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Abstract
Epidermal growth factor receptor (EGFR) is the key to targeted therapy with tyrosine
kinase inhibitors in lung cancer. Traditional identification of EGFR mutation status
requires biopsy and sequence testing, which may not be suitable for certain groups who
cannot perform biopsy. In this paper, using easily accessible and non-invasive CT
images, the residual neural network (ResNet) with mixed loss based on batch training
technique is proposed for identification of EGFR mutation status in lung cancer. In this
model, the ResNet is regarded as the baseline for feature extraction to avoid the gradient
disappearance. Besides, a new mixed loss based on the batch similarity and the cross
entropy is proposed to guide the network to better learn the model parameters. The
proposed mixed loss utilizes the similarity among batch samples to evaluate the
distribution of training data, which can reduce the similarity of different classes and
the difference of the same classes. In the experiments, VGG16Net, DenseNet,
ResNet18, ResNet34 and ResNet50 models with the mixed loss are trained on the
public CT dataset with 155 patients including EGFR mutation status from TCIA. The
trained networks are employed to the collected preoperative CT dataset with 56 patients
from the cooperative hospital for validating the efficiency of the proposed models.
Experimental results show that the proposed models are more appropriate and effective
on the lung cancer dataset for identifying the EGFR mutation status. In these models,
the ResNet34 with mixed loss is optimal (accuracy = 81.58%, AUC = 0.8861,
sensitivity = 80.02%, specificity = 82.90%).
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1 Introduction

Lung cancer is one of the malignant tumors with the highest mortality rate in the world [30].
The study of epidermal growth factor receptor (EGFR) mutation in cancer driver genes makes
targeted therapy a relatively effective treatment [33]. EGFR mutation status is involved in the
occurrence, development, invasion and metastasis of lung cancer [22]. The detection of EGFR
mutation status is crucial in first-line therapies [3], because EGFR tyrosine kinase inhibitors
can target specific mutation within EGFR gene and improve the prognosis of lung cancer
patients with EGFR mutation [53]. Biopsy sequencing is the gold standard for gene mutation
detection. Due to the widespread heterogeneity of lung tumors, biopsy sequencing need to
locate tissue regions for measuring EGFR mutation status. Its applicability is limited due to the
difficulty in obtaining tissue samples and repeatedly sampling tumor, relatively high cost and
poor DNA quality [31]. In addition, biopsy increases the potential risk of cancer metastasis
[25]. In these cases, a non-invasive and easy-to-use method is necessary to identify EGFR
mutation status.

Computed tomography (CT), as a non-invasive routine diagnostic technique, can be
used in the analysis of lung cancer [20, 52]. Recent studies have shown that the features
extracted from CT images of lung cancer are related to gene expression patterns [1, 5, 17,
55], and show the ability to identify EGFR mutation status [23, 28, 35, 48, 54]. Although
image-based evaluation cannot replace biopsy, it can be regarded as supplementary
information of biopsy [15, 31]. For example, CT imaging can provide some information
of the tumor heterogeneity such as tumor density, activity and microenvironment,
allowing us to identify the EGFR mutation status [41, 47]. In addition, CT imaging is
low-cost and easy to obtain throughout the treatment process. Therefore, it is promising for
CT imaging as an alternative method to detect EGFR mutation status.

In recent years, researchers have predicted gene mutation based on CT images mainly by
traditional radiomics, machine learning or statistical methods. Liu Y et al. [24] adopted
radiomic method to extract features such as size, edge, transparency and uniformity from
CT images for identifying EGFR mutation status. Velazquez et al. [31] developed a radiomic
model based on CT image features and clinical data to distinguish between EGFR- and
EGFR+, KRAS+ and KRAS-. Zhang et al. [50] also developed a radiogenomic model based
on CT image features to predict EGFR mutation status in patients with lung adenocarcinoma.
Jia T Y et al. [16] extracted radiomic features and adopted random forest model to identify
EGFR mutation status in lung adenocarcinoma based on non-invasive imaging. Morgado J
et al. [27] utilized a variety of linear, nonlinear, and ensemble predictive classification models,
along with several feature selection methods, to classify the binary outcome of wild type or
mutant of EGFR. In order to make the model performance better for disease prediction,
radiomics methods are also gradually improved in various aspects, such as feature selection,
data processing, classification algorithm. For example, Mandal M et al. [26] proposed a feature
selection framework based on three-stage wrapper filter for disease detection, such as arrhyth-
mia, leukemia, DLBCL and prostate cancer. Ijaz M F et al. [14] proposed a cervical cancer
prediction model (CCPM) using risk factors as input, which removes abnormal data by using
outlier detection method, increases the number of cases for balance and finally adopts random
forest classifier to achieve good accuracy. Srinivasu P N et al. [39] proposed a computationally
efficient anisotropic weighted-heuristic algorithm for real-time image segmentation (AW-
HARIS) algorithm to automatically segment CT images for identifying the abnormalities of
human liver. However, radiomic methods need to rely on manual labels with accurate tumor
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boundaries [6, 10]. Since radiological features are only calculated within the tumor area [49],
the microenvironment and tumor attachment tissues are easily overlooked, resulting in poor
specificity of result prediction.

