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Abstract
There is a broad range of novel Coronaviruses (CoV) such as the common cold, cough,
and severe lung infections. The mutation of this virus, which originally started as
COVID-19 in Wuhan, China, has continued the rapid spread globally. As the mutated
form of this virus spreads across the world, testing and screening procedures of patients
have become tedious for healthcare departments in largely populated countries such as
India. To diagnose COVID-19 pneumonia by radiological methods, high-resolution
computed tomography (CT) of the chest has been considered the most precise method
of examination. The use of modern artificial intelligence (AI) techniques on chest high-
resolution computed tomography (HRCT) images can help to detect the disease, espe-
cially in remote areas with a lack of specialized physicians. This article presents a novel
metaheuristic algorithm for automatic COVID-19 detection using a least square support
vector machine (LSSVM) classifier for three classes namely normal, COVID, and
pneumonia. The proposed model results in a classification accuracy of 87.2% and an
F1-score of 86.3% for multiclass classifications from simulations. The analysis of
information transfer rate (ITR) revealed that the modified quantum-based marine preda-
tors algorithm (Mq-MPA) feature selection algorithm reduces the classification time of
LSSVM by 23% when compared to the deep learning models.

Keywords COVID-19 .Metaheuristic . Optimal feature selection . Convolutional neural
networks . Artificial intelligence

1 Introduction

COVID-19 viruses contain single-stranded (positive-sense) Ribonucleic Acid (RNA) with a
nucleoprotein within a capsid consisting of matrix protein. According to Mohanty et al., 2020
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[32], the first case of Coronavirus (COVID-19) was reported on December 1, 2019. It was later
discovered that a new coronavirus, later named Severe Acute Respiratory Syndrome Corona-
virus 2 (SARS-CoV-2) may have originated in animals and evolved (mutated) to cause illness
in humans. Three people in the Wuhan area in China with pneumonia were identified as the
first to carry SARS-CoV-2 [17]. COVID-19 has infected 257 million people since November
2021, and it has led to the deaths of 5.15 million people. It was declared a global pandemic by
the World Health Organization (WHO) [17]. There has been widespread COVID-19 infection
in 213 countries, with cases exceeding 0.1 million in countries such as the United States, Italy,
India, China, the United Kingdom, Spain, Brazil, and Russia [37].

The initial study on the spread of COVID-19 reported that the virus is highly
infectious and spreads mainly due to droplets via coughing or sneezing [16]. Many
countries conducted awareness because of minimizing the spread of the virus by closing
international borders and travels as the cure or vaccine was unavailable. All the counties
were focused on screening the people to spot the infection of the virus and allowing the
patients to isolate themselves under medical supervision or self-isolation based on the
patient’s condition [39]. Only one test was available for screening: reverse transcription-
polymerase chain reaction (RT-PCR). However, RT-PCR involves an invasive method of
collecting the sample(s), which is usually taken by swabbing the patient’s nose or throat
[46]. The disadvantages of RT-PCR tests include high false results, low quality of the
sample, and delay in obtaining the results [26]. A shortage of medical professionals is
causing a delay in the collection and performance of RT-PCR tests for COVID-19
because it requires extensive training. Further, the false-negative results of the test
present a new challenge of further spread of the virus as affected people started visiting
the test centers. It further complicates the situation of the patient from obtaining
appropriate treatment.

It has been reported that some patients with severe infections develop respiratory failure and
need intensive care within 48 hours of being infected by the COVID-19 virus [28]. For such
patients with severe infections, mechanical ventilation should be used immediately for inten-
sive care. This implies that there is an acute need to precisely detect the virus and use rapid and
reliable diagnostic tools as opposed to only RT-PCR [22]. As a result, computed tomography
(CT) imaging is a non-invasive alternative method for finding COVID-19 pneumonia patients
by detecting the typical radiographic features [29].

The absence of expert radiologists to analyze and report the CT images for diagnosis is like
the manual application of magnetic resonance imaging (MRI) for diagnosis. The result can be
erroneous decisions based on the lack of expert radiologists. The use of Machine Learning
algorithms to automate the process of CT image analysis has been proposed in the literature to
detect COVID-19 [14]. Compared to RT-PCR tests, CT has a sensitivity of 98% for the
detection of COVID-19 infection, while RT-PCR has only a 71% sensitivity [27]. The
automation of CT image analysis may also assist in the avoidance of medicinal delays and
errors introduced due to fatigue-related readings of images.

In this article, we propose a model, which has the following main stages: CT image pre-
processing, lung infected region segmentation, texture analysis for feature extraction, selection
of optimal features using the proposed metaheuristic algorithm, and multiclass classification
using LSSVM [44] and convolutional neural networks (CNN). At first, the input CT image is
pre-processed by contrast limited adaptive histogram equalization (CLAHE) for the selected
green channel of the image. In the next step, lung infected region segmentation using
multilevel thresholding is performed. Further, texture image analysis is performed using
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gray-level co-occurrence matrix (GLCM) and Gabor filtering techniques. In the following
phase, Shannon’s and Kapur’s entropies are extracted to know how much energy and entropy
are present in the texture. To shrink the lengthy feature vector, we propose a unique feature
selection algorithm with a pseudo-random number generator meta-heuristic approach called
the modified Mq-MPA. By utilizing a novel evolutionary computing-based feature selection
algorithm, our proposed model classifies the COVID-19-infected patients automatically based
on CT images. Due to this automated diagnostic tool, medical professionals will be able to
speed up the diagnosis process, resulting in a reduction in their workload. Further, the present
literature on COVID-19 classification using CT scan images focuses mainly on deep learning
(DL) algorithms [20]. In our study, we propose a novel assessment of the COVID-19 CT
image diagnosis by using the image processing algorithms, extraction of relevant features,
optimal feature selection algorithm, and multi-class LSSVM. After converting the green
channel of each RGB channel into a metaheuristic algorithm, a selection of the best features
is obtained from the chest imaging CT scan. Comparing the proposed method to the DL
method directly, the use of a feature selection algorithm contributes to better results. As
demonstrated in [35], researchers often incorporate empirical wavelet transform (EWT) for
the purpose of feature extraction. Lastly, our proposed technique is then compared with the DL
enabled classification using transfer learning.

Overall, the contribution of the work presented in this article is as follows:

1) COVID-19 screening using chest CT scan images for classifying the virus infection as
positive, negative, or pneumonia is presented using an ML algorithm.

2) Proposed the combination of advanced image processing, feature extraction, and selection
algorithms are implemented to overcome the drawback of RT-PCR by reducing high
false-negative values for classification of COVID-19 negative, pneumonia, and positive
samples.

3) A model is proposed by extracting only the green channel of images in the R, G, and B
regions of the CT scans, and then determining features with a metaheuristic algorithm
based on the local binary pattern (LBP) and entropy feature extraction.

4) The feature selection is based on a novel Mq-MPA algorithm which is a metaheuristic
algorithm and resulted in enhanced accuracy of the LS-SVM classifier. In addition, the
proposed model is evaluated by comparing it with the existing approaches.

5) A comparison of the LS-SVM and CNN classifiers based on computational complexity
and size of the dataset used in the study is performed given these two parameters being
important for embedded system development of a portable COVID-19 detection system.

