Skip to main content
Log in

Improving image retrieval effectiveness via sparse discriminant analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The semantic gap between low-level features and high-level semantic concepts is a fundamental problem in content-based image retrieval (CBIR). To close this gap, relevant feedback is included in the CBIR. Based on the user’s feedback samples, a projection matrix is learned to project samples from the multi-dimensional original space to the low-dimensional projection space, and a classifier is learned on the projection space to classify the images. However, the number of classes in the relevance feedback is very small (only two classes), which leads to low classification performance and results in poor retrieval performance. To solve this problem, we propose a novel supervised image retrieval method, called Sparse Discriminant Analysis for Image Retrieval (SDAIR). Different from existing image retrieval methods, which have low precision due to small-class size problems, SDAIR is designed to not be affected by small-class size problems. Therefore, SDAIR is potentially more suitable for image retrieval with relevant feedback, where class sizes are often very small. The experimental results on the two databases demonstrate that the proposed method obtains competitive precision compared with other content-based image retrieval methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1:
Algorithm 2:
Algorithm 3:
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.vision.caltech.edu/Image_Datasets/Caltech101/

References

  1. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  2. Chen W, Liu Y, Wang W, Bakker E, Georgiou T, Fieguth P, ..., Lew MS (2021) Deep image retrieval: A survey. arXiv preprint arXiv:2101.11282

  3. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60

    Article  Google Scholar 

  4. Dorfer M, Kelz R, Widmer G (2015) Deep linear discriminant analysis. In: International Conference on Learning Representations, pp. 1–13

  5. Dornaika F (2021) Multi-layer linear embedding with feature subset selection. Knowl Inf Syst 63(4):1029–1043

    Article  Google Scholar 

  6. Dornaika F, Khoder A (2020) Linear embedding by joint Robust Discriminant Analysis and Inter-class Sparsity. Neural Netw 127:141–159

    Article  MATH  Google Scholar 

  7. Duda RO, Hart PE, Stork DG (2000) Pattern Classification, 2nd edn. Wiley-Interscience

    MATH  Google Scholar 

  8. Duda RO, Hart PE, Stork DG (2012) Pattern classification. John Wiley & Sons

    MATH  Google Scholar 

  9. Fan Z, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22(7):1119–1132

    Article  Google Scholar 

  10. Hameed IM, Abdulhussain SH, Mahmmod BM (2021) Content-based image retrieval: A review of recent trends. Cogent Eng 8(1):1927469

    Article  Google Scholar 

  11. Han N, Wu J, Liang Y, Fang X, Wong WK, Teng S (2018) Low-rank and sparse embedding for dimensionality reduction. Neural Netw 108:202–216

    Article  MATH  Google Scholar 

  12. Hassan G, Hosny KM, Farouk RM, Alzohairy AM (2020a) Efficient Quaternion Moments for Representation and Retrieval of Biomedical Color Images. Biomed Eng: Appl Basis Commun 32(05):2050039

    Google Scholar 

  13. Hassan G, Hosny KM, Farouk RM, Alzohairy AM (2020b) An efficient retrieval system for biomedical images based on radial associated Laguerre moments. IEEE Access 8:175669–175687

    Article  Google Scholar 

  14. Huijsmans DP, Sebe N (2005) How to complete performance graphs in content-based image retrieval: add generality and normalize scope. IEEE Trans Pattern Anal Mach Intell 27(2):245–251

    Article  Google Scholar 

  15. Huu QN, Viet DC, Thuy QDT (2021) Semantic class discriminant projection for image retrieval with relevance feedback. Multimed Tools Appl 80(10):15351–15376

    Article  Google Scholar 

  16. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093

  17. Jolliffe IT (2002) Principal Component Analysis, 2nd edn. Springer-Verlag, New-York

    MATH  Google Scholar 

  18. Khoder A, Dornaika F (2021) An enhanced approach to the robust discriminant analysis and class sparsity based embedding. Neural Netw 136:11–16