To solve these problems, a large number of end-to-end deep learning models have been
proposed and successfully applied to image classification, object detection and image seg-
mentation, such as CNN [21], AlexNet [18], VGGNet [36], ResNet [8] and DenseNet [11]
models. These models can alleviate these problems by self-learning technique without accurate
tumor boundary annotation [19, 34], and can automatically learn features from image data for
specific clinical analysis [44]. VGGNet is a multi-layer depth network model, which is
proposed by Simonyan K et al. [36]. This model can achieve high accuracy on multiple image
recognition datasets, especially VGG-16 and VGG-19 models. Based on VGG-16 model,
Chen K et al. [2] make a precision efficiency trade-off for a variety of structured model
pruning methods on CIFAR-10 and ImageNet datasets. This method improves memory usage
and speed of model on TPUs. ResNet models including ResNet18, ResNet34, ResNet50,
ResNet101 and ResNet152 are proposed by He K et al. [8] to address the degradation problem.
These networks are easier to optimize and can gain accuracy from considerably increased
depth. DenseNet proposed by Huang G et al. [11] is a dense convolution network. The
network enhances the network effect and reduces the use of parameters by reusing the
extracted features and bypass. Because these deep learning models possess high accuracy,
high efficiency and high reliability, they are widely used in all kinds of medical image
research, such as skin disease classification [4, 40], eye disease diagnosis [42] and non-
invasive liver disease prediction [45]. Srinivasu P N et al. [40] proposed a computerized
process of classifying skin disease based MobileNet V2 and Long Short Term Memory
(LSTM), which is proved to be efficient in maintaining stateful information for precise
predictions.

In addition, many deep learning models perform well in assisting lung cancer analysis [43,
46], and have been gradually applied to the study of image-based gene mutation prediction.
Wang S et al. [47] firstly proposed an end-to-end deep learning model that uses CT images to
predict the EGFR mutation status in lung adenocarcinoma. Song K et al. [38] proposed a joint
network named segmentation-based multi-scale attention model (SMSAM) to predict the
mutation status of KRAS gene in rectal cancer. Qin R et al. [29] proposed a hybrid network
combining 3D CNN and RNN to design multi-type features and analyze their dependencies for
the prediction of EGFR mutation status. However, there are not many studies on identifying
EGFR mutation status of lung cancer by images based on deep learning methods, and
extracting effective discriminant features for the non-invasive prediction of EGFR mutation
status is still a great challenge.

In this work, we developed the ResNet with mixed loss based on batch training technique
(ResNet-MLB) to extract CT image features and identify EGFR mutation status. The proposed
models trained on the public dataset can be effectively transferred to another datasets from
different hospital, which shows the good applicability and effectiveness in identifying EGFR
mutation status. The proposed models can automatically learn the relevant features of EGFR
mutation from CT images, which only requires manual selection of image blocks containing
tumor regions in CT images and does not require precise tumor boundary segmentation or
human-defined features. This study is a non-invasive auxiliary detection method, which is
suitable for avoiding invasive injury when surgery and biopsy are inconvenient. Meanwhile, it
can help the clinician to make treatment decisions for the patient and it is of positive
significance to reduce the burden of doctors and promote the development of medicine.
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The main contributions of this paper are as follows:

1. The ResNet-MLB is proposed to identify the EGFR mutation status through extracting
more relevant features from CT images, which is a non-invasive and easy-to-implement
method for detecting gene status.

2. A novel mixed loss based on the batch similarity and cross entropy is introduced, which
can be easily integrated into some existing CNN models, such as VGGNet, DenseNet and
ResNet.

3. The combination of mixed loss and batch training strategy is firstly applied to the
VGGNet, DenseNet and ResNet models to recognize gene mutation status by images.

The organizational structure of this paper is described as follows. Section 2 introduces the
overall architecture of models based on the batch training strategy, the details of the designed
mixed loss, and the computational complexity of the mixed loss with batch training strategy.
Section 3 describes the experiments to demonstrate the effectiveness of the batch training
technique and the mixed loss of the proposed model. The conclusion is given in Section 4.

2 Methods

2.1 Overall architecture

ResNet-MLB is proposed to identify the EGFR mutation status through extracting more
discriminative features from CT images. The overall architecture mainly includes two parts:
feature extractor and classifier. This paper mainly regards ResNet as a baseline for feature
extraction which is mainly composed of the residual block and the jump connection between
the block and block. The residual block consists of a series of convolutional layers, batch
normalization and Relu activation layers. The jump connection makes the gradient of back
propagation better by shortening the distance between non-adjacent layers. In addition, it also
enables the network to automatically learn the path of feature motions without affecting the
performance of the network, thereby enhancing the generalization ability of the network. A
fully connected layer is used in the classifier, and the classification is achieved through
softmax. The input dimension of the classifier is fixed as 512, and the output dimension is
determined as the number of classes. For example, the status of EGFR genes can be classified
as the wild type and mutant, so the output dimension of the classifier is set as 2. The overall
architecture is shown in Fig. 1.