The remaining manuscript is structured as follows: Section 2 presents the related work and
review. In Section 3, we present details of the proposed method. Section 4 describes the feature
extraction and selection algorithms. Section 5 presents results and discussion. Finally,
Section 6 concludes the paper.

2 Literature review

In this section, we present a review of significant literature on COVID-19 classification and
detection using chest X-ray and CT images. It is to be noted that the focus of this study is to
achieve optimum algorithms for the implementation as an embedded device.
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2.1 Related work

In [30], the authors analyzed chest X-rays to classify the “binary” and “multiple” classes of
COVID-19 using a deep support vector machine (DSVM) and depthwise separable convolu-
tion neural network (DWS-CNN). The Gaussian-based filtering of images is proposed in the
first stage of DWS-CNN followed by feature extraction and classification using DSVM. With
the chest X-ray image dataset, the simulation process of the DWS-CNNmodel is assessed, and
experimental results show a high classification accuracy of 98.54% to 99.06% for binary and
multiple class classification, respectively. Further, the authors have also highlighted the use of
bio-inspired algorithms for higher results in the future.

Using a combination of the standard reconstruction error and an LSSVM loss function, the
authors [12] report a practical chest X-ray classification application. The authors report that the
learning features with linear class separability can increase classification accuracy. In the
study, on the COVIDGR dataset, a convolutional auto-encoder has been employed, and the
improvements reported by the feature vectors, use of feature learners, and conventional
classifiers are discussed in the study.

In [7], the authors have addressed a two-class problem using the CNN and the CT image
features. The authors have demonstrated an enhancement in the feature representation via a
technique of feature combination, which increases the representation power. In addition, a
unique way of combining the features and ranking them is presented in the study considering
150 CT images for an SVM classifier with 98.27% accuracy.

The authors [33] have used SVM and logistic regression to classify COVID-19 and non-
infected patients by processing the chest X-ray. The histogram of oriented gradients has been
demonstrated to show an accuracy of 96% when compared with the logistic regression. It is
this study that has motivated our employment of LSSVM for the multi-class problem in the
current study.

In [47], the authors studied 1396 lung CT images using a 23-layer CNN and compared the
performance with SVM and k-Nearest Neighbors (k-NN). The authors have mentioned 2-fold
and 10-fold cross-validation for a texture analysis method, and have used various performance
parameters such as accuracy, sensitivity, specificity, F-1 score, and area under the ROC curve
(AUC).

The authors [24] have conducted a study on CT images, and have presented a performance
comparison of ANN, SVM, and decision tree (DT). Researchers have developed a neuro-fuzzy
inference system based on adaptive neuro-fuzzy inferences (ANFIS) which achieves 98.53%
accuracy and a testing time of 0.02 seconds. This study motivated our analysis of the
computation time of various algorithms for COVID-19 CT images. Also, we have focused
on the implementation of the system used in this study for the low execution time of embedded
system demands on lightweight processors.

In [23], a novel technique of splitting the chest X-ray image into several distinct areas,
called a multi-level threshold, is used to extract the image features and the classification of
COVID-19. A method for identifying different X-ray thresholds and splitting images by
corresponding intensities into areas with one background and a variety of objects has been
proposed in different studies. The use of the SVM algorithm has resulted in 97.48% of
classification accuracy.

Researchers have compared five different DL models to detect COVID-19 infection using
chest CT images [31]. The models are VGGNet19, AlexNet, VGGNet16, ResNet50, and
GoogleNet. Classical data augmentation methods coupled with conditional generative
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adversarial nets (CGAN) appear to improve classification performance across all deep transfer
models. In the case of limited chest CT images, the ResNet50 model demonstrated the most
appropriate results with 82.91% accuracy.

[21] present a technique for abnormality localization using “pre-trained CNNs” and Phase-3
augmented data in CT scan imaging. These experiments have been carried out using pre-
trained models including ResNet50ResNet18, SqueezeNet, and ResNet101.

Authors [4] have compared an aggregate of 15 pre-trained CNN models for COVID-19 CT
image classification, as COVID (positive) and COVID (negative). The authors used these
architectures and then “fine-tuned” them on the target class. A public dataset of CT scans is
used to demonstrate that an ensemble method with majority voting improves recognition
performance. Using 10 models, the authors report an accuracy of 85%. They include
EfficientNets (B0-B5), NasNetLarge, NasNetMobile, Xception, DenseNet121, ResNext50,
and Inception_resnet_v2. In addition, results suggest that using the enhanced performance of
five models from deep transfer learning (EffectiveNetB0, EffectiveNetB3, EffectiveNetB5,
Inception_resnet_v2, and Xception) leads to improved outcomes than using them individually.

A comprehensive review of steps used in detecting COVID-19 using CT image analysis is
presented by [9] emphasizing the impact of computer vision and deep learning. Authors [6]
present an alternate approach of using machine learning models to detect COVID-19 using 14
features for six different classifiers and thus comment on the shortage of RT-PCR tests. An
accuracy of 84.21% is reported using the technique of machine learning tools. Author [18]
propose a modified ResNet50 on a large dataset of images and report 97.7% accuracy on the
pre-trained model. Authors [15] proposed a modification in the lung and infection segmenta-
tion Steps by using residual block techniques, called Residual U-Net to produce an average
specificity of 99.76%.

2.2 Review

Although the literature presents many mechanisms and algorithms to classify COVID-19
images as 2-class and 3-class problems, there exist a few shortcomings of these methods
which need to be addressed effectively to enhance the performance of automated detection
systems. COVID-19 detection and classification methods have several benefits as well as
limitations.

Among all the studies mentioned in Table 1, CNN’s results in high performance [4]. Also,
as a rule of thumb, DL is known to perform well when dealing with large datasets such as
image classification [21]. However, a major shortcoming of using the DL algorithms in the
embedded system scenario is the need to deploy a high-end dedicated processing unit. For the
DL algorithms to perform well, they need large datasets and a mechanism for training them in
a reasonable amount of time. The final drawback is the complexity of the DL algorithms
because they require much more practice than any off-the-shelf classifier.

However, SVMs, which have a large margin interpretation, are efficient for many classi-
fication problems with relatively small data sets and lesser noise. In SVMs, the (convex)
quadratic programming (QP) problem is used to characterize a classification problem. It is
possible to tailor SVMs to obtain a linear set of equations in the dual space using the LS-SVMs
[44]. Additionally, binary classifiers with varying output coding schemes are used in
Multiclass categorization problems. In addition to regularization controlling the number of
effective parameters of the LS-SVM, the choice of the 2-norm alters the sparseness property of
SVMs. During the sparse approximation procedure, the support value spectrum can be pruned
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gradually, and hyper-parameters optimized to enforce sparsity in a second stage. Hence, the
above-specified merits can be utilized to develop novel algorithms for COVID-19 classifica-
tion and detection using the optimized feature selection strategy.

By considering the comparison of the studies mentioned in Table 1, in the proposed study,
we use the LS-SVM technique in combination with a bio-inspired algorithm for CT image
feature selection. In the literature, authors have employed CNN for CT image classification for
COVID-19 classification. The use of a metaheuristic algorithm for feature selection resulting
in optimizing the performance of LS-SVM is our main goal of this work. The classifier is
implemented as a multi-class classifier using a binary to multi-class approach [5].

