames by matching login and logout time windows,
usernames must be resolved to user IDs, query result and interaction logs must be resolved
to tasks and users by matching task time windows and session IDs, and items in query result
logs, which may be in any format, must be converted to the same format and matched with
task targets. This reconciliation effort is additionally complicated through the mixed use of
unlabeled server and client timestamps.

Based on these insights on the analysis data format, we make the following recommen-
dations for future data collection: 1. specify and enforce a unified format both for data
collected from participating systems, such as query result items, and for data logged by
the server, such as timestamps, 2. link data appropriately on server side to ensure a consis-
tent interpretation of analysis data across all individual team analyses, 3. provide all data
in an appropriate format, such as CSV files or a relational database, and 4. document data
sufficiently to prevent ambiguities and misinterpretations during analysis.

Collected data At the current time, the data collected from different retrieval systems is
sufficient only for very limited analyses. To be able to thoroughly analyze the performance
of different systems and identify the highest performing user strategies, more data must be
collected to reveal the user interactions and data pathways that led to successful submis-
sions. With the current data collection strategy, which only specifies the collection of query
result, basic interaction, and submission data, it is often impossible to determine which
query led to a submission and what interactions were involved.

We make the following recommendations for data collection to enable more in-depth
analysis in the future: 1. specify a unified format for the different interaction methods that
can lead to a submission to allow the quantitative analysis of this data without post-hoc
reconciliation or interpretation of logs, and 2. expand and formalize the data collection
to ensure the necessary data required to trace the submission back to the first relevant
interaction is collected for all systems

13v1.0.1,https://github.com/dres-dev/DRES/releases/tag/1.0.1

37849Multimedia Tools and Applications (2023) 82:37829–37853

https://github.com/dres-dev/DRES/releases/tag/1.0.1


We are aware that these recommendations require significant research effort to ade-
quately implement, but we believe that this is could greatly improve the depth of analysis
possible for interactive retrieval competition data.

6 Conclusion and future work

In this paper, we have compared and contrasted the retrieval and interaction approaches of
two participating systems at LSC, vitrivr and vitrivr-VR. In addition to a careful descrip-
tion of the conceptual underpinnings of the systems, the different user interfaces have been
described, with a special focus on the affordances of VR.

Our analysis of the result logs shows that, while the two systems perform similarly, with
vitrivr performing slightly better, both systems have different strengths and weaknesses. The
analysis clearly shows the need for improved data collection, in terms of the kind of data, the
quantity, and the format. Multiple independent users per system, collection of data clearly
linking submissions to operator interactions and queries, and the specification of a clear,
formally defined schema for interaction and results logging would enable a vastly more
robust analysis and would allow insights into the performance of systems and operators that
are currently impossible to obtain.

LSC offers a great platform to gain insights through a holistic evaluation of end-to-end
systems with users posing interactive queries in real-time. Participating with a VR system
and a conventional retrieval system allows us to compare the opportunities and challenges
of VR in a fair manner, as the shared retrieval backend eliminates the retrieval model from
the comparison.

For future iterations of LSC, we plan to continue on our journey towards a general-
purpose multimedia retrieval engine. Newer releases of the retrieval engine include, among
others, a newer text-embedding model [37], new state-of-the-art visual-text co-embedding
features such as CLIP [21], and a new OCR feature module [41].

One interesting avenue of research would be lifelog summarization, similar to
approaches in video retrieval [2]. Especially in lifelogs, there is a lot of overlap between con-
secutive images, which means visually grouping similar shots or exploring different ways
to ensure users can focus on browsing meaningfully different images and events.

Acknowledgements This work was partly supported by the Swiss National Science Foundation (project
“Participatory Knowledge Practices in Analog and Digital Image Archives”, contract no. CRSII5 193788).

The authors would like to thank all contributors to the 2019, 2020 and 2021 LSC participations of vitrivr
and vitrivr-VR for their work which has enabled this paper. Additionally, we would like to thank Ralph
Gasser, Ashery Mbilinyi, Loris Sauter, and Marco Vogt for their constructive input during writing.

Funding Open access funding provided by University of Basel

Statements and Declarations The code for the systems described in this paper is available open source at
https://github.com/vitrivr/.

The logs analysed in this paper are available from corresponding authors or LSC organizers on reasonable
request.