Fig. 1 The overall architecture of the proposed model
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In our framework, the feature extractor F(∗), the classifier C(∗), and the class probability
P(∗) are defined as follows,

Fi ¼ F xið Þ;Ci ¼ C Fið Þ;Pi ¼ P Cið Þ; i ¼ 1; 2;⋯;N ; ð1Þ
where xi represents the i-th image sample and N is the number of samples.

The feature Fi ∈ R1 × l from the image xi is extracted by the feature extractor F(xi), in which
l represents the length of a feature vector. Then, the classification result Ci ∈ R1 × C of the
feature Fi is given by the classifier, in which Ci is the number of classes. The class probability
Pi ∈ R1 × C is obtained through the softmax layer, that is, the class probability is the final
prediction result of EGFR mutation status based on the lung cancer.

2.2 Mixed loss

In the research field of medical image classification, the cross-entropy loss (CL) is widely used
in CNN models to train networks. However, it is not able to measure the similarity of intra-
class and inter-class of samples [12], which prevents CL from learning discriminative features
of the samples. Therefore, several other loss functions are proposed in deep learning models,
such as the contrastive loss, the triplet loss, the triplet lifted structure loss and the triplet hard
loss, which are able to learn discriminative features, suppress intra-class change [51], and
maximize the gap between different classes [13]. However, they also have some drawbacks.
For example, the contrastive loss [7] needs to construct sample pairs to train the model.
Although there are a considerable number of potential sample pairs in the training set, only a
small number of sample pairs are usually sampled during the model training phase, which also
results in a substantial loss of useful information. The triplet loss [32], triplet lifted structure
loss, and triplet hard losses all need to construct triplets from training samples. Although the
triplet lifted structure loss [37] considers all possible pairs, it is not smooth, and its smooth
upper bound needs to be optimized. The triplet hard loss [9] selects only the hardest pair,
which will filter out outliers and make the network unable to learn normal relationships.

In each iteration of the error back propagation algorithm, a batch input X with nb samples is
fed into a CNN model for training. For any sample xi ∈ X, i = 1, 2, ⋯, nb, we can get the
feature vectors Fi = F(xi) ∈ R1 × l, Fþ

ij ; j ¼ 1; 2;⋯; nþi and F−
ik ; k ¼ 1; 2;⋯; n−i , where Fþ

ij

denotes the feature vector corresponding to the samples of the same class as xi, and F−
ik denotes

the opposite. Here, nb, nþi and n−i represent the number of batch samples, samples of the same
class as sample xi and samples of a different class from sample xi, respectively, and they satisfy
nb ¼ nþi þ n−i þ 1. As mentioned above, the ideal triplet loss function is effective for cluster-
ing images of the same classes and separating images of the different classes. Therefore, the
regular triplet loss is used and can be expressed as,

Lt ¼ max 0;αþ d Fi; Fþ
ij

� �
−d Fi; F−

ik

� �� �
;

i ¼ 1;⋯; nb; j ¼ 1;⋯; nþi ; k ¼ 1;⋯; n−i ;
ð2Þ

where d(∗, ∗) represents the distance measure of two vectors. α is a threshold that represents
the minimum interval between the distance of positive sample pairs and the distance of
negative sample pairs, which is an important index to measure similarity. The cosine distance
is used to measure the similarity between samples in this work. Hence, the corresponding
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triplet loss based on similarity for the feature vectors Fi; Fþ
ij ; F

−
ik

� �
, i ¼ 1;⋯; nb; j ¼ 1;⋯;

nþi ; k ¼ 1;⋯; n−i ; is redefined as

Ltrip sþij ; s
−
ik

� �
¼ max 0; q−sþij þ s−ik

� �
; ð3Þ

where q ∈ [0, 1] is a threshold to measure cosine similarity between positive and negative
sample pairs. sþij and s−ik are the cosine similarity between the feature vectors Fi and Fþ

ij , and

that between the feature vectors Fi and F−
ik , respectively. They can be calculated by.

sþij ¼
FT
i F

þ
ij

Fik k2 Fþ
ij

��� ���
2

; and s−ik ¼
FT
i F

−
ik

Fik k2 F−
ik

�� ��
2

; ð4Þ

in which FT
i denotes the transposition of Fi and ‖Fi‖2 represents the 2 norm of Fi. By reducing

the loss Ltrip, sþij will be close to 1 and s−ik will be close to 0. Note that due to the diversity and
complexity of triple inputs, that is to say, the calculation of the triplet loss of the feature vector
Fi needs reference vectors Fþ

ij and F−
ik , it is not conducive to training.

In order to address these problems, a new mixed loss based on batch similarity and cross
entropy is proposed to guide the network to better learn the model parameters. The mixed loss
function is defined on the input batch samples for training the network. The similarities of all
possible sample pairs in the batch is stored in the batch similarity matrix S∈Rnb�nb , in which
the element Sij can be calculated by

Sij ¼ eFieFT

j ; i; j ¼ 1; 2;⋯; nb; ð5Þ

where Sij represents the similarity of the i-th feacture vector eFi and the j-th feature vector eF j,

in which eFi ¼ Fi= Fik k2; i ¼ 1; 2;⋯; nb with the size 1 × l. nb is the number of the input
batch samples.

