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Abstract
In this paper we propose an object detector based on deep learning for scanning samples
of table olives. For the construction of the system we have used a Mask R-CNN neural
network. This network is able to segment the image providing a mask for each of the
olives in the sample from which we can obtain the calibre of the object. In addition, the
system is able to measure the degree of ripeness of the olives classifying them as green,
semi-ripe and ripe, and identifying those fruits that are defective due to disease or damage
caused by the harvesting process. The proposed system achieves success rates of 99.8%
in the detection of olive fruits in photograms, 93.5% in the classification of fruit by
ripeness and close to 80% in the detection of defects.
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1 Introduction

Spain is the world’s leading producer and exporter of table olives. According to the latest data
published by the Food Information and Control Agency (AICA), as of January 31, 2021, the
production of table olives for the 2020/2021 campaign amounted to 545,310 tons. The most
cultivated varieties are: hojiblanca, manzanilla and gordal (Fig. 1).

The Trade Standard Applying to Table Olives (COI/OT/NC no. 12004) defines table olives
as the product “prepared from the sound fruits of varieties of the cultivated olive tree (Oleae
europaea L.) that are chosen for their production of olives whose volume, shape, flesh-to-stone
ratio, fine flesh, taste, firmness and ease of detachment from the stone make them particularly
suitable for processing”.

Table olives are classified into one of the following types according to the degree of
ripeness of the fresh fruits:

& Green olives: Fruits harvested during the ripening period, prior to colouring and when they
have reached normal size. Once processed, the green olive colour may vary from green to
straw-yellow.

& Semi-ripe olives: Fruits harvested before the stage of complete ripeness is attained, at
colour change. After processing, this type of olive may vary from pink to rosé wine or
brown [24].

& Ripe olives: Fruits harvested when fully ripe or slightly before full ripeness is reached.
Once processed, ripe olives may range from reddish black to violet-black, deep violet,
greenish black, or deep chestnut.

Percentage of each olive variety harvested 
in 2020/2021 campaign  

Manzanilla Gordal Hojiblanca Cacereña Carrasqueña Otras

Fig. 1 The most cultivated varieties of table olives in Spain in the 2020/2021 campaign

21658 Multimedia Tools and Applications (2023) 82:21657–21671



Traditionally, to avoid damaging the fruit, olives intended for direct consumption are mostly
hand-harvested from the olive tree using the “milking” technique. When they reach their
maximum size and proper degree of ripeness –e.g., green to yellow-, between the months of
September and November, olives, are deposited one by one in a basket that the collector
carries. The “milking” could be complemented with machinery such as shakers, a kind of
mechanical arm that facilitates the fall of the fruit onto sheets of cloth, placed below and
around the olive tree so that the olives cannot come into contact with the ground. However,
because mechanical harvesting causes a high percentage of damage to the fruit, manual
harvesting is still widely used.

After harvesting, olives are immediately transported to the manufacturer to determine their
quality and pricing. As measuring the whole harvested batch is impossible, “escandallo” is
carried out from the study of samples and consists of two stages:

& Maturity index determination and defect identification. The quality of an olive fruit can be
determined by its external appearance. The skin and flesh color allows us to specify the
maturity index of the olives. As the olives mature, the colour of the outer part (epicarp)
changes from bright green to purple-green, purple and finally black. The inner part
(pericarp) changes from white-yellow to purple-black. Fruit defects (bruising, wrinkles,
olives bitten by fruit flies, hail-damages, olives affected by cochineal insects) can also be
visually detected. This defects decrease the final pricing of the product.

& Sizing. Olives are size-graded according to the number of fruits per kilogram or hecto-
gram. The size scale, in one kilogramme, goes from 60/70, 71/80, 81/90, successively to
401/420 (called “perdigon” and used to produce olive oil).

Although the traditional “escandallo” (see Fig. 2), inspires confidence in olive growers, it is a
slow and tedious process. Sometimes, it must be carried out several hours after taking the
sample with the consequent deterioration of the olives and detriment to the olive growers’ own
interests. Therefore, there are manufacturing companies that are trying to automate the
procedure with powerful equipment capable of managing a greater number of kilograms,
which would also allow the process to go more quickly.

Fig. 2 Traditional “escandallo” of olive fruits
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Other studies have referenced the automation of quality control in fruits and vegetables by
applying mechanized, vision-based methods even in spectral ranges beyond the sensibility of the
human eye, e.g., ultraviolet and near-infrared regions [4]. Recently, Piedad et al. [20] use RGB
coordinates withmachine learning to classify banana tiers in different commercial qualities. Kaur
et al. [14] estimate the maturity of plumps using the RGB coordinates. Ramos et al. [22] present a
system which automatically determines the ripeness percentage of the fruit on a coffee branch
and its ripeness index through analysis of 3D information obtained with a monocular camera in
outdoor environments and under uncontrolled lighting, contrast, and occlusion conditions.
Munera et al. [19] analyze the quality of ‘Mollar de Elche’ intact pomegranate fruit and arils
in a non-supervised way by means of PCA using colour and hyperspectral images.

