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Abstract
In the future, the goal of service robots is to operate in human-centric indoor environments,
requiring close cooperation with humans. In order to enable the robot to perform various
interactive tasks, it is necessary for robots to perceive and understand environments from a
human perspective. Semantic map is an augmented representation of the environment, con-
taining both geometric information and high-level qualitative features. It can help the robot
to comprehensively understand the environment and bridge the gap in human-robot interac-
tion. In this paper, we propose a unified semantic mapping system for indoor mobile robots.
This system utilizes the techniques of scene classification and object detection to construct
semantic representations of indoor environments by fusing the data of a camera and a laser.
In order to improve the accuracy of semantic mapping, the temporal-spatial correlation of
semantics is leveraged to realize data association of semantic maps. Also, the proposed
semantic mapping system is scalable and portable, which can be applied to different indoor
scenarios. The proposed system was evaluated with collected datasets captured in indoor
environments. Extensive experimental results indicate that the proposed semantic mapping
system exhibits great performance in the robustness and accuracy of semantic mapping.

Keywords Human-robot interaction · Semantic mapping · Temporal-spatial correlation

1 Introduction

The autonomous navigation technology for indoor mobile robots has a wide range of appli-
cations in the service industry and medical field [18, 36]. Especially in major public health
emergencies, such as the recent outbreak of COVID-19 around the world, the deployment
of such robots can help humans perform dangerous and high-intensity tasks.
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It is a common practice to build a globally consistent metric map of the indoor environ-
ment based on geometric information for robot navigation [27]. With respect to this type
of map, the robot navigation is performed by providing the specific geometric coordinates
in the global map reference frame. Yet, with the increasingly complex operating scenarios
of indoor robots, traditional navigation methods based on metric maps have been unable
to meet the needs of human beings [7]. In the future, the goal of robots is to operate in a
human-centered home or industrial environment [12, 13]. Robots should process the ability
to perceive and understand surrounding environments like humans, such as distinguishing
rooms and corridors in the environment. In this way, the robot can complete various inter-
active tasks in the real world. This kind of skill is not provided by the geometric metric
map [14, 37].

An attempt to achieve such a goal is provided by a semantic map, an augmented repre-
sentation of indoor environments. The semantic map entails both geometrical information
and high-level qualitative features, i.e., the robot can involve semantic attributes about
the objects and the scenes encountered, in association with the geometrical perception of
the environment. In this way, the semantic map can improve the ability to handle various
navigation tasks for mobile robots [20, 24].

During the last decade, semantic mapping has received extensive attention for its rich
informative representation of the environment [23, 35]. It is worth noting that they are still
often challenged by typical adversities found in real environments. The work on semantic
mapping has been fragmented, and it has rarely been possible to form a unified system that
can be comprehensively evaluated in various environments. Most of them only adopt a sin-
gle cue of environments to estimate scene categories of indoor environments, ignoring other
semantics in local scenes and the temporal-spatial association between semantic represen-
tations [6, 28]. For this reason, in order to perform various manipulation tasks effectively
for indoor robots, it is necessary to embed a higher level of environmental perception to
recognize and locate semantics of interest with spatial and temporal relevance. Obviously,
this is an essential ability to perform intelligent decision-making, especially for indoor ser-
vice robots, which need to deal with different entities of interest. This meaningful internal
perceptual representation enables the robot to perceive a variety of unsafe situations. For
example, when a robot goes to the conference room to pick up a document, it needs to walk
along the corridor and avoid pedestrians.

To this end, in this paper, we propose a unified semantic mapping system with temporal
and spatial coherence for indoor mobile robots. The proposed system utilized the results of
scene classification and object mapping obtained by state-of-the-art computer vision algo-
rithms as observations to construct a semantic map based on the data of a laser and a camera.
Our major contributions are summarized as follows:

• To the best of our knowledge, this paper is the first work concerned about both the
scene semantics and object semantics for semantic mapping with temporal-spatial
data association. The proposed system constructs the multi-dimensional semantics of
indoor environments through scene semantic mapping and object-augmented semantic
mapping.

• This paper proposes an object-augmented semantic mapping method. To ensure the
consistency of semantic representations and improve the accuracy of semantic mapping,
we design a temporal-spatial data association method.

• In scene semantic mapping, to effectively avoid misclassification of scenes, we present
a scene classification model based on inception v3 and LSTM. The proposed scene
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classification model takes the consecutive frames as input to better learn the correlation
of adjacent scenes and enhance the discriminative ability of image features.

• To verify the effectiveness of the proposed method, systematic experiments are
conducted on a real mobile robot.

2 Related work

2.1 Semantic mapping in robotics

In recent years, since indoor service robots are comprehensively integrated into the daily
life of human beings, semantic mapping has attracted significant attention due to its
rich informative representation for environments [1, 41]. In order to perform intelli-
gent decision-making and human-robot interaction in human-centric indoor environment,
researchers try to integrate the semantic concept of environments into the navigation pro-
cess for indoor mobile robots. It can be achieved by semantic map [10, 15]. The semantic
mapping methods could be divided into two categories from the perspective of the form of
construction: augment-based mapping methods with semantic labels, and reasoning-based
semantic map.