To analyze the similarity matrix S, a binary matrix B∈Rnb�nb corresponding the ground truth
is constructed to distinguish the similarity between positive and negative pairs. Their element
Bij can be calculated by

Bij ¼ yiy
T
j ; i; j ¼ 1; 2;⋯; nb; ð6Þ

where yi is a row vector of all zeros, except the ci-th element is one, corresponding to the i-th
sample with the ground truth label ci, in which yi ∈ R1 × C, ci ∈ {1, 2, ⋯, C} and C is the
number of classes.

From Eqs. (5) and (6), the discriminative similarity matrix D can be constructed as follows,

D ¼ S⊙ 2B−1ð Þ; ð7Þ
where 1∈Rnb�nb is a matrix whose elements are all 1 and the symbol ⊙ denotes the Hadamard
product. Note that the similarities of positive pairs are greater than 0, and the similarities of
negative pairs are smaller than 0 in the matrix D. Moreover, the diagonal elements of D and S
will be set to zeros, i.e. dii = 0 and sii = 0, because they represent the similarity between the
vectors Fi and themselves, the data distribution cannot be evaluated. The process of construct-
ing the required discriminant matrix to evaluate the similarities among all samples is shown in
Fig. 2.
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The loss of each sample xi ∈ X in input batch can be evaluated by the i-th row of the
above discriminant similarity matrix D. The value of dij(dij ∈ D) represents the similarity
between the feature vector Fi and other vectors in the batch samples (except for the
diagonal element dii = 0). Obviously, the positive pairs and negative pairs in the i-th row
may have multiple similarities. For convenience, for the i-th row, we re-express the
similarity of positive pairs as dþij ; j ¼ 1; 2;⋯; nþi , and the similarity of negative pairs as

d−ik ; k ¼ 1; 2;⋯; n−i , and they satisfy that nb ¼ nþi þ n−i þ 1. The triplet loss of xi based on
the batch similarity is defined as

Ls−trip D; xið Þ ¼ max 0; q−
1

nþi
∑
nþi

j¼1
dþij

2 þ 1

n−i
∑
n−i

k¼1
d−ik

2

 !
ð8Þ

where the similarities of the positive pairs and the negative pairs are replaced by the
average square similarity, respectively. Since |dij| ≤ 1, the square of dij is used instead of
the linear function, so that the loss has a smoother gradient and more easily converges to
the optimal solution. Therefore, the average batch similarity loss of a batch is expressed
as

Ls−trip ¼ 1

nb
∑
i¼1

nb
Ls−trip D; xið Þ ð9Þ

It is worth noting that the new batch similarity loss based on the triplet loss can further guide
the model learning, so that samples of the same class are closer and the differences between
samples of different class are more obvious, as shown in Fig. 3.

In order to better achieve the classification of EGFR mutation status and better evaluate the
ability of classification, the softmax classifier and the CL function Lce are also used in the
structure of model. The CL based on the softmax probability is defined as,

Lce ¼ −
1

nb
∑
i¼1

nb
∑
C

j¼1
1ci¼ j log

ew
T
j F

T
i þb j

∑C
j¼1e

wT
j F

T
i þb j

; ð10Þ

where Fi represents the extracted feature vector corresponding to the i-th image sample; wj and
bj are the parameters of the classifier corresponding to the j-th class, which is composed of a

Fig. 2 Construction process of discriminative similarity matrix
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fully connected layer. ci denotes the class of the i-th image. The value of 1ci¼ j is 1 when the
ground truth ci is equal to j.

Therefore, based on the average batch similarity loss in Eq. (9) and the CL in Eq. (10), the
new mixed loss (ML) can be defined as,

L ¼ βLce þ γLs−trip; ð11Þ
where β and γ are the weight parameters of the cross-entropy Lce and the average batch

similarity loss Ls−trip, respectively. The ML can better classify and obtain the discriminative
features of samples and Algorithm 1 shows the implementation procedure of the mixed loss.

Algorithm 1 The implementation procedure of the mixed loss

Fig. 3 Clustering process based on batch similarity loss
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2.3 Batch training strategy

The batch training (BT) strategy is adopted in the structure of model. It enables gradient
descent to act on each batch and the amount of samples in each batch is small, so that models
can be trained in limited memory. Meanwhile, BT can also be used for the distributed training
to make the convergence faster. But the size of batch affects the stability of the training
process. So it is significant to choose appropriate batch size for improving running efficiency
and memory utilization. In order to obtain a better data distribution of the training data set, a
new construction scheme of batch samples is used as Table 1. Table 1 gives the specific steps
of construction of batch samples. Then, based on the batch samples, the ML is calculated and
the ResNet-MLB model is trained. It is worthy note that this strategy is only used during
training phase. In the testing phase, the batch similarity loss and the CL will be ignored, and
the the softmax function is used to output the prediction results.

