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68 landmarks are efficient for 3D face alignment:
what about more?

3D face alignment method applied to face recognition
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Abstract
This paper proposes a 3D face alignment of 2D face images in the wild with noisy land-
marks. The objective is to recognize individuals from their single profile image. We first
proceed by extracting more than 68 landmarks using a bag of features. This allows us to
obtain a bag of visible and invisible facial keypoints. Then, we reconstruct a 3D face model
and get a triangular mesh by meshing the obtained keypoints. For each face, the number
of keypoints is not the same, which makes this step very challenging. Later, we process
the 3D face using butterfly and BPA algorithms to make correlation and regularity between
3D face regions. Indeed, 2D-to-3D annotations give much higher quality to the 3D recon-
structed face model without the need for any additional 3D Morphable models. Finally, we
carry out alignment and pose correction steps to get frontal pose by fitting the rendered 3D
reconstructed face to 2D face and performing pose normalization to achieve good rates in
face recognition. The recognition step is based on deep learning and it is performed using
DCNNs, which are very powerful and modern, for feature learning and face identification.
To verify the proposed method, three popular benchmarks, YTF, LFW, and BIWI databases,
are tested. Compared to the best recognition results reported on these benchmarks, our
proposed method achieves comparable or even better recognition performances.
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1 Introduction

Face Recognition (FR) is a common authentication tool in many applications. The face has
a physical biometric characteristic that is non-invasive and is accepted by users. There is
no direct contact with the acquisition device as required when using the iris and the finger
print. Nowadays, FR is the most widespread technique used in authentication [1]. The face
does not characterize only humans, also animals have facial features [38, 40]. The main
architecture of FR is shown in the figure below (Fig. 1).

The classical FR pipeline consists of two phases: Online and Offline phases. In the
Offline phase, the user is not logged in. Part of the dataset follows the preprocessing steps,
such as face cropping, denoising, smoothing, and alignment. The feature extraction step is
carried out to compute the biometric signature of each face, then to classify these signatures
to categorize the features. However, the Online phase is carried out at each interrogation of
the dataset by the user, where a query face goes through the same steps; i.e., preprocess-
ing and feature extraction. Then, a check is established to know the belonging rate for each
class and to establish a related decision. The decision step is a 1:N problem that compares a
query face image using its biometric computed signature against all the stored signatures to
determine the identity of the query face. The run time of this phase must be reduced.

Fig. 1 Classical face recognition pipeline
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The challenges facing FR are the lighting conditions, pose variation, occlusions, facial
expressions, and low resolution [66]. All these problems decrease the recognition rate. To solve
them, the preprocessing stepmust be well-developed to strengthen the recognition system and
to achieve good results in recognizing the face as taken in the wild. Numerous approaches
related to this field have been advanced; however, several challenges still persist [7, 23].

In this paper, we present a method in the context of FR. The aim is to tackle the pose vari-
ation problem because recognizing and identifying a person from a single 2D image under
pose variation remains a great challenge. To get the highest recognition rate, an alignment
step has to be well-developed. It is an essential preprocessing step in face recognition. Thus,
our work includes:

1. Feature extraction to add keypoints to the 68 traditional fiducial landmarks since these
keypoints provide rich information about facial geometry.

2. 3D face reconstruction from 2D obtained keypoints of a single image under an arbitrary
view to localize the self-occluded face parts in the case of large poses.

3. 3D face alignment by fitting 3D reconstructed face to 2D face image using keypoints
marching to render the frontal view by pose normalization and correction.

4. Application of face recognition using Deep Convolutional Neural Networks (DCNNs)
on the aligned faces.

Indeed, facial alignment and 3D reconstruction are two different tasks. Currently, the
relationship between these two tasks has become known. Indeed, 2D face alignment has
shown weakness consisting in its inability to address large poses. The relationship between
3D face reconstruction and face alignment consists essentially in mapping and estimat-
ing the 3D face geometry from a single 2D image. The main objective is to compute the
visibility and position of 2D landmarks.

Recent methods have used hand-crafted features to improve performance, especially
for the earliest contributions. In this paper, our approach is applied directly to RGB face
images using compact features with engineered descriptors to achieve good performance.
The power of CNNs, which are used to learn the features on large multi-identities datasets
for 3D face alignment with application to face recognition, is therefore exploited.

2 Related works

2.1 Face recognition

Currently, FR is a widely used biometric technique since the face has become the most
attractive biometric. Also, the COVID-19 pandemic has changed several statistics world-
wide, including the biometric modalities. In the earliest results of FindBiometrics (Fig. 2)
reported in a review survey [30], FR has retained the top spot as the year’s most used and
exciting modality.

2.1.1 Face Recognition studies

FR methods can be classified into three categories: global also known as holistic methods
using the entire facial surface [3], local methods based on local regions or patches and not
considering the whole face [51], and hybrid methods [74] consisting in combining global
and local feature descriptors.
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Fig. 2 Results of the latest FindBiometrics until year 2020

Global Face Recognition methods The global or holistic methods for 2D FR extract
features from the entire facial surface. The used descriptors are not dedicated to give infor-
mation on a specific part or region of the face. Indeed, extracted features give information on
the entire facial surface. It is time consuming but very efficient to synthesize the complete
face.

EigenFace [88] is a global FR method which uses Principal Component Analysis (PCA)
[72]. Eigen Vectors are measured to describe faces, which are computed by measuring
the features of the nose tip, mouth, eye corners, and chin edges. Since global methods
project face representation into a small subspace or a correlation plane, EigenFaces are pro-
jected onto a reduced face space by PCA. Eigenface has been used in several other works
accompanied by modifications and improvements as presented in [67].