Typically, the core of augment-based mapping methods is to obtain the semantic labels
of environments based on specific technique, such as scene recognition, object detection
and semantic segmentation. For instance, Andreas et al. [19] defined the semantic mapping
problem for robotics utilizing a purely appearance-based approaches based on semantic
labeling. Their system enables mobile robots to recognize simple planar structures and
specific objects such as doors and walls by building a 3D point cloud model of indoor
environments. Based on the foundation of this work, extensive researches on semantic map-
ping with labels for indoor robots have emerged. McCormac et al. [17] proposed a dense
3D semantic mapping system, consisting of three modules: ElasticFusion system, VGG 16-
layer network and Bayesian estimation. This work first adopts the ElasticFusion system
to track the camera pose and construct geometric map. Then, they perform dense pixel-
wise semantic segmentation based on CNNs. Finally, Bayesian estimation and conditional
random fields are used to optimize pixel predictions from different viewpoints, construct-
ing a dense 3D semantic map. Although it provides a real-time and loop-closure solution
for indoor semantic interactive system, this work focuses on small-scale structured sce-
narios. Rozumnyi et al. [26] proposed a deep fusion method based on machine learning,
which integrated semantic 3D reconstruction, scene construction and multi-sensor data
into a learning-based framework. This method automatically extracts sensor parameters and
scene attributes parameters from training data and representing them in the form of confi-
dence values to achieve semantic mapping, which only requires a small amount of training
data to obtain better generalization ability.

The reasoning-based semantic mapping method represents the conceptual relationship
of the environment in a structured form, and usually builds a model of ontology seman-
tics based on semantic reasoning rules. It provides the robot with the ability of complex
task planning and intrinsic knowledge reasoning [21]. Ruiz-Sarmiento et al. [9] proposed
a multiversal semantic map representation containing contextual relationships of environ-
ments to address the symbolic grounded uncertainly through the conditional random field
technique. Crespo et al. [3] presented a semantic conceptual model construction method,
which defined the hierarchies of concepts by designing an ontology with specific rules.
The semantic conceptual model of environments provides the robot with the ability to
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perform human-robot communication and complex navigation tasks. Generally, ontology-
based semantic mapping method describe the spatial hierarchy of concept definitions,
which are the semantic basis for mutual communication between different subjects (such
as humans, machines, software, etc.) in environments. However, the disadvantage of the
ontology-based semantic mapping method is that an inference system needs to be built in
advance to manage the robot ontology, and the robot needs different ontology construction
methods in different environments.

2.2 Features for semantic classification

The semantic mapping methods based on scene recognition usually construct a semantic-
metric map by adding the labels of scene to the metric map through supervised learning.
It combines geometric features and high-level qualitative features of environments [31]. In
[43], Zhou et al. constructed Places 365 image database for scene recognition which con-
tains a total of 8 million training images and 365 scene categories. Based on this database,
the performance of different state-of-the-art CNN models is evaluated. Pronobis et al. [22]
presented a real-time multi-modal semantic space labeling system that integrated multiple
visual features and laser data to perform place classification by means of Support Vector
Machine (SVM). Brucker et al. [2] proposed a semantic mapping method which automati-
cally assigns scene semantic labels from RGB-D data based on Conditional Random Field
(CRF) approach. Compared to existing alternatives, this method can effectively improve the
accuracy of scene classification, even in the case of incorrect geometric priors. Kostavelis
et al. [11] proposed a semantic mapping framework, involving both geometrical and semasi-
ological elements that represent the relationships between scenes and object in environments
based on the technology of scene recognition and object detection. Niko et al. [30] proposed
a transferable semantic mapping system that does not require environment-specific training.
In this system, a monocular camera is employed to achieve scene classification based on the
place205 model, which is fused with the grid map created by laser. However, in practical
applications, the scene classification model of this method has great limitations and is prone
to scene confusion, especially when the robot is in the transition area of adjacent scenes.

Typically, when computer vision techniques are applied to the field of mobile robotics,
each frame of image is processed individually [32]. To address this problem, based on the
fact that what the robot sees is a temporally coherent sequence of frames, we embed a
semantic classifier in a recurrent neural network to construct a real-time semantic mapping
system for indoor mobile robots in this paper. The introduction of recurrent neural networks
based on image sequences enables robots to correct false misclassifications combined with
prior knowledge.