Taking the EGFR status of lung cancer as an example, the number of samples is recorded as
X = {x1, x2, ⋯, xN}, where N is the total number of samples. Using the construction scheme
of batch samples in Table 1, the samples can be firstly divided into EGFR-wild type denoted as

x−1 ; x
−
2 ;⋯; x−Nw

n o
and the EGFR-mutant denoted as xþ1 ; x

þ
2 ;⋯; xþNm

n o
based on the sample

labels. Note that N = Nw + Nm, where Nw and Nm denote the number of EGFR-wild type and
the EGFR-mutant, respectively. Then randomly divide the EGFR-wild type into three groups

by clustering: x−1 ; x
−
2 ;⋯; x−i

� �
, x−iþ1; x

−
iþ2;⋯; x−j

n o
, x−jþ1; x

−
jþ2;⋯; x−Nw

n o
. Similarly, EGFR-

mutant type is also randomly divided into three groups: xþ1 ; x
þ
2 ;⋯; xþm

� �
,

xþmþ1; x
þ
mþ2;⋯; xþr

� �
, xþrþ1; x

þ
rþ2;⋯; xþNm

n o
. Finally, randomly select CT images in each

group proportionally to form an input batch.

2.4 Computational complexity

In this subsection, the computational complexity (Ccpl) of the mixed loss based on batch
training strategy in each iteration is performed at the cost of the required number of floating-
point operations (FLOPs). Assuming that the number of training data set is Ntrain, the
computational complexity can be calculated by

Ccpl ¼ CBT þ CML; ð12Þ
where CBT and CML are the computational complexity of executing batch training strategy and
mixed loss in each iteration, respectively.

The computational complexity of executing batch training CBT can be obtained through
complexity of four steps in Table 1,

CBT ¼ Ntrain þ O clusteringð Þ þ Ngroup þ nb; ð13Þ

Table 1 The construction procedure of the batch samples

(1). The original CT images are divided into different classes according to the ground truth;
(2). The CT images in each class are randomly divided into several equal groups by clustering;
(3). Count the number of images in each group and determine the proportion of images in the group;
(4). Proportionally randomly select CT images in each group as an input batch.
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where Ntrain denotes the complexity of the first step of BT strategy. O(clustering) is the
required number of FLOPs for the utilized clustering method in the second step. Ngroup is
the number of groups of training images and Ngroup FLOPs is taken to get the proportion of
images in the group in the third step. The fourth step requires nb FLOPs to build an input batch.
It is noted that the first three steps of the proposed BT strategy are only executed once before
the training process, while the fourth step is executed once per iteration in the training process.

The computational complexity of executing mixed loss CML can be obtained by
Eqs. (5)–(9),

CML ¼ l2 þ C2 þ l þ C þ 3
� �

n2b þ 2l þ 5ð Þnb; ð14Þ
where Eq. (5) requires lnb multiplication and (l − 1)nb addition for normalization of embedded

vectors, i.e. (2l − 1)nb FLOPs. The calculation of the similarity matrix S needs l2 þ l−1
� �

n2b
FLOPs in Eq. (5). In addition, the ground truth encoded as a one-hot vector yi needs nb index
and allocation operations, which is calculated as 2nb FLOPs for convenience in this paper.

Meanwhile, the calculation of the binary matrix B in Eq. (6) is C2 þ C−1
� �

n2b FLOPs. For the
discriminant similarity matrix D, the cost is 3n2b þ nb FLOPs, which is calculated every time
and shared each sample in the batch, and it is obtained by setting the diagonal value of the
matrix on the right of Eq. (7) to 0. Eq. (8) needs to be repeatedly calculated nb times, with a total
cost of 2n2b þ 2nb FLOPs. In Eq. (9), nb FLOPs is performed for the average operation of the
batch similarity loss.

3 Results and discussion

3.1 Datasets and details

3.1.1 Clinical characteristics of patients

Some experiments are conducted on the public dataset NSCLC Radiogenomics as the training
set and the cooperative hospital dataset from Shanxi Province as the validation set. The
NSCLC Radiogenomics dataset is downloaded from the TCIA website (https://wiki.
cancerimagingarchive.net). The institutional review board of Shanxi cancer hospital has
approved this retrospective study and abandoned the need to obtain patient informed
consent. Meanwhile, patients from the public and the cooperative hospital need to meet the
following inclusion criteria:

(1). Primary lung cancer confirmed by histology;
(2). Pathological examination of tumor specimens to confirm EGFR mutation status;
(3). Preoperative enhanced CT data.

Besides, in the training and validation datasets, patients will be excluded with the following
situation, such as (1) the lack of clinical data (age, gender, stage); (2) receiving preoperative
treatment; or (3) exceeding 1 month from CT examination to postoperative operation.

The lesion areas in all CT images from 155 patients of the public dataset and 56 patients of
the cooperative hospital are marked by these experienced radiologists (lung imaging practice
for 12 years) in the partner hospital. Based on these marked lesion areas, the dataset in the
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experimentation is constructed, including a total of 16,040 image blocks with size 64*64 in
which all marked tumor lesion areas are contained, and each sample image block is classified
into EGFR-mutant and EGFR wild type based on the patient’s clinical information. Figure 4
shows some CT images including the EGFR-mutant and EGFR-wild image samples.

Table 2 lists the detailed construction of the lung cancer dataset. In the dataset, there are the
training sets with 12,835 images including EGFR-mutant images 3310 and EGFR wild
images 9525 from the public dataset, and the validation sets with 3205 images including
EGFR-mutant images 825 and EGFR wild images 2380 from partner hospitals.