Fisherface [43] is part of the known holistic method in FR whose principle is based on
maximizing the separation between classes during training. Fisherface reduces face space
dimension using PCA. Also, Fisher’s Linear Discriminant (FDL) [95] method is used to
generate face features as a linear combination able to separate two or more classes. This
famous algorithm has undergone several modifications in several criteria as presented in
[34, 73].

In [75], a comparative study between Fisherface and EigenFace is presented. Other
methods focusing on fusion based on PCA and FDL are also presented in [69].

Joshua et al. [86] presented a non linear holistic approach capable of extracting complex
natural observations and ensuring a global optimal solution of the true structure convergence
of face images under low dimensional input-space.

LaplacianFaces [33] consists in mapping the face into a face subspace based on Locality
Preserving Projections (LPP) [32] to get the best global face description.

Local Face Recognition methods FR methods based on local features focus on fiducial
points and parts of the face to generate features. These techniques compute the local fea-
tures through pixel parameters, face histograms, geometric shapes, and correlation planes
between different regions. Local feature-based methods require no face representation
reduction since it is a work on local features of the face.
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The most popular used techniques are based on different descriptors, such as Local
Binary Pattern (LBP) and its derivatives [47], Histogram of Oriented Gradients (HOG)
[55], Vander Lugt Correlator (VLC) , Scale Invariant Feature Transform (SIFT). All these
descriptors are presented in [78].

In [16], Chandrakala et al. dealt with pose variations, scale, facial expression, and
illumination challenges using a cascading of LBP and HOG.

A recent work presented in [46] is based on a variation of the Local Radius of Gyration
Face (LRGF), invariant to lighting conditions variation, pose change, and noise.

Hybrid Face Recognition methods Hybrid FR methods consist of a fusion of global and
local methods. In fact, the global characteristics are combined with the local ones, making
this FR category the most efficient and robust [27, 65].

In a recent work [24], the authors focused on features optimization by the selection of
the optimal characteristics of the face with Particle Swarm Optimization (PSO) algorithm
based on the face active region of interest.

A FR system using the LBP Histogram (LBPH) descriptor for local and global special
features of the face is presented in [21].

Table 1 presents a brief study of some FR approaches.

2.1.2 Deep face recognition studies

With the advent of BigData and Data Mining, methods and approaches for FR have become
numerous. In this work, our goal is to recognize individuals from their faces under pose
variations using CNNs. This method proved to have impressive results. With the advent of
CPU and GPU cores [54], CNNs and Deep CNNs have been used in a huge number of
training data.

CNNs can be classified among the category of hybrid FR methods. They are adapted to
feature learning and label prediction, as well as to mapping the input data to deep features,
which are the output of the last hidden layer. They are later to the predicted labels. Feature
learning is carried out automatically and it is shared as weights between different layers.
However, DCNNs achieve superior performance since they are able to extract high level fea-
tures ensured by the classification architecture [93]. Once deep features are extracted, most
of the methods directly calculate the similarity between the two features using cosine, L2,
or the nearest neighbor (NN) metrics, and therefore establish comparison for identification.
Yet, deep networks which perform perfectly on benchmark datasets may fail in real world
applications.

Most of the recent methods perform face image representation using hand-crafted local
image descriptors, such as SIFT, LBP, and HOG [9, 48, 61].

Contrary to the aforementioned methods, our method is applied to RGB pixels
without combining other descriptors to improve performance.

Researchers have used CNNs and DCNNS in FR application, either for features learning,
features extraction, or features classification.

In CosFace [94], Large Margin Cosine Loss (LMCL), as a novel loss function, is per-
formed to remove radial variations and to maximize the decision margin in the angular
space. LMCL guides DCNNs to learn the highly discriminative face features. So, intra-class
variance is minimized and inter-class variance is maximized.

SphereFace [58] represents class centers in the angular space and penalizes the angles
between deep features and their corresponding weights in a multiplicative way, since authors
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found out that linear transformation matrix in the last fully connected layer of the CNN
is useful for this issue. Thus, an Additive Angular Margin Loss helps to obtain the highly
discriminative features learned via DCNNs for FR.

In the same context, RegularFace [99] uses intuitive geometric interpretation by penal-
izing the angle between an identity and its nearest neighbor by focusing on intra-class
compactness.

In [56], the authors focused on decreasing information redundancy in features learning
and on maintaining the most informative components of spatial feature maps. This module,
called attention, is added to the convolutional layer of a standard CNN.

FR methods based on deep CNNs are in full development. Indeed, to have a high recog-
nition rate, it is absolutely necessary to focus on features since CNNs perform feature
learning in an automatic way. So, most methods add a module or an additional function to
CNNs layers or focus on the preprocessing steps to keep only the salient features of the face
(Table 2).

2.2 Face alignment

As mentioned in the previous subsection, the recognition rate is relative to the extracted
and the learned face features. For this reason, the face must be well preprocessed before
performing the recognition test.

The alignment process forms a part of the preprocessing steps and involves the placement
of the face in a frontal position (pitch (φ) = 0◦, yaw (γ ) = 0◦ and roll (θ) = 0◦). More
precisely, it is pose normalization since the frontal pose covers the canonical view of the
face taken arbitrarily in the wild. Aligning poses make FR easier.

In the majority of papers, authors refer to face alignment as face detection while aligning
faces consists in establishing a rotation in the plane and making the face in a frontal view.