2.3 Object-augmentedmapping

Apart from scene-based methods, the semantic mapping methods based on object-
augmented mapping aim at obtaining the object-level information of environments. It
mainly consists of three steps: camera tracking, object detection and semantic mapping
[5, 40]. The key component of object-augmented semantic mapping is data association, cor-
relating the objected observed by robots with the real objects existing in the semantic map.
Generally, data association between different semantic objects is nonparametric, since the
visual features of objects are related to the pose of observing sensors. For this reason, Iqbal
et al. [8] proposed a nonparametric statistical method for data association between succes-
sive frames based on the distribution of depth data. This method is conductive to discover the
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interconnection between the occurrences of semantic instances during the process of object
mapping for robots. Since the visual features of different objects at different viewpoints
may appear similar, resulting in misclassification. Therefore, Tchuiev et al. [34] proposed a
recursive Bayesian method for semantic mapping in ambiguous scenarios that incrementally
estimated the hybrid belief of object poses over time. To detected and categorized nuclear
waster objects, Li et al. [33] proposed a weakly-supervised learning approach DCNN-GPC
to obtain the 3D semantic map of objects. In particular, DCNN-GPC is end-to-end, scalable
and Bayes-based. The experimental results verify the effectiveness in solving a novel RGB-
D object detection and recognition application with limited human annotations. Renato
et al. [16] proposed a learning-based object-augmented semantic mapping system, com-
bining the environment structure and object semantics using visual and depth cues. This
approach models the detected semantic classes with a constant Kalman filter module to
track and update the most probable object position. Gregorio et al. [4] proposed a real-time
mapping framework for robot navigation. This work can obtain the objects semantics as
well as the 6 DOF poses of object instances in environments by means of object detection
and visual features matching.

3 Methodology

The core of semantic map is the extraction and association of semantic representations. This
paper comprehensively considers the multi-dimensional semantic representations of scenes
and objects in indoor environments, and ensures the spatial and temporal consistency of
semantic information through data association of semantic representations. The overview
of proposed semantic mapping system is shown in Fig. 1. The semantic mapping pro-
cess consists of three stages: joint calibration of sensors, semantic mapping, and semantic
data association, respectively. First, the monocular camera and the laser are jointly cali-
brated to perform the data fusion. Then, scene classification and object detection algorithms
are exploited to extract the semantic representation of environments based on the data of
monocular camera and laser. On this basis, semantic mapping is performed according to the
coordinate transformation. Finally, data association is realized to construct semantic maps
with semantic associations for indoor environments by means of spatio-temporal correlation
of semantic representations.

3.1 Object-augmented semantic mapping

In order to perform manipulating task in a human-like navigation method, the robot also
needs to understand the semantic objects in local scene. To this end, it is necessary to embed
a higher level of environmental perception to detect and locate specific objects of interest.
It provides the robot with the capability to interact with entities in environments.

During the process of object-augmented semantic mapping, the robot may visualize the
same objects from different angles at different times, which may be labeled as different
instances. If the confidence is employed to solve the semantic association problem, it may
cause the semantic instance to be repeatedly mapped on the map. For this reason, this paper
presents an object-augmented semantic mapping method, combining semantic instances
and metric maps of indoor environments for semantic association. The proposed object-
augmented semantic mapping method consists of three stages: object detection, object
localization and object tracking, as shown in Fig. 2. First, we use the YOLO v2 network to
detect the pre-trained objects in real time, outputting the category of objects and the pixel
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Fig. 1 Overview of the proposed semantic mapping system

coordinates of the boundary box. Then, the object is mapped from the pixel coordinate frame
to the laser coordinate frame according to the relative relationship between the camera coor-
dinate frame and the laser coordinate frame. Finally, we perform semantic association to
track the mapped objects for distinguishing different instances in indoor environments.

3.1.1 Object detection

This section describes the component of object detection in object-augmented semantic
mapping. We extract a preliminary semantic representation of environments by detecting
objects of interest in the camera’s perspective. For object detection model, we choose YOLO
v2 network [25] considering the performance of recall and efficiency. The training and
detection process of the YOLO v2 network is included in the same network, and it is not
necessary to calculate the candidate bounding boxes of objects separately. The final output
of the YOLO v2 model is the coordinates of the center point of the bounding box (bx, by),
the width of the bounding box bw , the height of the bounding box bh, as well as the class
label of the detected object li and the corresponding probability pi , pi ∈ [σp, 1], where i

represents the i − th bounding box, σp represents preset threshold. The detection result is
output only when the label probability of object detection is greater than that σp.
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Fig. 2 Architecture of object-augmented semantic mapping

3.1.2 Object localization andmapping

(1) Joint calibration of the camera and the laser

In this paper, we use the center point of the bounding box to denote the pixel coordinates
of objects in images. After obtaining the detection semantic information of objects, it needs
to be mapped into the map based on the relative relationship between the pixel coordinate
frame and the laser coordinate frame. Since the visual information of the camera and the
laser data are not consistent, data alignment between the camera and the laser is essential
by means of joint calibration, as shown in Fig. 3.

Fig. 3 Coordinate system of the camera and the laser
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The coordinates of the detection object P in laser coordinate frame, camera coordinate
frame and pixel coordinate frame are (r, θ), (Xc, Yc, Zc), and (u, v), respectively. Then
there are: ⎛

⎝
Xc

Yc

Zc

⎞
⎠ =

⎛
⎝

X0 + r sin θ

Y0
Z0 + r cos θ

⎞
⎠ (1)

⎛
⎝

u

v

1

⎞
⎠ =

⎛
⎜⎝

fx ∗ X0 + r sin θ
Z0+r cos θ

+ cx

fy ∗ Y0
Z0+r cos θ

+ cy

1

⎞
⎟⎠ (2)

where (X0, Y0, Z0) is the coordinates of the laser in the camera coordinate system,
fx, fy, cx, cy are internal parameters of camera. The above formula is a typical nonlinear
equation. The joint calibration process of the laser and the camera is to solve the above for-
mula. To realize data fusion, we adopt the method in work [42] to perform joint calibration
to obtain the coordinate transformation relationship between the camera and the laser. First,
the parametric equation of the plane calibration board in the camera coordinate system is
estimated through a checkerboard. Since the laser point falls on the plane calibration board,
the laser point is mapped to the camera coordinate system according to the coordinate rela-
tionship. And then the distance error between the point and the plane is constructed. Finally,
the equation is solved using the method of nonlinear least squares to obtain the optimal
solution.