Table 3 presents the clinical characteristics of patients including the number of patients,
average age, sex, smoking status, histology and EGFR mutation status in training set and
validation set, and the corresponding p value between two datasets. It is from Table 3 that
the p values of age, sex, smoking status, histology, and EGFR mutation status are greater than

Fig. 4 Lung cancer CT images including the EGFR mutant and EGFR wild image samples

Table 2 The construction of the lung cancer dataset

Data EGFR-Mut EGFR-Wild

Training 3310 9525
Validation 825 2380
Number of images 4135 11,905
Total of images 16,040
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0.05, which implies that there are no significant differences in age, sex, smoking status,
histology and EGFR mutation status between the training set and the validation set. Note that
when the p value is less than 0.05, there are the statistical significant of the corresponding
characteristic between the training set and validation set.

3.1.2 Experimental details

Due to the small amount of medical image data, in order to prevent over fitting, some simple
data enhancement methods, such as horizontal flip, vertical flip and random rotation, are used
to expand the training set for improving the ability of the model classification.

In the experiment, the Adam gradient optimization algorithm is used to optimize the
parameters of the model, the weight decay rate is set to 1e-8 and the learning rate is set to
1e-4. The input batch size is set to 36. Moreover, in order to calculate the batch input similarity
triplet loss, the dimensionality of the extracted features is reduced and set to 512. In the mixed
loss, the weight parameters β and γ are set 1 and 0.5, respectively. The performance of the
model is evaluated on the validation set in each epoch.

To test the effectiveness of the proposed mixed loss, we have applied the mixed loss to
VGG16Net, ResNet18, ResNet34, ResNet50, DenseNet networks. The number of parameters
and computational complexity of these networks are listed in Table 4, where FLOPs are
generated when the size of the input image is 64 × 64 × 1. As can be seen from Table 4,
DenseNet has the fewest parameters and ResNet18 has the least number of FLOPs.

The experiments in this work are carried out on a workstation with Ubuntu 18.04 LTS, the
CPU of the server is 2.90 GHz Intel(R) Xeon(R) W-2102, and the GPU is NVIDIA TITAN
XP with CUDA 10.1 for acceleration. Besides, all the deep learning frameworks are realized
using Python 3.7.9 with Keras 2.3.1 and TensorFlow 1.15.0.

Table 3 The clinical characteristics of patients

Attributes training set validation set p value

The number of Patients 155 56
Average age 67.9 62.8 0.073
Sex Female 57 (36.8%) 32 (57.1%) 0.446

Male 98 (63.2%) 24 (42.9%)
Smoking status Nonsmoker 37 (23.9%) 15 (26.8%) 0.797

Former 95 (61.3%) 30 (53.6%)
Current 23 (14.8%) 11 (19.6%)

Histology Adenocarcinoma 135 (87.1%) 40 (71.4%) 0.362
Squamous cell carcinoma 17 (11.0%) 16 (28.6%)
NSCLC NOS (not otherwise specified) 3 (1.9%) 0 (0.0%)

EGFR mutation status EGFR-wild 115 (74.2%) 36 (64.3%) 0.061
EGFR-mutant 40 (25.8%) 20 (35.7%)

Table 4 The parameters and computational complexity of the compared networks

VGG16Net ResNet18 ResNet34 ResNet50 DenseNet

Parameters(M) 7.18 2.82 3.64 4.06 2.12
FLOPs(M) 415.47 286.73 356.45 395.34 313.25
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3.2 Influence of the size of batch samples

In this subsection, consider the influence of the size nb of the batch samples on the accuracy of
the proposed models to choose appropriate batch size for improving running efficiency and
memory utilization. Using the construction procedure of the batch samples, the training dataset
on the lung cancer in Section 3.1 can be divided into two classes and three groups in each class
by the K-means algorithm. Then, using eight different proportions, batch samples of different
sizes are constructed, i.e.nb = 6,12,18,24,30,36,42,48, where each batch of samples is
obtained in the 6 groups in the same proportion.

In this experiment, the different batch sizes are used for training ResNet-MLB models, and
other parameters are fixed as subsection 3.1.2. The accuracy (ACC) is used as an index to
evaluate classification ability of models, which is calculated by:

ACC ¼ TP þ TN
N

0 ; ð15Þ

where TP and TN, respectively, represent the number of samples of the correct prediction in all
samples labeling EGFR-mutant (true positive) and that of the correct prediction in all samples
labeling EGFR-wild type (true negative). N′ is the total number of all images in the validation
set.

Figure 5 shows ACC values of models at the different batch size nb. It can be seen from
Fig. 5 that the highest accuracy of 81.58% and the lowest accuracy of 78.52% are obtained
at nb = 36 and nb = 6, respectively. In our results, the accuracy is positively correlated
with the batch size nb, which is in line with the hypothesis: A larger nb can ensure that the
data distribution of each batch is closer to the overall distribution of the training set.
However, considering that a larger nb will result in insufficient number of iterations for
network training within an epoch, nb = 36 is applied to the rest of the experiments as the
default value.