The authors have no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

37850 Multimedia Tools and Applications (2023) 82:37829–37853

https://github.com/vitrivr/


regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ang W-H, Yen A-Z, Chu T-T, Huang H-H, Chen H-H (2021) LifeConcept: an interactive approach for
multimodal lifelog retrieval through concept recommendation. In: 4th annual on lifelog search challenge.
Association for Computing Machinery, New York, pp 47–51. https://doi.org/10.1145/3463948.3469070

2. Barnes C, Goldman DB, Shechtman E, Finkelstein A. (2010) Video tapestries with continuous temporal
zoom. ACM Trans Graph 29(4):89–1899. https://doi.org/10.1145/1778765.1778826

3. Cer D, Yang Y, Kong S-Y, Hua N, Limtiaco N, John RS, Constant N, Guajardo-Cespedes M, Yuan S,
Tar C, Sung Y-H, Strope B, Kurzweil R (2018) Universal sentence encoder. arXiv:1803.11175

4. Gasser R, Rossetto L, Heller S, Schuldt H (2020) Cottontail DB: an open source database system for
multimedia retrieval and analysis. In: Chen CW, Cucchiara R, Hua X-S, Qi G-J, Ricci E, Zhang Z, Zim-
mermann R (eds) International conference on multimedia (MM). Association for Computing Machinery,
New York, pp 4465–4468. https://doi.org/10.1145/3394171.3414538

5. Gasser R, Rossetto L, Schuldt H (2019) Multimodal multimedia retrieval with vitrivr. In: International
conference on multimedia retrieval (ICMR). Association for Computing Machinery, New York, pp 391–
394. https://doi.org/10.1145/3323873.3326921

6. Gasser R, Rossetto L, Schuldt H (2019) Towards an all-purpose content-based multimedia information
retrieval system. arXiv:1902.03878

7. Giangreco I (2018) Database support for large-scale multimedia retrieval. Thesis, University of Basel.
https://doi.org/10.5451/unibas-006827345

8. Gurrin C, Schoeffmann K, Joho H, Dang-Nguyen D-T, Riegler M, Piras L (2018) Proceedings of the
2018 ACM workshop, on the lifelog search challenge. Association for Computing Machinery, New York

9. Gurrin C, Schoeffmann K, Joho H, Leibetseder A, Zhou L, Duane A, Dang-Nguyen D-T, Riegler M,
Piras L, Tran M-T, Lokoč J, Hürst W (2019) [Invited papers] comparing approaches to interactive
lifelog search at the lifelog search challenge (LSC2018). ITE Transactions on Media Technology and
Applications 7(2):46–59. https://doi.org/10.3169/mta.7.46

10. Heller S, Arnold R, Gasser R, Gsteiger V, Parian-Scherb M, Rossetto L, Sauter L, Spiess F, Schuldt H
(2022) Multi-modal interactive video retrieval with temporal queries. In: Jónsson BÞ, Gurrin C, Tran
M-T, Dang-Nguyen D-T, Hu AM-C, Huynh Thi Thanh B, Huet B (eds) MultiMedia modeling. Springer
International Publishing, Cham, pp 493–498. https://doi.org/10.1007/978-3-030-98355-0 44

11. Heller S, Gasser R, Illi C, Pasquinelli M, Sauter L, Spiess F, Schuldt H (2021) Towards explainable
interactive multi-modal video retrieval with vitrivr. In: Lokoč J, Skopal T, Schoeffmann K, Mezaris
V, Li X, Vrochidis S, Patras I (eds) MultiMedia modeling. Springer International Publishing, Cham,
pp 435–440. https://doi.org/10.1007/978-3-030-67835-7 41

12. Heller S, Gasser R, Parian-Scherb M, Popovic S, Rossetto L, Sauter L, Spiess F, Schuldt H (2021)
Interactive multimodal lifelog retrieval with vitrivr at LSC 2021. In: Gurrin C, Schoeffmann K,
Jónsson BÞ, Dang-Nguyen D-T, Lokoc J, Tran M-T, Hürst W, Rossetto L, Healy G (eds) Work-
shop on lifelog search challenge. Association for Computing Machinery, New York, pp 35–39.
https://doi.org/10.1145/3463948.3469062

13. Heller S, Gsteiger V, Bailer W, Gurrin C, Jónsson BÞ, Lokoč J, Leibetseder A, Mejzlı́ k F, Peška L,
Rossetto L, Schall K, Schoeffmann K, Schuldt H, Spiess F, Tran L-D, Vadicamo L, Veselý P, Vrochidis
S, Wu J (2022) Interactive video retrieval evaluation at a distance: Comparing sixteen interactive video
search systems in a remote setting at the 10th Video Browser Showdown. Int J Multimed Inf Retri
11(1):1–18. https://doi.org/10.1007/s13735-021-00225-2