(2) Object-augmented semantic mapping

After observed objects are detected and mapped onto the corresponding position on the
semantic map, the next step is to continuously keep track of it. That is, the robot may detect
the same semantic instance form different viewpoints at different moments. At this time, it
is necessary to judge whether the object is detected or a new instance. Ideally, we would
like to associate each previously detected instance with the correct stored instance, and treat
undetected target objects as new instances. Therefore, it is necessary to perform spatio-
temporal data association of semantic information for robots. In this case, using confidence
of the object class to solve the data association problem may cause the semantic instance to
be repeatedly mapped on the map. For this reason, this paper presents an object-augmented
semantic association method, ensuring the temporal and spatial consistency of semantic
representations.

For temporal association, a same object may be detected in consecutive image frames.
For this reason, we assume that the pixel coordinate Pimg of the center of the bounding
box in adjacent frames are close in pixel distance. Specifically, if the candidates in frame
i and frame i+1 are the same object, the pixel displacement of the bounding box center
in consecutive detections should theoretically be less than a threshold T h bbc which is a
pixel ratio to the total pixels of the image, e.g., T h bbc = 0.005 means that the pixel
displacement of the bounding box center of consecutive detected candidates is less than
0.5% to the total pixels of the image. In addition, the area similarity threshold T h as of
detected bounding box between adjacent frames is also a criterion for judging the candidate
objects, e.g., T h as = 0.8 means that the area similarity of the detected bounding box
between consecutive frames is greater than 80%. To sum up, we consider the candidate
detections in consecutive frames to be the same object if the following three criteria are met
simultaneously: (1) the pixel displacement of the bounding box center in consecutive frames
should theoretically be less than a threshold T h bbc; (2) the area similarity of detected
bounding box between consecutive frames should be greater than a threshold T h as; (3)
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Fig. 4 (a)Frame 284: three objects detected; (b)Frame 286: four objects detected, D1 is a new object

candidate instances should have been detected in at least one of the last 3 frames, but not
counting the current frame. It is worth noting that consecutive detections in temporally
close frames that do not belong to the same category can still be associated with the same
instance, as long as the above three criteria are met simultaneously and no other instances
belong to the same category. This is because consecutive detections of the same object are
sometimes labeled as different categories due to mis-detections, as the robot moves towards
to the object.

Figure 4 presents an example of temporal association. There three detected objects in
frame 284: statue, door and fire hydrant (A1,B1 andC1), as shown in Fig. 4(a). Then, a new
object door (D1) is detected in frame 286. Obviously, A2, B2 and C2 are associated with
A1, B1 and C1, because all three criteria are met. However, for the object D1 in frame 286,
no previous candidates can be associated with it. For example, compare D1 with A1 or B1,
the criterion of T h bbc is not met. Compare D1 with C1, D1 can not be associated with C1
although the criteria of T h bbcc and T h as are met. Because the C1 is already associated
with C2 in current frame, so the association between C1 and D1 is forcibly terminated,
as depicted in criterion (3). Therefore, the object D1 is constructed as a new candidate in
semantic map.

For spatial association, an object will correspond to multiple instances with different
poses on the map as the robot moves. To combine different object observations and fuse
multiple instances with different poses on the map, the most probable pose of the object
needs to be updated in real time. For this reason, we adopt Kalman Filter to construct the
model of object observations and estimate the latest state of each object. In this way, we can
update the most probable pose of each object based on the previous information and then
generate the final spatial associated objects on the map. Since we mainly focus on static
objects (such as chair and water-tank) in indoor environment during semantic mapping, the
state transition equation and measurement model can be expressed as:

{
xi(k) = xi(k − 1) + ω̃(k)

y(k) = xi(k) + z̃(k)
(3)

where ω̃ ∼ N(03×1, W), z̃ ∼ N(03×1, Z), W is the process covariance matrix and Z is
the measurement covariance matrix.

An example of object mapping process is shown in Fig. 5. Figure 5(a) is the current
perspective image captured by the robot; Fig. 5(b) is the object detection result based on
the YOLO v2 network. As can be seen, there are two categories of objects (door and fire
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Fig. 5 The process of object localization, filtering and mapping

hydrant) in this scene; Fig. 5(c) denotes the grid map of indoor environment constructed by
laser; Fig. 5(d) represents the object-augmented mapping data. In this figure, the purple dots
and the red dots denote the mapping data of the fire hydrant and the door over time during
the robot navigation process; Fig. 5(e) is the pose of object mapping after filtering; Fig. 5(f)
is the augmented display of the corresponding pose of object mapping on the semantic map.