Fig. 5 Accuracy analysis based on different input batches nb of lung cancer dataset
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3.3 Influence of batch training strategy

In this subsection, the effect of the BT strategy on the accuracy of the ResNet34 models using
the CL (ResNet34-CL) or the ML (ResNet34-ML) is considered through the comparison with
the random selection (RS) strategy. Figure 6a shows that the training and validation loss curves
of ResNet34-CL models using BT and RS. Figure 6b shows that the training and validation
loss curves of ResNet34-ML models using BT and RS. It is seen from these figures that the
loss curve of the BT strategy is relatively smoother than that of the RS strategy for all models.
This shows that it is easier to train the network using the BT strategy. In addition, we also find
that the gap between the training loss and the validation loss is reduced by the BT strategy,
which implies that it can alleviate the overfitting problem in the process of model training to
some extent.

Table 5 lists the accuracy of ResNet34-CL and ResNet34-ML using BT and RS strategy on
the validation set. As listed in Table 5, the accuracy of ResNet34-CL model using the BT
strategy is 1.14% higher than that using RS strategy. The accuracy of ResNet34-ML using the
BT strategy is improved by 0.93%, compared with ResNet34-ML using the RS strategy. The
results indicate that the batch training strategy is beneficial for training models. Here, it can
also be seen that the BT strategy is more effective for models based on the CL, meaning that it
is able to compensate more significantly for the CL over the data distribution. The reason is
that the ML including the batch similarity can evaluate the quality of the training data set
distribution to a certain extent, but the CL function does not have this ability.

3.4 Comparison and verification of results

In this subsection, the applicability and effectiveness of ResNet models using the ML is
studied. In this experiment, the CL, the CL combined with the triple loss (CTL) in ref. [32], the
CL combined with the improved lifted structure loss (CIL) in ref. [37] and the proposed ML

a. Cross-entropy Loss                          b. Mixed Loss

Fig. 6 Loss curves of different training strategies for ResNet34

Table 5 Accuracy of different training strategies for ResNet34

Scheme Cross Entropy (RS) Cross Entropy (BT) Mixed Loss (RS) Mixed Loss (BT)

ACC(%) 78.07 79.21 80.65 81.58
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are applied into VGG16Net, ResNet18, ResNet34, ResNet50, DenseNet models for the
comparison.

The effectiveness of the new ML is firstly considered by comparing with the CL. Figure 7
shows the curve of training loss and validation loss using different models with the CL and the
ML. From these figures, we find that.

(1). The validation loss of the VGG16Net increases as the iteration increases for these
models using the CL in Fig. 7b. This implies that the overfitting problem of VGG16Net
is more serious than other models.

(2). These models using ML are smoother, which implies that the overfitting problem can be
suppressed.

a. DenseNet                             b. VGG16Net

c. ResNet18                              d. ResNet50

e. ResNet34

Fig. 7 Loss curves for the compared networks
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(3). The gap between the ML is smaller than that between the CL in all models. This
demonstrate that the ML can play a regularizing effect on the CL.

In summary, the mixed loss can suppress the problem of overfitting, indicating that the
mixed loss can play a regularizing effect on the CL.

Then, the performance of the models with the new ML is furtherly studied by comparing
with models with the CL, CTL and CIL. The identification of the mutation status of EGFR is a
binary classification task, and the sensitivity SE and specificity SP are used to evaluate the
performance of these models in this experiment. They can be calculated by.

SE ¼ TP
TP þ FN

and SP ¼ TN
TN þ FP

; ð16Þ

where FP and FN, respectively, represent the number of samples of the incorrect prediction in
all samples labeling EGFR mutation (true positive) and that of the incorrect prediction in all
samples labeling EGFR wild type (true negative). The sensitivity SE and specificity SP can
measure the ability of models to correctly identify the EGFR-mutant and EGFR-wild type in
CT images of lung cancer. In addition, the accuracy (ACC) and the receiver operating
characteristic (ROC) area under the curve (AUC) are also used to evaluate the classification
ability of the models. The results (including the sensitivity SE, the specificity SP, the ACC and
AUC) of VGG16Net, ResNet18, ResNet34, ResNet50, DenseNet models with different loss
(CL, CTL, CIL and ML) are listed in Table 6. From the table, we find that:

(1). The accuracy of all models with CIL and ML is higher than all models with CL, which
means the improved lifted structure loss and batch similarity loss can improve the
optimization ability of these models.

Table 6 Metrics for the compared networks based on each loss

Model Loss SE(%) SP(%) ACC(%) AUC

VGG16Net Cross-entropy 77.58 78.67 77.87 0.8089
Cross-entropy+ Triple 78.82 80.59 79.50 0.8273
Cross-entropy+ Lifted 76.71 79.75 78.40 0.8213
Mixed loss 79.07 81.53 80.32 0.8342

ResNet18 Cross-entropy 76.83 78.21 76.24 0.8041
Cross-entropy+ Triple 78.53 80.05 78.86 0.8106
Cross-entropy+ Lifted 79.42 80.87 80.31 0.8191
Mixed loss 79.57 81.49 80.87 0.8236