14. Heller S, Parian MA, Gasser R, Sauter L, Schuldt H (2020) Interactive lifelog retrieval with vitrivr. In:
Gurrin C, Schöffmann K, Jónsson BÞ, Dang-Nguyen D-T, Lokoc J, Tran M-T, Hürst W (eds) Third
annual workshop on lifelog search challenge. Association for Computing Machinery, New York, pp 1–6.
https://doi.org/10.1145/3379172.3391715

15. Heller S, Sauter L, Schuldt H, Rossetto L (2020) Multi-stage queries and temporal scoring in vitrivr. In:
IEEE international conference on multimedia expo workshops (ICMEW). IEEE, New Jersey, pp 1–5.
https://doi.org/10.1109/ICMEW46912.2020.9105954

16. Li Y, Song Y, Cao L, Tetreault J, Goldberg L, Jaimes A, Luo J (2016) TGIF: a new dataset and bench-
mark on animated gif description. In: IEEE conference on computer vision and pattern recognition
(CVPR). IEEE, pp 4641–4650. https://doi.org/10.1109/CVPR.2016.502

37851Multimedia Tools and Applications (2023) 82:37829–37853

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3463948.3469070
https://doi.org/10.1145/1778765.1778826
http://arxiv.org/abs/1803.11175
https://doi.org/10.1145/3394171.3414538
https://doi.org/10.1145/3323873.3326921
http://arxiv.org/abs/1902.03878
https://doi.org/10.5451/unibas-006827345
https://doi.org/10.3169/mta.7.46
https://doi.org/10.1007/978-3-030-98355-0_44
https://doi.org/10.1007/978-3-030-67835-7_41
https://doi.org/10.1145/3463948.3469062
https://doi.org/10.1007/s13735-021-00225-2
https://doi.org/10.1145/3379172.3391715
https://doi.org/10.1109/ICMEW46912.2020.9105954
https://doi.org/10.1109/CVPR.2016.502


17. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014)
Microsoft COCO: common objects in context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds)
Computer Vision – ECCV 2014, vol 8693. Springer International Publishing, Cham, pp 740–755.
https://doi.org/10.1007/978-3-319-10602-1 48

18. Lokoč J, Bailer W, Barthel KU, Gurrin C, Heller S, Jónsson BÞ, Peška L, Rossetto L, Schoeffmann K,
Vadicamo L, Vrochidis S, Wu J (2022) A task category space for user-centric comparative multimedia
search evaluations. In: Jónsson BÞ, Gurrin C, Tran M-T, Dang-Nguyen D-T, Hu AM-C, Huynh Thi
Thanh B, Huet B (eds) MultiMedia modeling. Springer International Publishing, Cham, pp 193–204.
https://doi.org/10.1007/978-3-030-98358-1 16

19. Lokoč J, Veselý P, Mejzlı́k F, Kovalčı́k G, Souček T, Rossetto L, Schoeffmann K, Bailer W, Gurrin
C, Sauter L, Song J, Vrochidis S, Wu J, Jónsson BÞ (2021) Is the reign of interactive search eter-
nal? Findings from the video browser showdown 2020. ACM Trans Multimed Comput Commun Appl
17(3):91–19126. https://doi.org/10.1145/3445031

20. Peterhans S, Sauter L, Spiess F, Schuldt H (2022) Automatic generation of coherent image galleries
in virtual reality. In: Linking theory and practice of digital libraries. Springer International Publishing,
Cham, pp 282–288. https://doi.org/10.1007/978-3-031-16802-4 23

21. Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J,
Krueger G, Sutskever I (2021) Learning transferable visual models from natural language supervision.
arXiv:2103.00020

22. Rettig L, Shabani S, Sauter L, Cudré-Mauroux P, Sokhn M, Schuldt H (2021) City-stories: combining
entity linking multimedia retrieval, and crowdsourcing to make historical data accessible. In: Brambilla
M, Chbeir R, Frasincar F, Manolescu I (eds) Web engineering. Springer International Publishing, Cham,
pp 521–524. https://doi.org/10.1007/978-3-030-74296-6 43

23. Rossetto L (2018) Multi-modal video retrieval. Thesis, University of Basel.
https://doi.org/10.5451/unibas-006859522

24. Rossetto L, Baumgartner M, Ashena N, Ruosch F, Pernischová R, Bernstein A (2020) LifeGraph: a
knowledge graph for lifelogs. In: Proceedings of the third annual workshop on lifelog search challenge.
Association for Computing Machinery, New York, pp 13–17

25. Rossetto L, Baumgartner M, Gasser R, Heitz L, Wang R, Bernstein A (2021) Exploring graph-
querying approaches in lifegraph. In: Workshop on lifelog search challenge. Association for Computing
Machinery, New York, pp 7–10. https://doi.org/10.1145/3463948.3469068