3.2 Scene semantic mapping

Typically, humans determine spatial locations based on scene concepts. If asked about
motion trajectories in environments, people tend to express scene concepts such as “I’m in
the hall, I’m going to the kitchen for a glass of water”, rather than coordinates or nodes on
a map. Semantic mapping based on scene classification connects the scene semantics and
geometric features of the environment, which is beneficial to intelligent decision-making
and human-robot interaction when mobile robots perform various high-level tasks. The pro-
posed scene semantic mapping system consists of two parts: indoor scene classification and
semantic mapping. First, with visual images as input, a CNN model based on inception v3
and LSTM is exploited to perform indoor scene classification. Then, semantic mapping is
performed on the corresponding grid cells based on the confidence of scene classification.
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3.2.1 Scene classification model

In the field of semantic scene classification, it is usually assumed that the scene labels
of consecutive frame images are independent of each other. However, there are multiple
associations between scene category labels at different locations in indoor environments.
For example, there is a hierarchical relationship between adjacent scenes, and some
image frames may belong to multiple scene categories at the same time. Especially when
the robot is in the transition area between adjacent scenes, if a single-frame image is
employed to identify the scene semantics, it is easy to cause scene confusion, resulting in
misclassification.

To address the above problem, in this paper, based on the fact that what the robot sees is a
temporally coherent sequence of image data, we present a scene classification model based
on LSTM, which embeds the semantic classifier into a recurrent neural network. The scene
classification model takes the image sequence of continuous frames as input to better learn
the correlation of different scenes and enhance the discriminative ability of image features.
It can effectively avoid misclassification caused by insufficient feature information of a
single frame image.

The scene classification model in this paper is shown in Fig. 6, which consists of two
parts: feature extraction from image sequence, analysis of the feature sequence and predic-
tion of scene categories. For the input image sequence {x1, x2, · · · , xN }, we first use the
inception v3 network to extract the convolutional features of each frame. The feature map
from the last convolutional layer in inception v3 network is regard as the output spatial fea-
ture {y1, y2, · · · , yN }. Assuming that the feature extraction process of the inception v3 is
defined as follow:

yi = f (xi) , i = 1, 2, · · · , N (4)

where yi is the feature vector of the frame i in the image sequence, its size is 2048
dimensions, yi ∈ R2048.

Then, the convolution features extracted by the inception v3 model are input into LSTM
to obtain the image features with temporal correlation. LSTM is a recurrent neural network

Fig. 6 The scene classification model based on Inception v3 and LSTM
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(RNN) with memory function for analyzing temporal sequence data, which has been suc-
cessfully applied to various field, such as automatic speech recognition and human action
recognition [29, 38, 39]. When dealing with the problem of scene classification, we should
analyze the differences and consistency in the intrinsic characteristics of indoor scenes.
Compared with traditional RNN, LSTM model can avoid the effects of gradient explo-
sion and gradient disappearance. Since LSTM model contains processing units of “forget
gate”, “input gate” and “output gate”, it can selectively store historical data according to
data information and selectively transmit current input and output information. In this way,
the integration of the inception v3 model and the LSTM model provides the robot with the
ability to better learn the contextual information of image sequences, enabling the robot to
utilize prior knowledge to correct misclassifications.

After that, the softmax layer mapping the feature vector extracted from LSTM to (0, 1),
and outputs the probability of scene category:

ζ = −
m∑

i=1

log(pi) (5)

pi = exp(WT
yi

zi + byi
)

n∑
j=1

exp(WT
j zi + bj )

(6)

where pi represents the class probability output from softmax classifier, ζ is the loss value
of softmax function, b is the bias vector.

3.2.2 Incremental semantic mapping based on probability distribution

The set of scene category labels is defined as ĉ = (c0, c1, c2 · · · , cn). For the image at
time t , the discrete probability distribution of the known categories estimated by the scene
classification model is defined as p(ci |It ), then the corresponding likelihood function is

L(It |ĉt ) = (p(c0|It ), p(c1|It ), · · · , p(cn|It )) (7)

where ĉ = (c0, c1, c2 · · · , cn) represents the vector set of known scene category labels,
p(ci |It ) represents the probability that the image It at time t belongs to scene category ci .

The semantic mapping process based on scene classification can be cast as a probability
estimation problem based on Bayesian estimation due to the temporal continuity of image
frames. Assuming that the first-order Markov property is satisfied, the following Bayesian
estimation formula can be obtained:

p(ĉt |It ) = L(It |ĉt ) · p(ĉt−1|It−1) (8)

For the image data at time t , we employ the proposed scene classification model to output
the probability distribution of indoor scene where the robot is located. At the same time, the
Gmapping algorithm is used to construct a grid map of the robot’s current position. Then,
the semantic information of indoor scene is integrated with the metric information of grid
map to realize the scene semantic mapping.