3 Lung infected region segmentation

In this section, we describe the proposed methods for image pre-processing and segmentation.
By automatically identifying and classifying the variations in the chest CT images as COVID-
19 positive, pneumonia, and negative categories, the model is designed to detect and classify
the images. A COVID-19 lung CT scan is assessed in this section to see whether it is positive,
negative, or Pneumonia. The general block diagram for the system in Fig. 1, shows the process
flow behind the operation.

The limitations in the chest CT recording device result in compromised spatial resolutions
in most cases of recording the scan. The image pre-processing through image channel selection
in the first step ensures lower computational time for further algorithms. Also, for enhance-
ment of contrast, the CLAHE technique [49] is applied to the images. An optimal segmenta-
tion and thresholding of the contrast-enhanced image is done using the Marine Predictor
(MPA) Algorithm [19] to determine the infected lung region. The algorithm uses the operators

Table 1 Methodologies, features, and challenges of COVID-19 detection methods

Reference Methodology Features Challenges

[30] Depth-wise Separable
Convolution Neural Network
(DWS-CNN) with Deep
Support Vector
Machine (DSVM)

Gaussian-based image features To select optimal feature
algorithms

[12] LS-SVM An autoencoder-based model
with standard reconstruction
error with an LS-SVM loss
function

To enhance efficiency on a
large dataset

[7] CNN Feature Fusion and Ranking
Technique

To achieve multi-class classi-
fication

[33] Logistic Regression and SVM Image features To enhance accuracy
[47] CNN and SVM Texture analysis Computation time
[24] Adaptive Neuro-Fuzzy Infer-

ence System (ANFIS)
Faster classification To enhance efficiency on a

large dataset
[23] SVM Multi-level thresholding To improve Performance on a

large dataset
[31] CNN Data augmentation with CGAN To improve performance rates
[4] CNN Transfer learning Reduced efficiency on a large

dataset
[21] CNN Transfer learning To enhance model efficacy on

large datasets
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of whale optimization and improves the learning phase of the traditional volleyball premier
league (VPL) algorithm to employ an image histogram as the input to maximize “Otsu’s
function” for computing the optimal threshold required in image segmentation. Following are
the steps for extracting texture features from an image and determining its energy, such as LBP

Fig. 1 Block diagram of COVID-19 detection and classification system
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and texture energy features (TEF). After segmenting the images for abnormalities, entropies
are extracted. Entropy parameters of an image, and Kapur’s and Shannon’s entropy provide
this measurement. To optimize the feature length, an innovative feature selection technique
based on the meta-heuristic approach called MPA is implemented in the current work. The LS-
SVM performs the task of multiclass classification by reducing the problem to a set of binary
classes. The optimal feature class for the LS-SVM algorithm is considered to compare it with
CNN.

As a preliminary step, we define chest CT images for every stage of the system as follows:
the input CT image is represented as IimCT, the pre-processed image is denoted as Iimpre, lung
infected region segmented image is denoted as IimLIR, and the final distinctive features of
COVID-19, represented by abnormalities such as dilated segments and temporal changes, is
denoted as an image Imimseg. The feature segments, extracted from the segmented images, are
indicated by Llbpi, Ltxtei and Lenti where i = 1, 2, ⋯, k, and k shows the number of feature
samples. Lastly, the selection of feature vectors with high variance is denoted as an optimal
feature set Wopt

∗Fset where Fset = 1, 2,⋯, Fopt indicates several optimum features.

3.1 Pre-processing of COVID-19 images

A pre-processing stage includes a green channel selection and a CLAHE on the CT images.

(i) A typical input CT image consists of three RGB channels, namely red, green, and blue,
which have low contrast due to radiation dose and noise. In our study, we transform the
images into green channel images since the green channel has the highest contrast and it
can represent image abnormalities.

(ii) CLAHE: In this algorithm, the most frequent intensity value in an image is stretched by
spreading the intensity range of the image or by stretching the AHE algorithm. Stretching
the intensity values, however, causes the input image to acquire undesired noise and
change its natural brightness. CLAHE is an effective method for enhancing the bright-
ness of the image [36].

The algorithm, which improves the contrast of CT images using the CLAHE technique, is as
follows:

a) As a result of over-amplifying the histograms, the AHE method introduces noise into the
image due to the equally distributed computation of the histograms. However, CLAHE
works by splitting the histogram of the input image IimCT at precise values and limits the
amplification before calculating the cumulative distributive function (CDF).

b) The intensity values of the histogram are used to extract each contextual region.
c) A threshold parameter is used to clip the histograms as a limit to describe the defined

brightness level of the CT image.
d) Each histogram is modified using the selected transformation functions.
e) The selected clip limit defines the change in each histogram with a condition that the

selected value does not exceed the clip limit.

The calculation of the CLAHE technique is given in Eq. (1),

P ¼ PCTmax−PCTminð Þ*P fð Þ þ PCTmin ð1Þ
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where the extreme pixel value is denoted as PCTmax, PCTmin is least pixel parameter, PCT the
calculated pixel parameter, and P(f) the CDF. Therefore, the pre-processed image appears after
contrast enhancement: Iimpre which is further applied to the multilevel thresholding for lung
infected region segmentation. The pre-processed images are presented in Fig. 5. As compared
to the original CT images, the green channel and CLAHE enhance the image clarity.

3.2 Image segmentation using multilevel thresholding

In this subsection, The mathematical model of the image thresholding algorithm, which uses
Otsu’s method is explained [34]. Using image histograms as the input, this method calculates
the optimal threshold values for segmenting an image depending on the distribution of pixels
across an image. The process provides the best threshold values for CT scan images by
increasing the variance between classes to their maximum value, and by computing the
optimal threshold values which split the CT images into many groups. The intensity levels
of the grey image Gν are identified in the first step of the algorithm and the probability
distribution is determined by using Eq. (2) as follows [25].

Ni ¼ Ni

PxN
; ∑
PxN

i¼1
PNi ð2Þ

where il the mentioned intensity level in the range (0 ≤ il ≤ Gv − 1) denotes the total number
of pixel values Ni and represents the intensity number il in the histogram of an input image.
The histogram is standardized CNi. In Eq. (3), segmentation classes are computed using
probability distributions (th) and threshold values.

A1 ¼ CN1

ω0 thð Þ;…;
CNth

ω0 thð Þ and A2 ¼
CN

c
thþ1

ω1 thð Þ ;…;
CNL

ω1 thð Þ ð3Þ

For A1 and A2, ω0(th) and ω1(th) are additive probability distribution values. These probabilities
are defined in Eq. (4) as follows:

ω0 thð Þ ¼ ∑
th

i¼1
CNi and ω1 thð Þ ¼ ∑

L

thþ1
CNi ð4Þ

The average intensity levels must be defined at this stage as μ0 and μ1 using Eqs. (5) and (6)
respectively.