26. Rossetto L, Gasser R, Heller S, Parian MA, Schuldt H (2019) Retrieval of structured and unstructured
data with vitrivr. In: Gurrin C, Schöffmann K, Joho H, Dang-Nguyen D-T, Riegler M, Piras L (eds)
Workshop on lifelog search challenge. Association for Computing Machinery, New York, pp 27–31.
https://doi.org/10.1145/3326460.3329160

27. Rossetto L, Gasser R, Heller S, Parian-Scherb M, Sauter L, Spiess F, Schuldt H, Peška L,
Souček T, Kratochvı́l M, Mejzlı́k F, Veselý P, Lokoč J (2021) On the user-centric com-
parative remote evaluation of interactive video search systems. IEEE MultiMedia 28(4):18–28.
https://doi.org/10.1109/MMUL.2021.3066779

28. Rossetto L, Gasser R, Sauter L, Bernstein A, Schuldt H (2021) A system for interactive multi-
media retrieval evaluations. In: Lokoč J, Skopal T, Schoeffmann K, Mezaris V, Li X, Vrochidis
S, Patras I (eds) MultiMedia modeling. Springer International Publishing, Cham, pp 385–390.
https://doi.org/10.1007/978-3-030-67835-7 33

29. Rossetto L, Giangreco I, Heller S, Tanase C, Schuldt H (2016) Searching in video collections using
sketches and sample images - the cineast system. In: Tian Q, Sebe N, Qi G-J, Huet B, Hong R,
Liu X (eds) MultiMedia modeling, vol 9517. Springer International Publishing, Cham, pp 336–341.
https://doi.org/10.1007/978-3-319-27674-8 30

30. Rossetto L, Giangreco I, Schuldt H (2014) Cineast: a multi-feature sketch-based video retrieval
engine. In: IEEE international symposium on multimedia (ISM). IEEE, New Jersey, pp 18–23.
https://doi.org/10.1109/ISM.2014.38

31. Rossetto L, Giangreco I, Tanase C, Schuldt H (2016) Vitrivr: a flexible retrieval stack sup-
porting multiple query modes for searching in multimedia collections. In: International confer-
ence on multimedia (MM). Association for Computing Machinery, New York, pp 1183–1186.
https://doi.org/10.1145/2964284.2973797

32. Rossetto L, Parian MA, Gasser R, Giangreco I, Heller S, Schuldt H (2019) Deep learning-based con-
cept detection in vitrivr. In: Kompatsiaris I, Huet B, Mezaris V, Gurrin C, Cheng W-H, Vrochidis
S (eds) MultiMedia modeling, vol 11296. Springer International Publishing, Cham, pp 616–621.
https://doi.org/10.1007/978-3-030-05716-9 55

33. Sauter L, Gasser R, Bernstein A, Schuldt H, Rossetto L (2022) An asynchronous scheme
for the distributed evaluation of interactive multimedia retrieval. In: International workshop on

37852 Multimedia Tools and Applications (2023) 82:37829–37853

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-030-98358-1_16
https://doi.org/10.1145/3445031
https://doi.org/10.1007/978-3-031-16802-4_23
http://arxiv.org/abs/2103.00020
https://doi.org/10.1007/978-3-030-74296-6_43
https://doi.org/10.5451/unibas-006859522
https://doi.org/10.1145/3463948.3469068
https://doi.org/10.1145/3326460.3329160
https://doi.org/10.1109/MMUL.2021.3066779
https://doi.org/10.1007/978-3-030-67835-7_33
https://doi.org/10.1007/978-3-319-27674-8_30
https://doi.org/10.1109/ISM.2014.38
https://doi.org/10.1145/2964284.2973797
https://doi.org/10.1007/978-3-030-05716-9_55


interactive multimedia retrieval. Association for Computing Machinery, New York, pp 33–39.
https://doi.org/10.1145/3552467.3554797

34. Sauter L, Rossetto L, Schuldt H (2018) Exploring cultural heritage in augmented reality with GoFind!
In: IEEE international conference on artificial intelligence and virtual reality (AIVR). IEEE, New Jersey,
pp 187–188. https://doi.org/10.1109/AIVR.2018.00041

35. Shi B, Bai X, Yao C. (2017) An end-to-end trainable neural network for image-based sequence
recognition and its application to scene text recognition. IEEE Trans Pattern Anal Mach Intell
39(11):2298–2304. https://doi.org/10.1109/TPAMI.2016.2646371