Fig. 3 Head poses close to the frontal pose
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Fig. 4 Examples of large poses

Moreover, a face image captured under pose variation presents missing data, which can
degrade the recognition rate.

Methods of face alignment are numerous and have shown impressive results with
sophisticated techniques.

2D face alignment aims at establishing pose normalization if faces are in frontal or near-
frontal poses as shown in Fig. 3. However, this transformation fails due to out-of-plane
rotation. So, 2D face alignment has difficulties [41] when addressing large poses (Fig. 4).
Yet, 3D face alignment consists in aligning faces despite the presence of out-of-plane
rotations.

Whatever the method used for face alignment is, we must always take into account that
the departure is based on facial landmarks.

The human face contains regions that make it unique even in the case of twins. These
regions are called landmarks or/and keypoints (Table 3).

Landmraks: characteristic points in each face, such as the eyes, eyebrows, ears, chin,
nose, mouth, etc . Their number is standard and fixed according to the applied algorithm.
There are automatic algorithms of face annotation that generate landmarks. The use of land-
marks serve to localize the salient regions of the face for face alignment, face morphing,
face replacement, face recognition, etc .

Keypoints: characteristic points which characterize a single face. Indeed, two faces
cannot contain the same keypoints, such as wrinkles, moles, warts, scars, etc.
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2.2.1 3D face alignment methods based on fitting 3D generic models to 2D faces

The human face is characterized by 68 landmarks which can provide information about the
head pose. The fitting process consists in pasting a 3D face model to the 2D face using
landmarks as references. This is performed by minimizing the difference between the face
image and the 3D face model appearance. The purpose of fitting lies in the possibility of
rotating the face and performing the alignment to a frontal pose. Fitting is a method used
for 3D face alignment, especially in medium poses. However, in large poses, it is very
challenging because of the dramatic appearance variations when getting closer to the profile
view (Table 4).

In [100], the authors introduced a 3D Dense Face Alignment (3DDFA) which fits the 3D
morphable model (3DMM) [12]. 3DDFA synthesizes face appearances by labeling invisible
landmarks due to large poses. Its objective is to skip 2D landmark detection and start from
3DMM fitting. HPEN [101] aims at fitting the 3DMM to the 2D faces captured in the
wild. The approximation method is also performed to avoid iterative visibility estimation of
the masked landmarks in large poses. In addition, an identity-preserving normalization is
carried out by correcting 3D transformation and anchoring adjustment in the meshed image.
In the same context, a method proposed in [79] uses the Basel Face Model (BFM) [37]
for 3D face alignment and keypoints locations. It consists of a deep evolutionary model
integrating sparse 3D Diffusion Heap Maps (DHM) for pose assistance. CNN is used for
feature extraction and Recurrent Neural Network (RNN) is utilized for learning.

The methods already quoted have achieved the best results in FR framework, including
face alignment. However, the big challenge is always evoked when dealing with large poses.
Their main drawback is therefore related to the limited geometry of the 3D models used. On
the other hand, the use of a 3D model, such as 3DMM or BFM, to establish fitting always
leaves a common signature in the extracted features.

Table 4 Summary of some 3D face alignment methods based on 3D morphable models fitting

Author/Year Face alignment main approach Datasets

Xiangyu et al. [101] 2D/3D landmarks marching 3DMM fitting
Pose and expression normalization Possion
Editing method for invisible region filling

Multi-PIE LFW

Xiangyu et al. [100] 3DMM fitting with cascaded CNN AFLW

HOG features extraction combined with a
linear regressor for landmarks refinement
and invisible landmarks labeling

Zhanfu et al. [2] 5 landmarks detection using MTCNN Facial
pose estimation based on the correspondence
between the 2D face and the 3DMM Adapta-
tive template generation Face alignment based
on the optimal reference template

IJB-A IJB-C CPLFW

Jiang et al. [42] Spacial facial features extraction using Spa-
cial Group-wise Feature enhancement 2D/3D
landmarks estimation based on 3DMM and con-
trolled by different loss functions

AFLW AFLW2000-3D

Jiwoo et al. [44] 3DMM fitting network based on a UV encoder
and UV EB-GAN UV completion network for
face alignment discrimination

300w-LP AFLW2000
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2.2.2 3D face alignment methods based on 3D face model reconstruction

This process consists in reconstructing a 3D face model from a 2D face to have its own
model for each input 2D face image without the need for a 3D model, such as 3DMM,
BFM, or any external data (Table 5). Indeed, each 3D reconstructed model has its own char-
acteristics and parameters. Thereafter, the 3D reconstructed model and the 2D landmarks
are correlated by a specific technique.

DeepFace [82] modelizes a 3D face based on the extracted 67 fiducial points. Thus, this
method consists in wrapping the detected facial crop to a 3D frontal model after mesh recon-
struction by Delaunay triangulation. Also, the 67 anchor points are fitted to the obtained 3D
shape to get correspondence between the 67 detected fiducial points and their 3D references.
In the same context, another work used the Iterative Closest Points (ICP) [45] algorithm
to perform correspondence between each reconstructed 3D face and the ground truth point
cloud. Then, normalized mean error (NME) is calculated by the face bounding box size.

Feng et al. [28] proposed a new approach for 3D face reconstruction using UV space as
a position map [85]. The UV position map represents the full 3D plot of facial structure
with alignment information. It is a 2D image recording 3D positions of all the points in UV
space. So, the full facial geometry is reconstructed along with the semantic meaning and it
is regressed to get aligned faces.