μ0 ¼ ∑
k

i¼1
iCN ijA0ð Þ ¼ ∑

k

i¼1
ini=ω0 ð5Þ

μ1 ¼ ∑
L

i¼kþ1
iCN ijA1ð Þ ¼ ∑

L

i¼kþ1

μT−μ kð Þ
1−ωk

ð6Þ

where ω kð Þ ¼ ∑
k

i¼1
CNi and μ kð Þ ¼ ∑

k

i¼1
iCNi , and σ1 = ω0(μ0 + μr)2 σ2 = ω1(μ1 + μr)2. Also,

μT = ω0μ0 + ω1μ1 and ω0 + ω1 = 1 based on σ1 and σ2.
An optimal set of thresholds are obtained by maximizing the threshold from Eqs. (5)

and (6)

TOtsu thð Þ ¼ max σ2B thð Þ� � ð7Þ
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Where 1 ≤ th ≤ L − 1, and the Otsu variance, in terms of thresholds, is defined as
σ2
B thð Þ.
For multiple thresholds, Eq. (7) can be modified as:

TOtsu thrsð Þ ¼ max σ2
B thið Þ� �

where 1 ≤ thi ≤ L − 1, i = [1, 2, …, p]. The multiple threshold vector is thrs = [th1, th2, …,
thp − 1] and L indicates the maximum grey level.

The maximum variance is given by Eq. (8)

σ2
B ¼ ∑

p

i¼1
σi ¼ ∑

p

i¼1
ω1 μ1−μTð Þ2 ð8Þ

For a specific class i, ωi, μj denote the probability of an event’s occurrence and its average. For
CT image thresholding at the multilevel these terms are defined as:

ωp−1 thð Þ ¼ ∑
L

i¼thpþ1
CNi ð9Þ

μq−1 ¼ ∑
L

i¼thpþ1

iCNi

ω1 thp
� � ð10Þ

3.3 Texture analysis

The distributions and relationships between the image pixels are represented by textures in
statistical texture feature extraction algorithms. It ignores the spatial interaction between pixels
while computing the average or variance of each pixel. Two or more pixels from different
locations may have different properties when they are compared using second-order and
higher-order statistics. A textural analysis method derived from GLCMs is the most accepted
second-order statistical feature and it is described in detail in the following section.

The second-order statistical features in the form of texture features and co-occurrence
matrix were first introduced by Haralick [37]. A 2-step algorithm was introduced with the
first step of calculating GLCM and the second step of computing texture features using the
calculated GLCMs. For biomedical image analysis, this algorithm has immense potential
owing to the quality of its features [8].

Mathematically, the probability of connecting two pixels p and q, with distance d and
spatial relation θ is denoted as Pd, θ(p, q). The element (p, q) of P(d, θ) is occurrences of a
couple of grey levels p and q with distance d with spatial value θ. A GLCM for an image size
N × M with Ng grey levels is a “2D array” of size Ng × Ng. As an example, Fig. 3 shows a
GLCM for the size of the image 5 × 4 and Ng = 5. Now, 2D array calculation is using d = 1
and θ= 0. By dividing each element of the co-occurrence matrix by the number of pixels in an
image, the matrix is normalized. The GLCMs are defined in all eight directions viz., 0, 45, 90,
135, 180, 225, 270, 315, as shown in Fig. 4. Fine and coarse textures require small and large
values d respectively. In MATLAB [45], the operation of the GLCM with 4 orders is shown in
Fig. 3. In the current study, a similar type of array structure algorithm is defined for CT image
analysis.
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To illustrate the GLCM technique used in this work, the computation of the first three
values in a GLCM using graycomatrix is as shown in Fig. 2. The values 1 and 1 are assigned
to two horizontally adjacent pixels respectively, and the output GLCM contains the value 1 for
element (1,1). GLCM comprises the value 1 because the elements (1,1) only appear once in the
input CT image. Two neighboring pixels on either side of a horizontal axis have a value of 1,
as two adjacent pixels on either side of a vertical axis. A horizontally adjacent pixel with
values 1 and 2 in the GLCM (1,2) is represented by the value 2 as there are two separate
instances of this. As there are no horizontal adjacent pixels with the values 1 and 3 in the
GLCM, element (1,3) is set to 0 because no horizontally adjacent pixels have the value 1. In
addition to this, the input image graycomatrix will be processed by scanning for the remaining
pixel pairs (p, q), and sums will be recorded in the corresponding GLCM elements.

Figure 3 shows the spatial relationships between the pixels shown by the array of offset
values, where ‘D’ stands for the distance from the pixel of interest.

4 Research methodology

COVID-19 patients’ CT images show rapidly spreading patches of opacity accompanied by
septal thickening and/or reticulation, a crazy-paving pattern, as well as pleural thickening on an
air bronchogram. The lung injury of viral pneumonia is characterized by rapid change in the
injury. To classify these changes, a well-patterned feature set is essential in the current work.
This section details the extracted feature types and their optimal selection using meta-heuristic
algorithms. Further, in this section classification performance of the multi-class LSSVM
classifier is discussed for the same image dataset.

4.1 Feature extraction

Once the CT image co-occurrence as the second level histogram is computed, we describe the
feature set with 1) LBP and 2) entropy features. LBP was proposed by the authors [48] to
reveal local features which are a two-level version. In this method, the size of one pixel on an
image is compared with that of the neighboring pixels. The recent modifications in the LBP
technique such as selection of neighborhood, enhancement of discriminative capability and

Fig. 2 Process used to create GLCM
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robustness, and extension to 3-D data have improved the performance in different applications
within the biomedical domain.

The steps for image analysis are deduced using LBP operation to the CT images are shown
in Fig. 2. The purpose of using LBP features in this work is to analyze the effect of CT image
features as input to LSSVM and CNNwhen compared to the original images. Additionally, the
study increases the depth of image features used in the new algorithm for generating results. In
this work, a CT image histogram to label texture descriptors for the LBP codes is used.

In the first step, the labeled image (InABN(x, y)) histogram is used as a descriptor which is
defined in Eq. (11),

Sni ¼ ∑
p;q

I Im p; qð Þ ¼ ið Þi ¼ 0;…; n−1 ð11Þ

here I(Im) = 0 then Im is false, I(Im) = 1 is true, and n is total number of distinct labels
defined using LBP operator. Here, a circular neighborhood round a pixel with P0 points that
are taken on the circumference of a circle having radius Ra. To define the “uniformity metric
(U)” as in Eq. (12), LBPP0R considered.

UM LBPP0;Ra

� � ¼ kP0−1−k0j j þ ∑
P0−1

P0¼1

kP0−kP0−1

��� ��� ð12Þ

Further, a rotation-invariant uniform pattern is obtained with the P0 bits binary number
(KP0−1 ;KP0−2 ;…;K1;K2) with improved angular quantization. The rotation invariant uniform
LBP can be computed as given in Eq. (13)

LBPP0;Ra ¼
∑

P0−1

P0¼0
s gνpp0−gυcp
� �

P0 þ 1

8>>><
>>>:

if U LBPP0;Ra

� �
≤2

otherwise ð13Þ

where gνpp0 denotes the grey value of the center pixel and gνpp0, p0 = 0, .…P0 − 1 indicates
the grey values of p0. An LBP image is created for each scale to simplify the size of the texture
spectrum histogram. Further, the advantage of the feature descriptor term in terms of energy

Fig. 3 Gray level co-occurrence matrix with different offsets. The shaded region in the middle indicates the pixel
of interest
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and the entropy of the LBP image for dissimilar scales corresponding pixel is used in the
algorithm.