36. Sidorov O, Hu R, Rohrbach M, Singh A (2020) TextCaps: a dataset for image caption-
ing with reading comprehension. In: Vedaldi A, Bischof H, Brox T, Frahm J-M (eds) Com-
puter vision – ECCV 2020, vol 12347. Springer International Publishing, Cham, pp 742–758.
https://doi.org/10.1007/978-3-030-58536-5 44

37. Spiess F, Gasser R, Heller S, Parian-Scherb M, Rossetto L, Sauter L, Schuldt H (2022) Multi-modal
video retrieval in virtual reality with vitrivr-VR. In: Jónsson BÞ, Gurrin C, Tran M-T, Dang-Nguyen D-T,
Hu AM-C, Huynh Thi Thanh B, Huet B (eds) MultiMedia modeling. Springer International Publishing,
Cham, pp 499–504. https://doi.org/10.1007/978-3-030-98355-0 45

38. Spiess F, Gasser R, Heller S, Rossetto L, Sauter L, van Zanten M, Schuldt H (2021) Exploring
intuitive lifelog retrieval and interaction modes in virtual reality with vitrivr-vr. In: Gurrin C, Schoeff-
mann K, Jónsson BÞ, Dang-Nguyen D-T, Lokoc J, Tran M-T, Hürst W, Rossetto L, Healy G (eds)
Workshop on lifelog search challenge. Association for Computing Machinery, New York, pp 17–22.
https://doi.org/10.1145/3463948.3469061

39. Spolaôr N, Lee HD, Takaki WSR, Ensina LA, Parmezan ARS, Oliva JT, Coy CSR, Wu FC (2021) A
video indexing and retrieval computational prototype based on transcribed speech. Multimed Tools Appl
80(25):33971–34017. https://doi.org/10.1007/s11042-021-11401-1

40. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of
residual connections on learning. In: Thirty-first AAAI conference, on artificial intelligence

41. Theus A, Rossetto L, Bernstein A (2022) HyText – a scene-text extraction method for video
retrieval. In: Jónsson BÞ, Gurrin C, Tran M-T, Dang-Nguyen D-T, Hu AM-C, Huynh Thi Thanh
B, Huet B (eds) MultiMedia modeling. Springer International Publishing, Cham, pp 182–193.
https://doi.org/10.1007/978-3-030-98355-0 16

42. Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d
convolutional networks. In: IEEE international conference on computer vision, pp 4489–4497

43. Wang X, Wu J, Chen J, Li L, Wang Y-F, Wang WY (2019) VaTeX: a large-scale high-quality multilingual
dataset for video-and-language research. In: IEEE/CVF international conference on computer vision
(ICCV). IEEE, pp 4580–4590. https://doi.org/10.1109/ICCV.2019.00468

44. Xu J, Mei T, Yao T, Rui Y (2016) MSR-VTT: a large video description dataset for bridging video and
language. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5288–
5296. https://doi.org/10.1109/CVPR.2016.571

45. Young P, Lai A, Hodosh M, Hockenmaier J (2014) From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descriptions. Trans Assoc Comput Linguist 2:67–78.
https://doi.org/10.1162/tacl a 00166

46. Zhou X, Yao C, Wen H, Wang Y, Zhou S, He W, Liang J (2017) EAST: an efficient and accurate
scene text detector. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 5551–5560

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

37853Multimedia Tools and Applications (2023) 82:37829–37853

https://doi.org/10.1145/3552467.3554797
https://doi.org/10.1109/AIVR.2018.00041
https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1007/978-3-030-58536-5_44
https://doi.org/10.1007/978-3-030-98355-0_45
https://doi.org/10.1145/3463948.3469061
https://doi.org/10.1007/s11042-021-11401-1
https://doi.org/10.1007/978-3-030-98355-0_16
https://doi.org/10.1109/ICCV.2019.00468
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1162/tacl_a_00166

	A tale of two interfaces: vitrivr at the lifelog search challenge
	Abstract
	Introduction
	Data and retrieval model
	Data model
	Multimedia data
	Metadata
	Metadata for boolean retrieval
	Metadata for content-based retrieval


	Retrieval model
	Features for lifelog images
	Query model
	Query execution model
	Feature fusion
	Staged queries
	Temporal queries in lifelog retrieval



	Architecture
	A tale of two interfaces
	Query formulation
	Textual queries
	Boolean queries
	Geographical queries

	Result presentation
	Ranked segment list
	Segment aggregation views
	Segment inspection
	Filtering of result sets


	LSC 2021 result analysis
	Solved tasks
	Browsing efficiency
	Recommendations for data collection
	Multiple independent participants
	One operator per system instance
	Data format
	Collected data



	Conclusion and future work
	References