Table 5 Summary of some 3D face alignment methods based on face model reconstruction from the input
2D face image

Author/Year Main approaches of face alignment Datasets

Taigman et al. [82] 3D face modeling using affine transformations
based on 67 fiducial points. Face representation
from a nine-layer deep neural network.

SFC
LFW
YTF

Feng et al. [28] UV position map generation for a complete 3D
shape reconstruction. A simple CNN to regress
from a single 2D image.

Florence
AFLW2000-3D
AFLW-LFPA

Feng et al. [59] 3D shapes reconstruction based on 2D face
image landmarks. Using reconstructed 3D shapes
to refine landmarks based on cascaded landmark
regressors and 3D shape regressors. Mapping
3D-to-2D landmarks for 3D face shape and land-
marks correlation.

Multi-PIE AFLW
AFLW2000-3D
CFP

Tu et al. [87] 3D face reconstruction and alignment using
2D-Assisted Self supervised Learning (2DASL)
method based on the 3DMM. 3DMM coeffi-
cient regression.

AFLW2000-3D
AFLW-LFPA

3D face model learning and better model recon-
struction based on 2D landmarks.

Browatzki et al. [13] Face reconstruction based on low-dimensional
face embedding. Color images generation to the
prediction of landmark heatmaps.

300-W
AFLW
WFW

Zeyu et al. [70] Self-aligned dual face regression network
(SADRNet) for face pose estimation and face
shape prediction. UV position map for corre-
spondence between the face shape and the input
2D image.

AFLW2000-3D
Florence
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The previously cited works have used methods establishing alignment with face model
reconstruction without 3D generic model basis, which is challenging but had good results.
So, no 3D model shape or template restriction was present. In our method, reconstruction
of 3D models for each 2D face is carried out as explained in the following section.

3 Proposedmethod

Conventional pipeline consists of face detection, face alignment to get frontal pose, face
representation that has to be trained in the DCNN, and finally face classification to establish
identification. Face detection and face alignment are preprocessing steps. In the figure below
(Fig. 5), our global pipeline is presented.

A specification of the main algorithm of the proposed method is presented in Algorithm 1.
The different steps are detailed in the following subsections.

Algorithm 1 Overall.

Fig. 5 Overview of the proposed method
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3.1 Face detection and cropping

Before detecting faces in the images, we eliminate the duplicated images and check the
labels. For face detection, Modified Viola–Jones algorithm [63] is used.

When it first appeared [92], this method was effective in the detection of faces in
frontal position; however, following certain modifications, it has become sophisticated in
all scenarios. So, the face, which is our region of interest (ROI), can be detected under
various poses, various illumination conditions, different skin colors, and complex back-
grounds while maintaining considerable speedup by parallelizing the training. Once the
face is detected, bounding boxes are randomly generated around the detected window
(Fig. 6).

When facial detection is established, all images are resized in the same scale. In case of
images having multiple faces, each detected face is labeled manually and assigned to the
appropriate class.

3.2 3D Face reconstruction

In this paper, we revisit the alignment step which consists in searching landmarks based on
global shape or texture models to configure landmarks locations. However, under some view
angles, landmarks are invisible. So, performance decreases for non-frontal faces and invisi-
ble landmarks are considered as self occlusions. It is for this reason that face reconstruction
is required. The difference between using a 3D generic model and a 3D reconstructed model
is that each 2D face has its own 3D model which preserves texture, shape, and other fea-
tures. The use of a generic model, such as BFM or 3DMM, causes a common signature
between all faces, which increases the error rate afterwards.

3D reconstruction is established by keypoints detection which is added to the traditional
fiducial landmarks (Fig. 7). Indeed, the addition of supplementary keypoints to face features
is helpful in the reconstruction stage because the 68 landmarks are not enough for 3D mesh
creation.

3.2.1 Facial keypoints detection and extraction

First, we start by locating the 68 fiducial points using the facial landmark detector included
in the dlib library and OpenCV presented in [71].

Fig. 6 Face detection using Modified Viola–Jones algorithm
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Fig. 7 68 traditional facial landmarks

Algorithm 2 Keypoints detection and extraction.

The 68 (x, y) extracted landmarks allow to delineate the facial surface in the face image
as shown in Fig. 8. Thus, our new ROI is delimited by the jaws and eyebrows keypoints.
This method is tested under large poses and this step is successfully performed.

Our choice of the 68 facial landmarks detector was made following a series of tests
and experiments that proved robustness against large poses. They are detailed in the self-
evaluation section.

According to the state-of-the-art studies, the presence of out of plane or invisible land-
marks is noted in large poses. So, keypoints are added since the 68 landmarks are not enough
for 3D face reconstruction (Algorithm 2). Indeed, this is our basic contribution.

The edges in the face image are detected using Canny and Prewitt edge detection
algorithms [91]. Only the features in the delimited ROI are kept.

The Canny method consists in finding edges by looking for local maxima in the image
gradient. The edge function calculates the gradient using the derivative of a Gaussian filter.
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Fig. 8 68 landmarks detection using dlib library: First row: input face images, Second row: numbered 68
landmarks

Fig. 9 Facial keypoints detection: (a) Input face image, (b) 68 Landmarks, (c) Detected edges using Canny,
(d) Detected edges using Prewitt, (e) Detected regions using MSER, and (f) All detected keypoints
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Table 6 Examples of the number of extracted keypoints of two query face images (the images are the faces
of two celebrities coming from the datasets we test)

Example Fiducial landmarks Canny Prewitt MSER Total

George Clooney.jpg 68 711 409 319 1507

Aishwarya Rai.jpg 68 603 271 374 1316

This method uses two thresholds to detect the strong and weak edges, including the weak
edges in the output if they are connected to the strong ones. By using two thresholds, the
Canny method helps to detect the true weak edges which can represent wrinkles in the face
(Fig. 9(c)).