In biomedical image analysis, a commonly used texture descriptor is the Laws’ feature
parameter which represents the image features without considering the frequency domain [11].
One-dimensional vectors with five-pixel lengths are used to obtain the entire mask. In addition,
L5 indicates level detection, S5 indicates spots, E5 indicates edges, R5 represents ripples, and
W5 indicates waves. When the feature set is to be equipped with several masks of fitting sizes,
the Laws’ masks prove to be informative for discriminating between dissimilar types of
texture. The method is based on texture energy transforms applied to the image for estimating
energy within the pass region of filters. After that, each 2-D mask is applied to the image to
extract texture information IimLIR(p, q). While the filter L5E5 is used, the developed texture
image is as presented in Eq. (14). All 2-D masks, without L5L5, have zero average depending
on the laws. For this reason, we employ the texture image TEXiL5L5 for transforming the
remaining textures TEXi(p, q), as shown in Eq. (15)

TEXiL5L5 ¼ I imLIR p; qð Þ⊗L5E5 ð14Þ

Normalize TEXi p;qð Þ
� � ¼ TEXi p;qð Þ

TEX p;qð ÞL5L5
ð15Þ

After performing the fitting convolution of the computed masks, 25 different groupings are
generated, and then the results to TEP are sent, which is calculated by moving the nonlinear
window mean of absolute values as presented in Eq. (16). In Eq. (17), fourteen rotationally
invariant TEP (TR) from combining the 25 energy descriptors are obtained.

TEP p;qð Þ ¼ ∑
7

a¼−7
∑
7

b¼−7
TEXi pþaqþbð Þ
�� �� ð16Þ

TRE5L5 ¼ TEPE5L5 þ TEPL5E5

2
ð17Þ

The last feature parameter computed in the classification task of the CT images is entropy,
which defines the uncertainty connected with randomness in the input dataset. The proposed
work employed two kinds of entropy parameters specifically, Kapur’s and Shannon’s entropy
[14, 43]. Assume the input segmented image IimLIR(p, q) consists of Nlg distinct grey values.

As such, in Eq. (18), the normalized histogram for an RoI of a specific dimension nl × ml is
determined. Additionally, Eq. (19) provides the Shannon entropy equation. Compared to the
Shannon entropy, Kaur’s entropy Eq. (20) has a higher dynamic range.

ENTrlg ¼ N lg

nl � ml
ð18Þ

SE ¼ − ∑
M−1

lg¼0
ENTrlg log2 ENTrlg

� � ð19Þ
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Kα;β ¼ 1

β−α
log2

∑M−1
lg¼0ENTr

α
lg

∑L−1
lg¼0ENTr

β
lg

ð20Þ

The combination of all the features which are extracted is represented as a single feature vector
as shown in Eq. (21)

Feat¼inputLBP P0;Rað Þ þ TEP p;qð Þ þ SE þ Kα;β ð21Þ

From the feature vector represented in the above equation, the optimal features using the
proposed q-MPA algorithm for COVID-19 classification using chest CT images are selected.

4.2 Optimal feature selection using proposed modified quantum-based (Mq-MPA)
algorithm

The development process for a simple and efficient metaheuristic optimization method,
the Mq-MPA is explained in this section. In medical image classification, generally,
optimization techniques have been applied in two domains namely, deterministic, and
stochastic. The gradient or non-gradient-based deterministic techniques utilize the gradi-
ent information to reach the global point via mathematical programming tools such as
linear and non-linear programming [2, 19]. To avoid being stuck in the local optima is to
use stochastic optimization-based metaheuristic techniques that use random variables and
operators.

To achieve the objective of Mq-MPA the process begins by setting the initial value for a set
of N image feature values within the search space that is constrained by lower and upper
boundaries. In the next step, the fitness value for each result is computed which determines the
most suitable features for the space. The decision of which features to retain and which to
discard is taken after this step. In the last step, the finest results are assigned, and the other
results can be updated using the quantization of MPA.

MPA works similarly to most metaheuristics in that the initial solution is uniformly
distributed over the space of search. Using Eq. (22) as a starting point, MPA proceeds as
follows:

X 0 ¼ Xmin þ K Xmax−Xminð Þ ð22Þ

in which the lower bound is illustrated by Xmin, Xmax denotes the higher bounds of variables,
and K denotes the random number which is uniformly distributed [0, 1].

The elite and prey matrices are two main matrix terms that we define before introducing the
MPA technique for feature selection. The elite matrix term depicts the best predator in the
process of ‘search and detect’, with prey using the prey’s position information. Equation (23)
gives the lite matrix as follows [2]:

elite ¼
X I

1;1 ⋯ X I
1;d

⋮ ⋱ ⋮
X I

n;1 ⋯ X I
n;d

2
4

3
5 ð23Þ
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Where, X
!I

denotes the finest predator vector, and to construct the Elite matrix, it is replicated
n several times. Further, d denotes the number of dimensions and n gives the number of search
agents. As far as important search agents are concerned, both predators and prey must be
considered. In contrast to the predator, prey takes on the predator’s role when it seeks its prey.
When the best predator can dominate the better predator by the end of every iteration and then
Elite is upgraded.

According to the second matrix, named prey, the predators constantly update their positions
per matrix position. Specifically, initialization is the process in which the initial prey is created,
from which the rightest one (predator) creates the Elite. And hence the prey matrix is as
presented in Eq. (24)

prey ¼
X 1;1 ⋯ X 1;d

⋮ ⋱ ⋮
X n;1 ⋯ X n;d

2
4

3
5 ð24Þ

where Xp, q represents the pth dimension of qth prey. The elite and prey matrices affect the MPA
performance, and the algorithm optimization procedure is divided into three phases depending
on the velocity of prey and predator as follows [19, 38]:

1. If the prey operates quicker than the predator then the ratio will be more.
2. Predator and prey move at almost the same speed when they have the same velocity ratio.
3. When a predator outruns a prey, a minimum velocity ratio is likely to occur.

In detail the phases are explained as follows:

Phase one: A predator that moves faster than the prey in the form of Brownian motion
would update its position in the first scenario. Thus, for maximum repetition, less than
one-third of the iteration results in the following Eqs. (25) and (26).

stepsizei
�����! ¼ R

!
B⊗ elitei

��!
−R!B⊗preyi

��!� �
i ¼ 1…n ð25Þ

preyi
��! ¼ preyi

��!þ P:R
!⊗stepsizei

�����! ð26Þ

where ⊗ denotes multiplication elementwise, R
!

B denotes the Brownian motion, and thus
forms a vector having arbitrary numbers. The outcome of the prey’s motion is well-defined by
R
!

B⊗preyi
��! the term P = 0.5. R indicates a vector of distributed random numbers [0, 1]. For a

maximum iteration of ‘1’, this phase occurs in 1/3rd of the iterations when the step size is large
for faster exploration capability.