    Article  Google Scholar 

  19. Kwak N, Choi C-H (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1):143–159

    Article  Google Scholar 

  20. Lai Z, Xu Y, Jin Z, Zhang D (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circuits Syst Video Technol 24(10):1651–1662

    Article  Google Scholar 

  21. Lai Z, Bao J, Kong H, Wan M, Yang G (2020) Discriminative low-rank projection for robust subspace learning. Int J Mach Learn Cybern 11:2247–2260

    Article  Google Scholar 

  22. Li J, Allinson N, Tao D, Li X (2006) Multitraining support vector machine for image retrieval. IEEE Trans Image Process 15(11):3597–3601

    Article  Google Scholar 

  23. Liu L, Yu M, Shao L (2015) Multiview alignment hashing for efficient image search. IEEE Trans Image Process 24(3):956–966

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Z, Liu G, Zhang L, Pu J (2020) Linear regression classification steered discriminative projection for dimension reduction. Multimed Tools Appl 79:11993–12005

    Article  Google Scholar 

  25. Martinez AM, Kak AC (2002) Pca versus lda. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  26. Sathiamoorthy S, Natarajan M (2020) An efficient content-based image retrieval using enhanced multi-trend structure descriptor. SN Appl Sci 2:217

    Article  Google Scholar 

  27. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  28. Smith LI (2002) A tutorial on principal components analysis. Technical report

  29. Stanczyk U, Zielosko B, Jain L (2018) Advances in feature selection for data and pattern recognition. Springer

    Book  MATH  Google Scholar 

  30. Tao D, Tang X, Li X, Wu X (2006) Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell 28(7):1088–1099

    Article  Google Scholar 

  31. Tharwat A, Gaber T, Ibrahim A, Hassanien AE (2017) Linear discriminant analysis: A detailed tutorial. AI Commun 30(2):169–190

    Article  MathSciNet  Google Scholar 

  32. Wen J, Fang X, Cui J, Fei L, Yan K, Chen Y, Xu Y (2018) Robust sparse linear discriminant analysis. IEEE Trans Circuits Syst Video Technol 29:390–403

    Article  Google Scholar 

  33. Wu L, Shen C, van den Hengel A (2017) Deep linear discriminant analysis on fisher networks: A hybrid architecture for person re-identification. Pattern Recogn 65:238–250

    Article  Google Scholar 

  34. Xiang S, Nie F, Meng G, Pan C, Zhang C (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learn Syst 23(11):1738–1754

    Article  Google Scholar 

  35. Yan C, Chang X, Luo M, Zheng Q, Zhang X, Li Z, Nie F (2020) Self-weighted robust LDA for multiclass classification with edge classes. ACM Trans Intell Syst Technol (TIST) 12(1):1–19

    Google Scholar 

  36. Zhang L, Wang L, Lin W, Yan S (2014) Geometric optimum experimental design for collaborative image retrieval. IEEE Trans Circuits Syst Video Techn 24(2):346–359

    Article  Google Scholar 

  37. Zhang L, Shum H, Shao L (2016) Discriminative semantic subspace analysis for relevance feedback. IEEE Trans Image Process 25(3):1275–1287

    Article  MathSciNet  Google Scholar 

  38. Zhou XS, Huang TS (2001) Small sample learning during multimedia retrieval using biasmap. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 11–17

  39. Zhu R, Dornaika F, Ruichek Y (2019) Learning a discriminant graph-based embedding with feature selection for image categorization. Neural Netw 111:35–46

    Article  MATH  Google Scholar 

  40. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.01-2020.10”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quynh Nguyen Huu.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.A., Huu, Q.N., Viet, D.C. et al. Improving image retrieval effectiveness via sparse discriminant analysis. Multimed Tools Appl 82, 30807–30830 (2023). https://doi.org/10.1007/s11042-023-14748-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14748-9

Keywords

Navigation