The constructed scene semantic grid cell is shown in Fig. 7. We take the scene category
with the highest probability as the semantic label of the current grid cell. The color of the
grid cell represents the corresponding scene category. Compare with traditional grid maps,
the grid cell on the semantic map not only represents the probability of occupancy, but also
the probability that the grid cell belongs to a certain semantic scene category.
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Fig. 7 The constructed scene semantic grid cells

In addition, the perspective of the camera and the laser is not consistent during the exper-
iment, as shown in Fig. 8. The horizontal viewing angle of the monocular camera used in
this paper is about 70◦, corresponding to the blue area in Fig. 5, while the scanning angle
of the laser used in this paper is about 270◦ , corresponding to the gray area in Fig. 8. In
the process of semantic mapping, only the laser data within the effective viewing angle of
the camera is taken to build a semantic map. Therefore, we take all the areas located within
0.5m∼4m in front of the mobile robot and coincide with the horizontal viewing angle of
the camera as the target area for scene mapping at the current moment, corresponding to the
olive area in Fig. 8. After obtaining the real-time scene classification results of the image

Fig. 8 The perspective of the camera and the laser
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frames, for each grid cell covered by the current laser view within the camera view, we
update the semantic scene label using Bayesian estimation.

For time t , the observation of the camera is It . Then, the probability of scene category of
the current grid cell is:

pk(ĉi |I1:t ) =
[
1 + 1 − pk(ĉi |It )

p(ĉi |It )

1 − pk(ĉi |I1:t−1)

p(ĉi |I1:t−1)

p(ĉi)

1 − p(ĉi)

]−1

(9)

where pk(ĉi |It ) and pk(ĉi |It−1) represent the probability that the grid cell belongs to the
scene category ĉi for the observation at time t and t-1, respectively, p(ĉi) represents a prior
probability.

4 Experiments

To evaluate the performance of our semantic mapping system, the experiment has been
performed in various indoor scenes of Beihang University with a mobile robot, as shown
in Fig. 9. The maximum linear velocity and maximum angular velocity of the mobile robot
are set to 0.5 m/s and 0.5 rad/s, respectively. The mobile robot is equipped with a camera
and a 2D laser. The camera utilized to perceive visual features of indoor environments is
1024×768 pixels in resolution. The laser developed by HOKUYO covers 30 m and 270◦.

4.1 Experimental setup

During the experiments of semantic mapping, we steered the mobile robot through the
indoor environment online and collected the environmental information from different sen-
sors. Then, the semantic map of environments was constructed by means of the proposed
semantic mapping system offline based on the previously acquired data.

In the experiment of object-augmented semantic mapping, T h bbc and T h as are set to
0.008 and 0.8, respectively. Actually, the parameters in different scenarios are different. For
example, a large-scale indoor environment requires a low value of T h bbc. Since in large-
scale indoor environment, the objects are generally farther from the robot, the ratio of pixel
displacement of the bounding box center in consecutive detections to the total pixels of the
image is relatively low.

Fig. 9 The mobile robot platform for experiments
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4.2 Image dataset for experiments

Since existing available indoor image datasets did not contain annotation images with
required object and scene category, we choose to collect images and label the datasets in
various indoor scenes.

For dataset of object detection, since our semantic mapping system mainly in indoor
scenes, the following criteria need to be followed when constructing semantic objects: (1)
the selected objects should be common in indoor environments; (2) the selected objects
should have typical visual features to facilitate identification and detection; (3) the selected
objects should facilitate the robot to perform semantic interaction tasks. Therefore, in this
paper, we select the following four types of objects for object-augmented semantic mapping:
door, fire hydrant, watertank and elevator, which generally do not change position over time
and are suitable for semantic mapping, as shown in Fig. 10. It is worth to noting that a
single image may contain multiple objects. We collected a total of 3675 images of the above
four categories of objects from indoor environments. Among them, the training dataset,
validation dataset and test dataset contain 2535, 386 and 754 images, respectively. With
respect to the training details of object detection model, we used a learning rate of 0.001 for
the first 1000 iterations and 0.0001 for the next iterations. The weight decay and momentum
are set to 0.0005 and 0.9 respectively.

For dataset of scene classification, in order to verify the performance of the proposed
scene classification model based on inception v3 and LSTM, we select the following seven
scenes for scene semantic mapping experiment according to the characteristics of indoor
environments: conference room, elevator, corridor, warehouse, laboratory, staircase and
drinking room, as shown in Fig. 11. The image dataset is captured from image sequences
in these seven categories of scenes. In order to improve the accuracy of scene classification,
it is necessary to follow the following criteria when collecting image sequences of indoor
scenes: (1) collect images from environment with different perspectives, different scales
and different lighting to maintain the diversity of images in the dataset; (2) the scene labels

Fig. 10 The dataset for indoor object detection
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Fig. 11 The dataset for indoor scene classification

of image sequences in the dataset should be sorted by time step to meet the requirements of
the LSTM network. We collected a total of 4900 images from the above seven categories
of scenes in indoor environments, and then resized the size of the images in the dataset
to 299×299. Among them, the training dataset, validation dataset and test dataset contain
3506, 480 and 914 images, respectively. With respect to the training details of scene classi-
fication model, we use an initial learning rate of 0.00001 and a batch size of 128. The Adam
is adopted for optimization to adjust the learning rate adaptively.