ResNet34 Cross-entropy 78.48 80.60 79.21 0.8780
Cross-entropy+ Triple 78.94 81.53 80.85 0.8798
Cross-entropy+ Lifted 79.17 82.75 81.05 0.8807
Mixed loss 80.02 82.90 81.58 0.8861

ResNet50 Cross-entropy 78.20 79.14 78.31 0.8723
Cross-entropy+ Triple 78.26 80.10 79.69 0.8783
Cross-entropy+ Lifted 79.57 82.58 80.47 0.8791
Mixed loss 79.65 82.60 80.87 0.8805

DenseNet Cross-entropy 78.83 81.23 80.93 0.8714
Cross-entropy+ Triple 79.68 81.53 80.48 0.8692
Cross-entropy+ Lifted 80.85 82.50 81.06 0.8778
Mixed loss 81.07 82.21 81.25 0.8741
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(2). The highest sensitivity, specificity, accuracy and AUC are obtained in VGG16Net,
ResNet18, ResNet34 and ResNet50 models with ML, which demonstrates that ML is
more effective than CL, CTL and CIL for VGGNet and ResNet models. In addition, the
DenseNet with ML and the DenseNet with CIL have higher performance, which means
that there is a good robustness of both ML and CIL for the DenseNet model.

(3). ResNet34 provides the highest accuracy (81.58%) for four different losses in all models,
which is 2.37% higher than the model with CL, 0.73% higher than the model with CTL
and 0.53% higher than the model with CIL. This shows that the ResNet34-ML can better
learn the discriminative characteristics of samples, and get better classification ability.

In general, ML has better adaptability and effectiveness in model training, and the
ResNet34-ML can obtain best performance.

In the experiment, the task of identifying EGFR mutations in lung cancer is compared with
the latest research, and the results are listed in Table 7. Table 7 shows that there is the highest
sensitivity, specificity, accuracy and AUC in the ResNet34-ML compared with other studies. It
further illustrates that the architecture proposed has a certain degree of improvement ability,
and the ResNet34-ML with the BT strategy is effective for identifying the EGFR mutation
status.

4 Conclusions

In this work, ResNet-MLB models are proposed using the mixed loss and the batch training
technique for identification of EGFR mutation status in lung cancer. In these models, the
mixed loss is proposed based on the batch similarity and cross entropy, and the batch training
technique is applied, which guide the network to better learn the parameters. Some experi-
ments about the size of batch samples, batch training strategy and various models with
different losses are studied on the CT images of lung cancer dataset, and the following
conclusions are obtained: (1) The performance of the BT strategy is 0.93% higher than that
of a RS strategy for ResNet34-MLmodels, and the performance of ResNet34-CL using the BT
strategy is improved by 1.14%, compared with ResNet34-CL using the RS strategy. Hence,
the BT strategy is beneficial for training models, especially for ResNet34-CL. That is because
the BT strategy is able to compensate more significantly for the CL over the data distribution,

Table 7 Comparison of the studies

Author Method Feature SE(%) SP(%) ACC (%) AUC

Liu Y et al [24] SVM Clinical features – – – 0.709
Gevaert O et al [6] Decision tree Semantic features – – – 0.890
Zhang L et al [50] Statistical analysis Radiomics features 70.90 79.80 75.60 0.873
Jia T Y et al [16] Random forest Radiomics features 75.80 79.10 77.20 0.838
Wang S et al [47] Deep learning (Improved

DenseNet + Cross-entropy)
Depth features 72.27 75.41 73.86 0.810

Dong Y et al. Deep learning (Inception-resnet-
attention+ Cross-entropy)

Depth features+
Clinical features

78.27 81.35 79.43 0.866

Our research Deep learning
(ResNet34+Mixed loss)

Depth features 80.02 82.90 81.58 0.8861
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while the ML including the batch similarity can evaluate the quality of the training data set
distribution to a certain extent. (2) For some common models, the proposed mixed loss has
superiority in sensitivity, specificity, accuracy and AUC (sensitivity = 80.02%, specificity =
82.90%, accuracy = 81.58%, AUC = 0.8861), compared with other losses, which means ML
has better adaptability and effectiveness in model training. (3) The ResNet34-ML with the
batch training technique can better learn the discriminative characteristics of samples, and get
the best classification performance in all models.

In short, the proposed mixed loss possesses the applicability and effectiveness, and
ResNet34-ML with the batch training technique has better identification ability on the CT
images of lung cancer dataset. The advantage of our method is that it provides a non-invasive
alternative solution for identifying the EGFR mutation status when the patient is not suitable
for biopsy, and quickly promotes the clinician to make treatment decisions for the patient.

Although the performance of ResNet-MLB models is encouraging, this study has some
limitations. First, our research only focused on the EGFR mutation status of lung cancer.
However, the relationship between EGFR mutation and other gene mutations (such as KRAS,
ALK) is unconsidered. Secondly, we only consider the identification of the EGFR mutation
status of lung cancer based on CT images, the combination of CT and other images (such as
PET) is unclear. Therefore, the correlation between EGFR mutations and other gene mutations
will be explored by introducing attention mechanism and multi-task learning in the future.
Besides, more CT images and other images of lung cancer will be collected to design a fusion
strategy which may improve the identifiable performance.
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