On the other hand, the Prewitt method aims at finding the edges at the points where the
image gradient is maximum using the Prewitt approximation to the derivative (Fig. 9(d)).

Since the output is a binary image, pixels with 0 values are found and they are extracted
to be added to the other keypoints. We notice that the number of keypoints is variable for
each given face.

In addition to edge detection, Maximally Stable Extremal Regions (MSER) features [77]
are added. Indeed, using this descriptor (Fig. 9(e)) allows to obtain good identification of
significant image parts, usually combined with high repeatability under typical image dis-
tortions. It also allows to get highlighting boundaries of the ROI, which are maximally
stable extremal regions. Moreover, MSER helps to find correspondences between the image
elements from two images with different viewpoints.

For each input 2D image, the detected keypoints number is not the same (Fig. 9(f)). Once
keypoints are detected, they are extracted and saved under the same label as the image in
order to be used in the 3D reconstruction process. In Table 6, we present the number of
extracted keypoints of two query face images.

In this work, we also add other keypoints to the traditional 68 landmarks. We believe that
the face contains more points that characterizing it.

Using two examples, Table 6 shows that each face has a variable number of character-
izing weights in each step of features extraction. The number of keypoints is useful in 3D
face reconstruction, 3D face processing (mesh subdivision), face fitting, and face alignment
process. The number of keypoints is required for face meshing.

3.2.2 Face meshing

Once the keypoints are extracted, we start meshing the ROI using Delaunay triangulation
[11]. Algorithm 3 presents the main steps of 2D face meshing.

Algorithm 3 2D face meshing.
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Fig. 10 3D face reconstruction from single 2D face image: Step by step image meshing (from 2D keypoints
to 3D mesh)

Delaunay triangulation creates triangulations of a set of points and ensures that the cir-
cumcircle associated with each triangle contains no other points in its interior that depends
on its neighborhood. Delaunay triangulation derived from the extracted facial keypoints is
shown in Fig. 10.

After the triangulation process, we obtain facial points in 3D domain, derived from the
facial keypoints in 2D domain using n, which is the number of extracted landmarks. It is
worth noting that n is not the same for each given face (P0: Initial Points, Pm: Meshed
Points).

P0 = [x1, y1, x2, y2, ..., xn, yn]T ∈ R
2.n∗1 (1)

Pm = [x1, y1, z1, x2, y2, z2, ..., xn, yn, zn]T ∈ R
3.n∗1 (2)

As previously mentioned, face cropping is performed to extract the face from the image,
but we notice that a part of the background is still there. This part is useful in the alignment
step; however, in the reconstruction of the 3D face, it should be ignored because we only
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need the salient part of the face. If the background in the 3D reconstruction is left, this will
be very demanding in terms of time and complexity.

3.2.3 3D face preprocessing

This step is very important since the obtained mesh is not in good quality due to several
factors, such as mesh regularity and holes coming from self occlusions. Vertices with no
connections can also be found. In Algorithm 4, we present the steps to be followed to
perform 3D face preprocessing.

Algorithm 4 3D face preprocessing.

First of all, we extract the facial surface using Region Growing [6], which is a segmen-
tation algorithm suitable for 3D mesh. The nose tip is used as a seed point and several tests
are performed to determine the extraction radius suitable for any face shape ( r= length of
Bounding Box ∗ 0.6). Then, the geodesic distance is used to obtain an oval shape, as shown
in Fig. 11. Indeed, the keypoints residing around the jaws and their neighborhoods are taken
into consideration.

Once the suitable facial region (patch) is extracted from the initial generated mesh, we
locate the diagonal of the face from the annotated landmarks (28, 29, 30, 31, 34, 52, 63,
67, 58, 9), as shown in Fig. 12(b). We also extract other facial diagonal keypoints having
the same coordinates on the y axis as the last ones. Then, we start generating symmetrical
vertices to the y axis of each facial landmark while considering x and z axes, as shown in

Fig. 11 3D facial surface extraction: (a) localization of the nose tip, (b) Facial patch detection, (c) Extracted
face
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Fig. 12 3Dmesh reconstruction (Update) by adding the missing parts: (a) Missing parts of the face caused by
large poses, (b) Localization of facial diagonal keypoints referencing to the 68 annotated landmarks: The red
points represent the number of landmarks: 28, 29, 30, 31, 34, 52, 63, 67, 58, and 9. The blue ones represent
other detected keypoints having the same y coordinates, (c) Missing parts reconstruction

Fig. 12(c). This allows to solve the problem of missing parts or self occlusions caused by
large poses and profile views ( Fig. 12(a)).

After adding the missing parts of the 3D face, the quality of the preprocessed mesh in
the context of good reconstruction is improved for the pose normalization task. Remeshing
to connect the new vertices and the facial surface subdivisions of the mesh is performed
using the Butterfly subdivision algorithm [60] and the Ball Pivoting Algorithm (BPA) [8]
for triangular interpolation (Fig. 13) .

Fig. 13 Remeshing process: 3 mesh subdivision iterations using Butterfly algorithm. Red circles show
interpolating triangulation using BPA
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The Butterfly algorithm is used for mesh subdivisions and vertices connections. This
process is very essential in 3D reconstruction to produce other vertices whose purpose is to
achieve mesh regularity controlled by BPA to preserve the facial shape.