Phase two: Exploration and exploitation play equal roles in this step. The scenario
above appears, and the exploration tends to become exploitation when predators and
preys are of equal velocity. The individuals are therefore divided into two groups, half
are processed for exploration, and the rest for exploitation. In this scenario, prey is
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considered for exploitation and predators for exploration. Also, in this scenario, the
Lévy motion is defined for prey and predators to move according to the Brownian
pattern. The iterations, in this case, are between one-third and two-thirds of the
maximum and are given as,

stepsizei
�����! ¼ R

!
L⊗ elitei

��!
−R!L⊗preyi

��!� �
i ¼ 1…n=2 ð27Þ

preyi
��! ¼ preyi

��!þ P:R
!⊗stepsizei

�����! ð28Þ

here R
!

L denotes Lévy motion that comprises a vector of arbitrary numbers. An example of a
simulation of a prey’s motion is provided by R

!
L⊗preyi
��! the Lévy pattern. The possibility of

reaching better exploitation is with the majority of the Lévy distribution when the step size is
associated with small steps. With the subsequent half of the populace, the following Eqs. (29),
(30), and (31) are used [2, 3].

stepsizei
�����! ¼ R

!
B⊗ RB

�!⊗elitei
��!

−preyi
��!� �

i ¼ n=2…n: ð29Þ

preyi
��! ¼ elitei

��!þ P:CF⊗stepsizei
�����! ð30Þ

CF ¼ 1−
Iter

Max Iter

� 	 2� Iter
Max IterÞð

ð31Þ

Where CF is a predator’s movement controlling term. Further, RB is multiplied by the Elite
matrix to suggest the predator’s travel in the Brownian model, and based on the predator’s
travel, the prey position will be updated in this stage.

Phase three: When the speed of the predator is larger than that of the prey, this step is
used to explore high exploitation capability. Lévy equations work best when the iterations
of the position are greater than two-thirds of the maximum number of iterations. In this
phase, the following equations are used.

stepsizei
�����! ¼ R

!
L⊗ RL

�!⊗elitei
��!

−preyi
��!� �

i ¼ 1;…; n: ð32Þ

preyi
��! ¼ elitei

��!þ P:CF⊗stepsizei
�����! ð33Þ

MPA uses a process other than the stages listed above - the fish aggregation devices (FADs)
effect [19], which is related to FADs. Equation (34), which presents a mathematical
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formulation that discusses the impacts of environmental factors on marine predator behavior,
illustrates the same.

preyi
��! ¼

preyi
��!þ CF X

!
min þ R

!⊗ X
!

max−X
!

min

� �h i
⊗U
!

if r≤FADs

preyi
��!þ FADs 1−rð Þ þ r½ � prey��!

r1−prey
��!

r2

� �
if r > FADs

8<
: ð34Þ

here FADs = 0.2 is the probability of FADs effect on the optimization method, U is a binary-
vector with arrays having an arbitrary number between 0 and 1. For a generated number < 0.2,
the array will be ‘0’, else, it represents a value of ‘1’. A random number r is spread between 0

and 1, X
!

min representing the lower and X
!

max the upper bound of the sizes. The arbitrary
indices of the prey matrix are r1 and r2.

Another term named marine-memory is defined for relating the competence to consider the
best places where the predator has been foraging successfully with the memory saving
capability in MPA. In addition to updating the prey position and achieving the FADs impact,
further the elite matrix is upgraded. A comparison of every solution from the present iteration
against its correspondent in the previous iteration is done to obtain a further upgrade.
According to this procedure, the quality of the solution improves by following the iterations.
Using this method, predators will remember the location of prey-rich areas in the past with
successful foraging since they will be able to recall the prey-rich areas from the past.

The MPA technique explained above is affected by being trapped at the local minima even
with single-mode, and simple functions in the image classification. The main reason for the
drawback is that the velocity vectors presume very small values as the iterations start. A
modification based on quantum mechanics has been presented by changing the motion
behavior to generate the initial population [1]. In the quantum model of MPA, the state of a
particle is depicted by the wave function ψ(r, t) instead of the velocity.

The wave function is defined as in Eq. (35).

ψ x; tð Þ ¼ EXP iκ; r½ � ¼ EXP ip:r=
h


 �
ð35Þ

The Fourier expansion is defined as in Eqs. (36) and (37).

φ pð Þ ¼ 1

2πh
� �3

2

∫ψ rð Þe−ip:r=hd3r ð36Þ

ψ rð Þ ¼ 1

2πh
� �3

2

∫ψ pð Þe−ip:r=hd3p ð37Þ

Equation (38), defines the dynamic performance of a particle as a superposition principle of
homochromatic waves on a planar surface.

ψ r; tð Þ ¼ 1

2πh
� �3

2

∫ψ pð Þe−i p:r−Etð Þhd3p ð38Þ
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Energy and momentum can be correlated and the Probability Density Function (PDF) is
computed for the global optimal value as in Eq. (39).

Q X j
i;tþ1

� �
¼ 1

Lj
i;t

exp −
2 X j

i;tþ1−s
j
i;t

��� ���
Lj
i;t

0
@

1
A ð39Þ

where s ji;t is the global optimal value. The authors [3] have proposed a modification to Eq.

(39). With an initial population value of N as shown in Eq. (40).

X i t þ 1ð Þ ¼ Xmin þ r � Xmax−Xminð Þ ð40Þ

where Xi indicates the ith solution for r ranging between 0 to 1 as a random number, and the
limits of the search space are denoted as Xmax and Xmin for tth the current iteration.

To find the best solution for minimizing the problem, a step involving computing the fitness
value of each possible solution has been proposed. The solution update is achieved using Eq.
(40) and is modified to Eq. (41).

RQ
�! ¼ X i; j t þ 1ð Þ

¼
Pi−β* Moptimum−X i; j tð Þ

� �� ln
1

u

� 	
; if k≥0:5

Pi þ β* Moptimum−X i; j tð Þ
� �� ln

1

u

� 	
; if k≤0:5

8>><
>>:

ð41Þ

Pi ¼ θ*pOptimumi þ 1−θð Þ*gOptimumi ð42Þ

Moptimum ¼ 1

N
∑
N

i¼1
pOptimumi ð43Þ

When compared to the original MPA techniques, the use in which Lévy flight has been
used, the Moptimum term results in the lowest fitness value with Pi representing local
attractor and pOptimumi as the optimum position obtained by the ith predator to the
present time stamp and gOptimumi indicates the optimum position of each predator at
every iteration. Moptimum term in the modified algorithm has introduced an average
optimum status of the entire crowd, k ∈ [0, 1]. The random values u and θ are uniformly
distributed on [0, 1]. The contraction expansion (CE) coefficient β in Eq. (32) is used to
control the convergence rate and the value of β descents from 1 to 0.4 for searching for
the global optimum. The local search mechanism of the quantum MPA gets the authority
in this process as shown in Eq. (44) [40].

β ¼ βOptimum−
βmax−βmin

itermax

� 
� iter


 �
ð44Þ

where βmax and βmin are the start and end contraction expansion factor values, and itermax

indicates the last iteration number.
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The random number generators (RNGs) method is affected by the slow convergence and
fixing to the local minima. Since biomedical image analysis demands that the image features
be selected for optimal correlation with training samples and suggests a modification in the
quantumMPA algorithm by using the pseudo-random generator as an alternative to the RNGs.
The following modified algorithm equation is used to replace RNGs [10]. Therefore, a
modification of q-MPA is proposed by introducing a pseudo-random generation process as
defined in Eq. (45).

s ¼ mod xp þ ∑
Q

q≥0
υq; l!