4.3 Evaluation of the proposed scene classificationmodel

Figure 12 depicts the normalized confusion matrix of the scene classification model pro-
posed in this paper, where the vertical axis represents the actual scene label and the
horizontal axis represents the predicted scene label. The confusion matrix denotes the prob-
ability that the scene on the vertical axis is classified as the scene on the horizontal axis. It
can be seen that the average accuracy of the proposed scene classification model is about
85%. Additionally, “warehouse” had the lowest average classification accuracy at 72%.
This is mainly due to the miscellaneous items stored in warehouse, which cause the visual
features of the “warehouse” scene to be easily confused with other scenes.

Figure 13 shows CAM (Class Activation Map) and classification probability of indoor
scenes. The CAM represents the class activation map of the scene classification model and
is a visualization of CNN features. In the CAM, the darker the pixel area (the red area in
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Fig. 12 The normalized confusion matrix of the proposed scene classification model

Fig. 13 The dataset for indoor scene classification
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Table 1 Precision and recall of different scene classification models

Scene classification model Precision(%) Recall(%)

AlexNet 67.9 70.4

VGGNet 69.8 71.2

Inception v3 72.3 74.1

Proposed model 84.9 83.5

Fig. 13), the greater the contribution to the scene classification result. It can be seen that the
classification probabilities of the three scenes of “conference room”, “corridor” and “lab”
have reached 97.6%, 98.8% and 89.6%, respectively.

Additionally, in order to comprehensively evaluate the performance of the proposed
scene classification model, we conduct comparative experiments of different methods on
the established dataset, in which Precision and Recall are used as evaluation indicators, as
shown in Table 1. For a specific category, the Precision represents the ratio of the number of
samples correctly predicted as this category to the total number of samples predicted as this
category, and the Recall represents the ratio of the number of samples correctly predicted
as this category to the total number of samples of the category. Here, the Precision repre-
sents the average of each category’s precision, and the Recall represents the average recall
for each category.

As depict in Table 1, it can be seen that the performance of the inception v3 model
is better than AlexNet and VGGNet. In addition, compare with AlexNet, VGGNet, and
inception v3, the proposed model performs obviously better in both precision and recall,
reaching 84.9% and 83.5%, respectively. This is because the proposed scene classification
model based on inception v3 and LSTM utilizes the temporal correlation between image
sequences to improve accuracy and robustness of scene classification.

4.4 Results of semantic mapping

4.4.1 Object-augmented semantic mapping

In this section, comparative experiments of object-augmented semantic mapping are con-
ducted in two different scenes. Figures 14 and 15 present the 2D ground-truth map,
object-augmented semantic map of the proposed method and object-augmented semantic
map of Martins et al. [16] in two different scenes, respectively. Martins et al. [16] constructs
the augmented semantic map with object semantics based on RGB-D camera. In [16], the
technique of 3D semantic segmentation is used to model object semantics.

In Figs. 14 and 15, the 2D ground-truth map depicts the ground-truth location of semantic
object on the semantic map. On the object-augmented semantic map, the yellow semantic
instance denotes “door”, and the red instance denotes “fire hydrant”, in which all semantic
instances are represented in global coordinates. The solid blue lines in each map are the
odometer trajectories recorded by the mobile robot. Additionally, some perspective images
of different locations in the indoor environment are shown on the semantic map. As can
be seen, in the semantic map of Martins et al. [16], some objects are even projected outside
the map, especially when the robot rotates rapidly. In contrast, the proposed system can
correctly realize the object-augmented semantic mapping.
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Fig. 14 (a) 2D ground-truth map (covered mapped area of 46m × 22m) with the mapped object location of
scene 1; (b) Object-augmented semantic map of Martins et al. [16]; (c) Object-augmented semantic map of
the proposed method

To quantitatively evaluate the performance of the object-augmented semantic mapping
method, the quantitative results of comparative experiments among Martins et al. [16] and
the proposed method are shown in Table 2. We choose the metrics of FP, FN and average
error to evaluate the performance of different methods. FP is false positive that represents
the number of objects that are wrongly instantiated, and FN is false negative that represents
the number of objects that are not mapping in the semantic map. The average error denotes
the mean of the mapping errors of all objects in the semantic map. The semantic objects
are continuously detected and mapped during the movement of the mobile robot. An object
will be mapped to multiple unfiltered instances on the semantic map over time. In this case,
errors between the position of the instance on the semantic map and its ground-truth posi-
tion may occur when filtering and updating multiple unfiltered instances, which can be seen
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Fig. 15 (a) 2D ground-truth map (covered mapped area of 33m × 16m) with the mapped object location of
scene 2; (b) Object-augmented semantic map of Martins et al. [16]; (c) Object-augmented semantic map of
the proposed method

from the comparison of the 2D ground-truth map and object-augmented semantic map. As
can be seen, the performance of the proposed object-augmented mapping method is signifi-
cantly better than Martins et al. [16] in terms of average error. The average errors of Martins
et al. [16] are 0.37m and 0.49m in the two scenes. In contrast, the average errors of the
proposed method are 0.16m and 0.22m. In my opinion, there are two reason for this result:
(1) the semantic mapping method in [16] performs 3D semantic segmentation to model
object semantics based on 3D point clouds, causing ROS internal inter-process communi-
cation delay. In this case, with the movement of the robot, the pose of the objects cannot
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Table 2 Object detection and mapping results of different scenes

Detection FP FN Average error(m)

Scene1 Martins et al. [16] 4 0 2 0.37

Proposed method 5 0 1 0.16

Scene2 Martins et al. [16] 6 0 1 0.49

Proposed method 6 0 1 0.22

be updated in time, which will magnify the error of object mapping; (2) the semantic map-
ping method in [16] can not perform data association for object semantics accurately and
timely. In contrast, the proposed method contains the module of temporal-spatial data asso-
ciation, ensuring the consistency of semantic representations and improving the accuracy of
semantic mapping.