Using the butterfly algorithm, we normalize all the 3D reconstructed faces to a defined
number of vertices and facets. Indeed, the original meshes do not have the same parameters
since the number of extracted landmarks is variable from one face to another.

For each facet consisting of 3 vertices (3 coordinates in the 3D space x,y, and z), BPA
pivots around an edge (which connects two vertices) until it touches another vertex, form-
ing another triangle. So, BPA builds relationships between vertices having no connections,
which improves the mesh regularity. This process is iterated until connecting all the vertices
in the mesh.

BPA is a very used and efficient technique for mesh interpolation. It exhibits linear
time complexity and robustness in the given 3D meshes. Although these two techniques
are old, they are very efficient. In the experimental part, we justify our choice using some
discriminating values.

3.3 3D face alignment

3.3.1 Pose normalization

After 3D mesh reconstruction and preprocessing, we wrap all the detected 2D facial key-
points by projecting the 3D reconstructed face onto the image plane using the Weak
Perspective Projection [14], based on the 2D positions of the 3D points on the image plane.
The following Algorithm summarizes the main steps.

Algorithm 5 3D alignment.

Then, we fit the 3D obtained face by minimizing the difference between the 2D extracted
landmarks and their references in our 3D reconstructed model while considering the rotation
parameters (R is 3∗3 matrix constructed with pitch (φ), yaw(γ ), and roll(θ )), the translation
vector t3d , and the scale factor f given by the normalization process.

argf,R,t3d = min ||Pm − P0|| (3)

The rotation matrix is obtained by multiplying the following three matrices:

Rx(φ) =
⎛
⎝

1 0 0
0 cos(φ) sin(φ)

0 − sin(φ) cs(φ)

⎞
⎠ (4)
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Ry(θ) =
⎛
⎝

cos(θ) 0 −sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎞
⎠ (5)

Rz(γ ) =
⎛
⎝

cos(γ ) −sin(γ ) 0
sin(γ ) cos(γ ) 0

0 0 1

⎞
⎠ (6)

In Fig. 14, we present the results of the fitting process when using our 3D reconstructed
models. The first line presents celebrities faces taken from the datasets we test, the second
line contains the fitting results.

The salient surface of the face is completely and perfectly wrapped by our reconstructed
3D model. The advantage of 3D reconstruction is that each identity has a specific 3D model,
which is useful for alignment. This makes it unique and original. In fact, there is no common
factor between the different identities. Indeed, this is useful for the recognition task.

Later, we perform pose correction for the alignment step. So, the 3D face designed by Pm

in (7) is rotated by normalizing with R−1 to the frontal pose with 0◦ view centered by the
nose tip and considering the pose map of the 2D extracted keypoints. This step is iterated
until the face is aligned (Pa) to the desired view according to the pitch (θ), yaw (γ ), and roll
(φ) values of the frontal pose.

Pa = R−1Pm (7)

Once the 3D face is normalized to the frontal pose, correspondence between 3D and 2D
keypoints is redone to refine the new 2D keypoints location.

Following a bibliographic study we performed, we notice that face alignment methods
using generic 3D models have a problem of breaking correspondence, especially in cases
of large poses. Indeed, the keypoints on the face contour boundary are not consistent. In

Fig. 14 Fitting results using our 3D reconstructed models: The first line includes original face images, the
second line contains fitting results
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addition, the shape of the 3D generic model is always existent. This implies that after the
fitting process, all the faces will have a common touch despite the different identities, simply
because they are fitted with the same 3D generic model. For this reason, full reconstruction
of the 3D face of each given 2D face is efficient and recommended. So, each 2D face
will have its own 3D modeling which makes it truly original following the fitting and the
alignment steps.

3.3.2 Aligned image cleaning

After the fitting and the alignment processes, we notice that the images obtained are not in
good condition and they contain holes and missing parts due to alignment.

Some preprocessing operations are performed to clean the resulting images and to
increase the recognition rate. It is not possible to generate a reasoned face image just like
the one taken in the frontal view. So, artifacts are treated using the mirroring method [22],
whose purpose is to fill the holes and the missing parts caused by alignment.

In Fig. 15, the graphical results of 3D face alignment when applying our method are pre-
sented. The blue circles show our method robustness and justify our contribution at the level

Fig. 15 Graphical results of face cleaning and alignment: (a) Input image, (b) 3D Face alignment, (c) Results
of image cleaning and alignment
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of keypoints addition, which serves to detect more regions and to wrap all the visible parts
of the face. In fact, more keypoints extraction involves good 3D face reconstruction, which
leads to fit the whole face region to get better face alignment. The purpose of such face
alignment is to increase face recognition results, no matter how challenging the conditions
are. In This work [39], another use cases of our alignment approach is presented.

3.4 Deep face recognition

After face frontalization and preprocessing, we move to face verification using DCNNs
which eliminate the need for manual features extraction. Otherwise, the features are learned
directly. We train our DCNN on a multi-class face dataset. To establish this operation, our
main objectives are fast GPU-implementation of a DCNN to win a face image recognition
contest and to search for successful DCNN applications for such big datasets. Applying
DCNN to aligned facial images makes the network more robust to small registration errors.

In our work, we tried several DCNNs and we kept the best recognition rates obtained for
each dataset. Our DCNN is therefore trained on an aligned RGB face image. The image size
is adapted to the input layer of each tested DCNN.