 !
ð45Þ

where l is the initial parameter, with xp initialized as 0. The term is set as l ≥ 8 for the
sufficient set size of sl. The speed of the generator is optimized by setting a single iteration
in the current work. This step ensures the speed and security of the generator. The algorithm
starts by setting the l value, xp with p = 0 the chaotic map {0, 1, 2, …, l ! − 1}. The next
step ν0 = p is set and νqþ1 ¼ νq=l!. The second step is repeated until the required number of
bits is generated xp + 1.

Algorithm 1 Pseudo-code of the modified quantum MPA (Mq-MPA)
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4.3 Optimized LSSVM-based detection

The authors of [1] propose a step to calculate fitness values for every key so that the finest key
with the lowest fitness values can be found. The use of a set of linear equations for training in
SVM in the solution of a quadratic optimization problem is the major change between SVM
and LS-SVM. The LS-SVM improves the speed of algorithm convergence and is extensively
used in classification.

The training data is (xi, yi), i = 1, 2, 3, …, n, xi is the input variable and yi, the output
variable in the LS-SVM method. The optimization conditions of the LS-SVM algorithm are:

minJ w; b; ξð Þ ¼ 1

2
wk k2 þ 1

2
γ ∑

n

i¼1
ξ2 ð46Þ

So that yi
h
wTΦ

�
xi þ b

i
¼ 1−ξi i ¼ 1;…; n ð47Þ

where w ∈ H - “weight vector” and H is the “higher dimension space”.
The projection of this factor by the nonlinear function φ(x) from the original space R. An

optimal hyperplane can be constructed to solve the proposed classification problem.
Equation (49) is updated for the classification technique.
And b ∈ R is the bias, ξ is the regularization factor. This factor is treated as a penalty

factor C in SVM and employed in LS-SVM’s confidence interval adjustment. The MPA
algorithm is applied as the SVM parameter optimization process to overcome the limita-
tions of setting the penalty factor C and the kernel function C manually. The fitness
function is calculated by using the average recognition rate after threefold cross-
validation.

The optimization problems are efficiently solved which are described by Eqs. (46) and (47)
by transforming the controlled framework into the unrestricted framework by establishing
Lagrange multipliers, i = 1, 2, ..n and the “objective function” is obtained as:

L w; b; ξ; að Þ ¼ 1

2
wk k2 þ 1

2
γ ∑

n

i¼1
ξ2i −∑

n
i¼1αi yi

h
wTΦ

�
xi þ b

i
−1þ ξ

n o
ð48Þ

According to the optimal solution of MPA conditions [19], one of the most effective kernel
functions in LS-SVM is the radial basis function (RBF). As compared to polynomial kernel
functions, the RBF kernel involves relatively few parameters. Kernel function selection has
been made using RBF. RBF functions were generally chosen as fixed values, including the
width (σ) and the regularization (γ) parameters. Nevertheless, the value of γ and σ influences
the correctness of the proposed model and its generalization capability. The decision function
for the proposed classification method is given by Eq. (49)

y xð Þ ¼ sgn ∑n
i¼1αiyiK x; xið Þ þ b

� � ð49Þ

An MPA algorithm is used to optimize the model parameters using the 10-fold cross-
validation method. The MPA proved to be a more efficient and able technique than other
metaheuristic techniques in parameter optimization.
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The 10-fold cross-validation is performed as explained below: To assess a classifier’s
performance, the average of the ten test accuracies is referred to as the accuracy of the
classifier divides the training set as ten subsets of identical size at first; Next, a single subset
is taken as the test set and the rest 9 subsets are trained. For illustrating, the approach of
considering binary problems per class (Allwein et al., [5]) for a three-class problem has been
used (COVID, Non-COVID, and Pneumonia).

5 Results and discussion

In the following section, we present the dataset, and experimental procedure for COVID-19
image classification using CT images. A comparison of LSSVM performance after the feature
selection using the metaheuristic approach, and various performance parameters used to assess
the algorithms’ performance is also presented in this section.

5.1 Dataset

For the implementation of the proposed system, 20,183 chest CT images are used from the
existing database [13, 41]. Of the total images, 4812 CT images are of the COVID-19 negative
class with other pulmonary diseases, and 7252 CT images are of the COVID-19 positive class.
Figure 4 shows the CT images of COVID-19 for negative, positive, and Pneumonia cases. The
dataset to develop a feature selection algorithm for classifying the chest CT images into three
classes namely: COVID-19 negative, positive, and pneumonia.

Fig. 4 CT images of normal, COVID-19, and pneumonia
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5.2 Experimental procedure

The developed COVID-19 detection methodology in this experimental environment
using Intel(R) i5-7200U CPU 2.50GHz, 16.0GB RWindows 10, and MATLAB 2021b
is implemented. Here, the experiment was done on 1229 CT images of COVID-19
negative class with other pulmonary diseases, and 1252 are of COVID-19 positive
class. Radiologists have identified in these images the regions that have septal thick-
ening, linear opacity, crazy-paving pattern, reticulation, and pleural thickening on-air
bronchograms. A batch size of 25 images is considered for evaluating the feature
selection, and a maximum of 150 iterations were permitted. The performance of the
developed LSSVM-Mq-MPA is compared over CNN, CNN-ResNet50, CNN-VGGNet,
and LSSVM-MPA by assessing the performance measures such as “accuracy, sensitiv-
ity, specificity, precision, FPR, FNR, NPV, FDR, F1 score, MCC and computation
time”.

5.3 Performance parameters

All the extracted features are fed to LS-SVM classifier in the 10-fold cross-validation (CV)
approach. In particular, the performances of the classifiers are graded in one of the four
different conditions mentioned as follows:

True Positive (TRP): the number of images detected as positive COVID-19.
True Negative (TRN): the number of images detected as negative COVID-19.
False Positive (FAP): the number of positive COVID-19 images detected as
negative.
False Negative (FAN): the number of negative COVID-19 images detected as positive.
Accuracy (ACC) measures the techniques’ ability to differentiate between COVID-19
positive and negative images. The terms sensitivity (SEN), and specificity (SPE) compute
the classifier’s capability to accurately determine COVID-19 positive and negative
occurrences respectively. These can be defined as:

(i) Accuracy: “ratio of the readings of exactly predicted to the entire readings”. The accuracy
formula is as given in Eq. (50),

ACC ¼ TRP þ TRN

TRP þ TRN þ FAP þ FAN
ð50Þ

TRP and TRN represents “true positives, and true negatives”, respectively. Furthermore, FRP

and FRN are “false positives and false negatives”, respectively.

(ii) Sensitivity: “the number of true positives, which are exactly predictable” as given in
Eq. (51).

SEN ¼ TRP

TRP þ FAN
ð51Þ
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(iii) Specificity: “the number of true negatives, which are determined precisely”. It is given
in Eq. (52).

SEN ¼ TRN

TRN þ FAP
ð52Þ

(iv) Precision: “the ratio of positive observations that are predicted exactly to the total
number of observations that are positively predicted” which is mathematically given
in Eq. (53).