4.4.2 Scene semantic mapping

According to the characteristic of the indoor experiment environment, the following seven
categories of scenes are selected for scene semantic mapping environments: conference
room, elevator, corridor, warehouse, laboratory, staircase and drinking room. Since all pos-
sible indoor scene semantic labels in the experiment are known, the set of scene category
labels can be defined as:

ω̂ = {corridor, conf erence room, staircase,

warehouse, laboratory, drinking room, elevator} (10)

During the experiment, the current frames of the mobile robot are captured in real time
through the camera, and the image sequences of consecutive frames are input to the scene
category model to output the discrete probability p(ωi |X) of scene category from the prob
layer. Then we update the grid cell covered by the current laser view within the camera
view based on the scene labels with the highest probability estimated by equation. On the
constructed semantic map, different colors represent different scenes.

During this process, the grid cell in the edge area of semantic map may not be mapped
or the semantic representation is inaccurate, due to the limitations of the perspective of
the camera and the laser, or the semantic map is not update in time, etc. In this case, it is
necessary to perform spatial data association of scene semantics for robots. For the grid
cell with low-confidence of scenes or unmapped on semantic map, we adopt the scene
semantics of neighboring region with high confidence to label it. A typical example is the
laboratory scene shown in Fig. 16. Some unoccupied grid cells in the edge area of semantic
map were not mapped efficiently, because the perspective of robot did not scan every corner
of the laboratory scene. The semantic maps of the laboratory scene before and after data
association are shown in Fig. 17(a) and (b), respectively. As can be seen, the processed
semantic map more accurately represents the scene semantics.

Additionally, we conducted experiments of scene semantic mapping in different indoor
local scenes. The results are shown in Fig. 18. In the figure, the label colors represent dif-
ferent scenes, and the label of each grid cell is determined by the scene category with the
highest confidence. As can be seen, the performance of the proposed scene mapping system
performs well in terms of accuracy. It is worth noting that a local area may contain mixed
categories of scenes, as shown in the upper left in Fig. 18, which contains both corridor
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Fig. 16 The laboratory scene

(green) and drinking room (red). Also, the label of the drinking room extends into the corri-
dor area. This is because when the robot moves to the corridor scene near the drinking room,
the perspective of the camera also covers the area of drinking room, causing the robot to
recognize the location as the drinking room. In addition, not all semantic maps are assigned
the correct labels. There is misclassification of scenes in a specific scene, as shown in the

Fig. 17 The semantic map before and after spatial data association
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Fig. 18 Scene semantic mapping in different scenes

upper right in Fig. 18. Partial region of warehouse which is a particular challenging map is
identified as corridors and laboratory. This is due to the miscellaneous items in the ware-
house, resulting in the misclassification of indoor scenes. In contrast, the semantic mapping
of scenes such as elevator, staircase and laboratory is more accurate.

Finally, semantic mapping experiments that fuse scene semantics and object semantics
are conducted in different indoor environments. In the experiment, we utilize object-
augmented and scene category techniques to construct the object semantics and scene
semantics with spatial and temporal correlation based on the data of camera and laser. The
experiment results are shown in Fig. 19. The yellow, red, blue and green rhombic instances
represent the object of door, fire hydrant, watertank and elevator, respectively. The green,
blue, red and purple grid cell represent the scene of corridor, elevator, drinking room, ware-
house, respectively. Our proposed semantic mapping method effectively and accurately
represents semantics in indoor environments. These semantics are beneficial for robots to
perform intelligent decision-making and human-robot interaction in indoor human-robot
coexisting environments.

5 Conclusion

In this paper, we propose a unified semantic mapping system for indoor mobile robots. This
semantic mapping system constructs the multi-dimensional semantics of scenes and objects
in indoor environments through scene semantic mapping and object-augmented semantic
mapping. In scene semantic mapping, a scene classification model based on LSTM is
utilized to learn the temporal correlation of consecutive frames to enhance the discrimina-
tive ability of image features. In object-augmented semantic mapping, in order to associate
different instances in semantic map, we present an object-augmented semantic associa-
tion method to ensure the temporal and spatial consistency of semantic representations.
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Fig. 19 The constructed semantic map of different indoor scenes

Systematic experiments were conducted on a real mobile robot and the results indicate that
the proposed system exhibits great performance in the robustness and accuracy of semantic
mapping.

In future work, we plan to construct the coupling model between the semantics of differ-
ent categories to explore the intrinsic reasoning relationship of different semantics in indoor
environments. In this way, it can provide a multi-scale and richer semantic map for robots.
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