Our input consists of an RGB image of the aligned face which is given to a convolutional
layer (CL) and resized according to the CL characteristic of each tested DCNN. Indeed,
AlexNet [52] has given the best recognition rates that will be detailed in the experimental
part of this paper.

4 Experimental results

Using our method, we present the experiments conducted on YTF, LFW, and BIWI datasets,
which are well-known benchmarks for face recognition. Our implementation is based on the
dlib library using Python 3, MatConvNet, Image Processing, and Graph MATLAB toolbox
for 3D mesh processing. Indeed, MeshLab linked to the NVIDIA packages is used to accel-
erate training. All our experiments were carried out using NVIDIA CUDA development 9.2
and were run on intel (R) Core (TM) i7-7500U, 2.70 GHz and 2.90 GHz with 8GO RAM.

4.1 Experimentation and results on LFW dataset

Labeled Faces in the Wild is a big dataset for face verification testing in unconstrained
domains (lighting, poses, facial expressions). It contains 13,233 face images of 5,749 differ-
ent identities collected from the web. It includes 1,680 people having two or more images
against 4,069 people having only single image in the dataset.

In our experiments, we used the configuration described in paper [36] related to the
dataset, and we only used the LFW samples. No outside data were used. Two protocols are
presented in LFW dataset: image-restricted and image-unrestricted protocols.

The restricted protocol has image-restricted settings: binary labels are available. So,
“matched” or “mismatched” verification for pairs of images is performed. On the other
hand, the unrestricted protocol has unrestricted setting: identity information of the person
in the image is available which helps to make new pairs of images.

Following this experimentation, we tested several DCNNs and the best recognition
results are obtained using AlexNet. They were 98.37% with the restricted protocol and
97.28% when using the unrestricted protocol. Table 7 presents a comparison between our
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Table 7 Comparison of FR rates with some existing methods on LFW dataset

Method Restricted Unrestricted

Shi et al. [76] 52.53%

Kuang et al. [17] 88.27%

HPEN [101] 92.80% 95.25%

DeepFace [82] 97.15% 97.35%

Our Method 98.37% 97.28%

results and those of the existing methods using different alignment methods, as described in
the previous sections.

4.2 Experimentation and results on YTF dataset

YouTube Faces dataset [96] includes 3,425 YouTube videos of 1,595 different subjects.
The used classes are the same as in LFW (a subset of celebrities presented in the LFW
dataset [36]). The videos were taken by professional photographers and were divided into
5,000 video pairs and 10 splits. They were used to evaluate the video-level face verifica-
tion. The images of this dataset are not in good quality due to acquisition problems. So, a
preprocessing step, including smoothing and other filters was primordial.

In this paper, we performed our experiments employing the restricted protocol, which
limits the information available for training to the same/not-same labels in the training splits.

Before performing 3D alignment, FR was tested via different DCNNs to check if align-
ment increases the recognition rate. Using AlexNet, the recognition rate was 99.14%. In
Table 8, a comparison with some related works is presented.

4.3 Experimentation and results on Biwi dataset

The BIWI dataset includes 15,678 frames collected from videos of 20 individuals: 6 women
and 14 men (there are ones who were recorded twice). There are 24 sequences acquired
with a Kinect sensor and collected in under-controlled conditions and different head poses.

In our experimentation, we used 2D frame images (RGB) presented in the dataset. We
performed the same processing steps used for the two other tested datasets. Then, we applied
our proposed method of 3D face alignment and pose normalization.

Table 8 Comparison with the
state-of-the-art on YTF dataset Method Accuracy

Aligned faces provided by YTF 78.19%

Deepface [82] 91.4%

CosFace [94] 97.4%

SphereFace [58] 95%

RegularFace [99] 96.7%

Fenggao et al. [84] 94.6%

Rao et al. [68] 94.28%

Our method 99.14%
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Table 9 Comparison with the
state-of-the-art on BIWI dataset Method Accuracy

PIFS [10] 96.99%

Fei Gao et al. [29] 97.50%

Our method 97.92%

For FR, we followed the experimental protocol used by several works in the literature
for this dataset. So, we randomly split the dataset into 70% for training and 30% for testing
and verification. Using AlexNet, the recognition rate was 97.92%. In Table 8, a comparison
with some related works is presented (Table 9).

4.4 Self evaluation

We carried out a series of tests to justify our qualitative and quantitative choices of the differ-
ent parameters and techniques. Apart from highlighting the robustness of our contribution
through the rates obtained, we would also like to emphasize the quality of our work.

First of all, we start by justifying the use of the 68 landmark detector. As it was men-
tioned in the proposed method, we used dlib and OpenCV through Python3. This technique
gave the best results for face annotation compared to Chow-Liu algorithm [18], which is
widely used in recent face landmarks detection methods although it is an old technique
(Fig. 16(b)), and compared to the Gaussian-Newton method [89], which is also widely used
in face alignment (Fig. 16(c)). Comparison can also be made through the graphic results in
Fig. 16.

The used technique established landmarks detection in almost all pose variations. Con-
trarily to some other techniques, we obtained errors of landmarks detection in critical
scenarios or bad locations that would be disturbing during mesh reconstruction.

Our first contribution consists in adding more keypoints to the traditional 68 facial
landmarks. This is useful for 3D model reconstruction which is used in the alignment
process.

So, is 3D reconstruction perfect?
To answer this question, an experiment was carried out. An evaluation of 3D reconstruc-

tion was made based on the BU3DFE dataset [83], which contains 3D meshes accompanied
by 2D images just to make sure that our reconstruction is perfect and close to the 3D faces
as taken by 3D acquisition devices.