PRE ¼ TRP

TRP þ FAP
ð53Þ

(v) False Positive Rate (FPR): calculated as “the ratio of the count of false positive
predictions to the entire count of negative predictions”, as given in Eq. (54)

FRP ¼ FAP

FAP þ TRN
ð54Þ

(vi) False Negative Rate (FNR): indicates “the proportion of positives which yield negative
test outcomes with the test”. The calculation is indicated in Eq. (55).

FNR ¼ FAN

TRN þ TRP
ð55Þ

(vii) negative predictive value (NPV): indicates the “probability that subjects with a negative
screening test truly don’t have the disease”. It is given in Eq. (56).

FRP ¼ FAN

FAN þ TRN
ð56Þ

(viii) false discovery rate (FDR): defines “the number of false positives in all of the rejected
hypotheses”. The numerical formula for FDR is given in Eq. (57).
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FDR ¼ FAP

FA
þTRP ð57Þ

(ix) F1 score: is indicated as the “harmonic mean between precision and recall. It is used as a
statistical measure to rate performance”. It is given in Eq. (58)

F1score ¼ SEN •PRE
SEN þ PRE

ð58Þ

(x) Matthews Correlation Coefficient (MCC): is indicated as the “correlation coefficient
computed by four values”. It is denoted in Eq. (59).

MCC ¼ TRP þ TRN−FAP þ FANffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TRP þ FAPð Þ TRP þ FANð Þ TRN þ FAPð Þ TRN þ FANð Þp ð59Þ

The sample result images of green channel selection, CLAHE, multi-level thresholding, Gray-
scale co-occurrence, Gabor filtering, and entropy features of COVID-19, normal, and pneu-
monia images are shown in Fig. 5.

Three thousand three hundred feature vectors extracted from CT images are used as
experimental data. The COVID-19 feature vector is categorized into three groups: COVID-
19, normal, and pneumonia. As training samples, the arbitrarily selected 70% sample of each
kind of feature vector is used, while the 30% sample of each kind is used as a test sample.
Here, the initial parameters of the algorithm are selected following detailed testing. To obtain
the most accurate preliminary values of these parameters, Mq-MPA functions were used to
alter and select the feature parameters in the simulation. Based on these optimal values of the
parameters the final feature set is computed, and the proposed image classification runs at the
quickest speed possible.

So, for the classification, the selected feature values of 200 per epoch, maximum iterations
of 200, the initial weight of 0.6, and the initial learn factor of 2 are proposed.

A linear adjustment of the learning factor is combined with a quadratic adjustment of the
LS-SVM form to produce an improved Mq-MPA algorithm.

Figure 6 displays performance analysis graphs for the classification of normal, pneumonia,
and COVID-19 CT images in terms of accuracy, sensitivity, specificity, precision, FPR, FNR,
NPV, FDR, F1 score, and MCC using conventional and proposed metaheuristic-based LS-
SVMs.

Using the Mq-MPA-based method and the LS-SVMM optimization, Table 2 shows
how the performance of the proposed method compares to that of existing classifiers.
The accuracy of the recommended LS-SVM-Mq-MPA method is correctly identified in
Table 2. Its accuracy is 5.23% less compared to CNN however the time complexity is
22.66% improved than CNN. The proposed modification in the feature space of LS-SVM
has also shown reduced computation time by 0.82% when compared to LS-SVM. A
1.39% improved accuracy has been reported by CNN-ResNet50 than LS-SVM-Mq-
MPA, and 0.84% improved than CNN-VGGNet. Similarly, the precision of the CNN
is 18.18% improved than the LS-SVM-Mq-MPA, 17.05% better in CNN-ResNet50, and
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Fig. 5 Step-by-step result analysis of the proposed model
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Fig. 6 Performance analysis of CNN, CNN-ResNet50, CNN-VGGNet, LSSVM-MPA, and LSSVM-Mq-MPA
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15.45% better than CNN-VGGNet. This implies a better performance for detecting CT
abnormalities with the improved LSSVM-Mq-MPA.

The performance of the classifier which used optimized feature space is carried out using
Kruskal–Wallis statistical test. Based on the information, the test results are interpreted as
follows: the test results based on the measure of uncertainty are in the range 12.27 to 12.32
where the level of significance α =0.05. Therefore, the chance of rejecting the null hypothesis
when it is true is 0.05, and the probability of acceptance of the null hypothesis is 0.95 with a
probability of uncertainty of 0.002.

Performance comparison of LSSVMs based on conventional and proposed technologies for
COVID-19 detection.

The percentage of time-saving per batch plays a very important role when the training and
execution time is at most priority. Thereby considering the same scope as the priority, it is
observed that there was a significant increase of around 22.66% in the timesaving parameter in
the case of the LSSVM-Mq-MPA proposed model to the CNN model. The same can be
observed in Fig. 7a where the performance analysis in terms of the percentage of time-saving
per batch for the proposed model over the conventional models has been plotted.

In the future, the proposed model can be designed with a collective data model so that the
classification of the multidimensional dataset can be addressed with enhanced accuracy.

Table 2 LS-SVM 3-class classification performance for proposed and conventional systems

Performance measures CNN CNN-ResNet50 CNN-VGGNet LSSVM-MPA LSSVM-Mq-MPA

ACC 0.92 0.89 0.88 0.91 0.87
SEN 0.64 0.77 0.89 0.82 0.86
SPEC 0.95 0.92 0.94 0.88 0.89
Precision 0.86 0.85 0.84 0.82 0.68
FPR 0.11 0.07 0.043 0.15 0.05
FNR 0.14 0.17 0.42 0.22 0.31
NPV 0.95 0.92 0.89 0.94 0.88
FDR 0.14 0.18 0.32 0.23 0.32
F1 score 0.88 0.82 0.78 0.81 0.86
MCC 0.82 0.76 0.57 0.68 0.50
% of time saving/batch 48.57 50.12 51.20 70.41 71.23

Fig. 7 (a) Performance analysis in terms of % of time-saving and (b) Receiver operating characteristic curve for
the detection of COVID-19 for proposed and conventional systems
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Further, we propose to design a portable embedded handheld device for remote monitoring
and diagnosis of COVID-19 in the future.

6 Conclusion

Here, an automated method that detects COVID-19 by assessing CT abnormalities such as
septal thickening, linear opacity, crazy-paving pattern, reticulation, and air bronchogram
pleural thickening in areas affected by COVID-19 is described. In this work, the processing
stages of CT images included pre-processing, septal region removal, air bronchogram pleural
region removal, segmentation of abnormalities, and classification. The main contribution of
this work is a unique approach to feature selection using the metaheuristic algorithm that
provided enhanced diagnostic accuracy for multi-class classification using LSSVM. The
modified quantum-based Marine Predators Algorithm improved the performance of
COVID-19 image classification accuracy by 12.6% and by 8.73% compared to the CNN
model. The ITR, which is crucial in the embedded system development of the system,
showed an improvement of 27.4% when compared with a method without feature selection.
The work carried out can be extended in the future to segment abnormalities within variants
of COVID and to optimize an algorithm to reach high diagnostic rates when classifying the
variants. The optimized selection of image features using the proposed algorithm increases
the accuracy and automates the process of diagnostics by involving minimum efforts from
the radiologists. The accuracy of diagnosis using the proposed method is enhanced when
compared to a pure manual method of diagnostics and this encourages work in areas where
CT image analysis.
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