We used Mean Absolute Error (MAE) evaluation metric which measures the average
magnitude of errors between prediction (3D reconstructed faces) and real 3D faces.

The average MAE of 3D reconstructed faces decreases with each addition of other
keypoints (Fig. 17). This justifies the addition of other points to accomplish this task of
reconstruction. However, the rates obtained are not within the standards.

For this reason, 3D mesh preprocessing was performed to conduct mesh regularization
and to further decrease MAE, which would guarantee the alignment phase, as shown in
Fig. 18.

In Fig. 19, the histogram presents a quantitative study of the number of vertices and
facets during the 3D reconstruction phase. We perform 3 iterations of mesh subdivision
using Butterfly algorithm in the remeshing step. This choice is established after a series
of tests. For interpolating triangulation using BPA, pivoting ball radius is =3.3231 and the
angle threshold is = 90◦.
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Fig. 16 68 facial landmarks detection: (a) Input face image, (b) 68 landmarks detection using Chow-Liu
algorithm, (c) 68 landmarks detection using the Gaussian-Newton method, (d) 68 landmarks detection using
dlib and OpenCV

Once 3D model reconstruction is performed for each given 2D face, fitting to wrap all
the detected 2D facial landmarks is conducted by projecting the 3D reconstructed faces onto
the 2D ones.

As self-evaluation, the fitting process was tested using two widely-used existing models
in face alignment, in addition to the model we generated. So, we noticed that the alignment
process with fitting BFM (Fig. 20(a)) is not well-adapted to the 2D face due to projection
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Fig. 17 MAE of the proposed 3D reconstruction method on BU3DF

errors. The shift is very remarkable. Apart from the cases of large poses, many images are
missed because projection is unreachable.

When using 3DMM (Fig. 20(b)), the fitting process was successful under wide poses. We
also noticed that facial expressions are well-illustrated on the obtained model. This is due
to the reconstruction of this generic model learned from 10,000 faces in the wild. However,
using this model has one drawback consisting in image meshing each time the shape of the
3DMM is present in all faces. This implies that all the identities have the same signature,
which degrades face frontalization.

Performing fitting with an appropriate 3D face model, as shown in Fig. 20(c), aids in
preserving identity at the level of pose correction. All the 2D keypoints undergo this change
of plane while referencing to the 3D ones.

Fig. 18 MAE of the proposed processed 3D reconstruction method on BU3DF using butterfly and BPA
algorithms
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Fig. 19 Number of vertices and facets during the 3D reconstruction process of the query face image

Moreover, quantitative tests were carried out to justify and highlight our contribution.
A recognition test was therefore established after having carried out the alignment process
using the previously mentioned fitting methods. We used the same technique of keypoints

Fig. 20 Fitting results: (a) Fitting process using BFM, (b) Fitting process using 3DMM, (c) Fitting process
using our reconstructed model
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Table 10 Face recognition rates
of aligned faces on YTF dataset Method Accuracy

Alignment using BFM 73.68%

Alignment using 3DMM 92.03%

Our method 99.14%

Table 11 Face recognition rates
of aligned faces on LFW dataset,
testing restricted and unrestricted
protocols

Method Restricted Unrestricted

Alignment using BFM 81.97% 80.6%

Alignment using 3DMM 74.64% 79.15%

Our method 98.37% 97.28%

Table 12 Face recognition rates
of aligned faces on BIWI dataset Method Accuracy

Alignment using BFM 80.21.68%

Alignment using 3DMM 91.15%

Our method 97.92%

Fig. 21 Consumed time computing during the preprocessing step of FR pipeline per a query image
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projection and keypoints marching. The recognition rates are presented in Tables 10, 11,
and 12.

Indeed, BFM and 3DMM are two different generic models used in the fitting process.
Yet, for pose normalization, both image cleaning and image classification were carried out
in the same way to be able to establish comparisons between results.

To ensure that our approach is efficient and effective, the time factor is considered. The
following curve shows the time consumed in each step (Fig. 21).

4.5 Discussion

Our contribution consists in applying 3D face alignment to FR. The results obtained are
among the best ones thanks essentially to the efficiency of our 3D face alignment method.

Adding keypoints consists in covering the cropped facial surface, which reduces the
number and the size of regions hidden by poses. This guarantees a sophisticated 3D mesh
reconstruction from a single input face image. The aim of 3D reconstruction is to wrap max-
imum keypoints when the fitting process is established. This process facilitates face rotation
with a slight damage to the 2D face image.

5 Conclusion

This paper presents a research on face recognition using DCNNs with appropriate train-
ing. We added keypoints to the 68 traditional fiducial landmarks using MSER, Canny, and
Prewitt techniques.

We reconstructed 3D meshes based on Delaunay triangulation, followed by facial sur-
face extraction using Region Growing algorithm, mesh subdivision, and remeshing using
Butterfly and BPA algorithms.

Then, we projected the obtained 3D mesh onto the 2D image plane and wrapped it. This
step was followed by pose correction whose purpose was to establish face alignment.

The recognition rates we found are justified by several factors, including the well-
developed preprocessing steps and the efficient addition of more keypoints. This proves
that 3D mesh reconstruction was conducted very carefully. So, the resulting images of faces
were directly given to DCNNs without any intervention.

The results obtained are comparable to those reported in the state-of -the-art. In the near
future, we are preparing other experiments on other existing benchmarks, such as LFPW
and WLFW, using our proposed method.
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