Particularly with olive fruits, Ponce et al. [21] propose a system to estimate mass and size of
“picual” and “arbequina” olive varieties, mainly dedicated to the production of olive oil. The
system uses mathematical morphology and statistical thresholding to segment the acquired
images. These images show olives spatially distributed on a white plastic mat. Guzmán et al.
[10] present a system to estimate the maturity index of “picual” variety olives destined to
produce olive oil. To do this, they use CIELAB coordinates of the olives. As the external
appearance of an olive’s skin is the most decisive factor in determining its quality, Riquelme
et al. [26] describe a procedure to classify olives in eight categories according to external
damage using three different discriminant analysis (DA). They only focus on the problem of
image classification, not on the detection of olives. Aquino et al. [3] present a system for early
yield estimation of olive orchards. It is based in the use of convolutional neural networks
(CNN) capable of identifying olive fruits visible in images covering entire olive trees.

In this paper we present an automatic system for quality control of table olives based on deep
learning. The developed system automatically detects, segments, and classifies table olives
from an image taken of the product. It determines the average size of the olives in the sample
and the percentage of defective fruits depending on their state of maturity or the damage caused
to the skin. The system is low cost. It can run on a Raspberry Pi 4Model B 4GB and is accessed
and controlled remotely from a browser through Node-RED. The system can be installed in the
product reception line and sample a wider set of olive fruits, improving the reliability of the
quality control procedure. In addition, the system can be used for the automatic selection and
elimination of defective olives, a process that is currently carried out manually.

We propose a system based on deep learning because in our previous experience in the field
of pollen grain detection (also with ellipsoidal shape) the increase in performance of deep
learning based techniques with respect to other classical segmentation techniques was very
high. For example, comparing localization performance with the classical circular Hough
transform we found that sensitivity improved by 18.9% and accuracy by 15.9%, for a total
of 1235 objects in 135 images [7].

The remainder of this paper is organized as follows: Section 2 explains the materials and
methods. Section 3 presents the results of the developed system, and Section 4 concludes this paper.

2 Material and methods

2.1 Prototypes set

Olive samples of the “manzanilla sevillana” variety were collected in the southwest province
of Badajoz (Spain) in September 2020. These samples were deposited on a white tray and
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photographed with a Raspberry Pi Camera Module v2.1 connected to a Raspberry Pi 4 B. The
distance between the tray and the camera was 50 cm. The images, captured with natural light,
had a resolution of 1280 × 960 pixels.

From these images and to train our object detector, ground truth images were generated
using VGG Image Annotator (VIA) software (https://www.robots.ox.ac.uk/~vgg/software/
via/). VIA is a simple and standalone manual annotation software for image, audio and
video that runs in a web browser. This software makes it possible to select a mask for each
individual object detected in an image and associate it with different categories (attribute
name), each of them with a set of classes (id name). For example, we can create the attribute
“object” with the ID “olive”, the attribute “ripeness” with the IDs “green”, “semi-ripe” and
“ripe” or the attribute “quality” with the IDs “damaged”, “green”, “semi-ripe” and “ripe”.
Figure 3 shows the masks selected with VIA for an image with 161 olive fruits together with
their labelling corresponding to the “ripeness” attribute.

To adjust our models, we labelled a total of 50 images, each one with between 80 and 180
olive fruits, using the software mentioned above. These images were split into a training set of
40 images and a test set of 10.

2.2 The object detector model

Traditionally, an object detector consisted of an image classifier that was applied on small
regions of the input image using the sliding window method [5]. A sliding window is a
rectangular region of fixed width and height that slides across an image. The classifier decides
whether the object sought is within the sliding window and therefore within the image. In
addition, to detect objects at different scales, the process is repeated by resizing the image
several times, resulting in what is called a “pyramid of images” [2]. This process, although
efficient, is very slow because the classification, based on neural networks, must be repeated,
sometimes, thousands of times for each image.

Recent advances in deep learning have provided more efficient object detection algorithms
than the sliding window method. As a first alternative to the sliding window method, the

Fig. 3 “Ripeness” attribute labelling with VIA
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concept of R-CNN emerged in 2014 [9]. This method allows us to avoid the problem of
selecting many different regions, as it uses a selective search algorithm [28] to extract just 2000
regions from the image, which acquire the name of “candidates” or “Regions of interest
(ROIs)” and must be subsequently classified.

However, R-CNN continues to have a high computational cost. As alternatives, Fast R-CNN
[8] and Faster R-CNN [25] emerged. In Fast R-CNN, the input image passes through the
convolution operation only once and, thanks to special multi-scale pooling regions, proposals
of arbitrary size can be processed by the fully connected layers. This allowed Fast-R-CNN to run
much faster than R-CNN. However, in Fast-R-CNN the selective search algorithm must still be
used, and this algorithm is computationally expensive. Faster R-CNN eliminates the use of the
selective search algorithm, and a new separate neural network (the RPN network) is used to
predict the candidates. Thanks to its efficiency in computing time, Faster R-CNN enables real-
time object detection. In 2017, researchers at Facebook AI Research (FAIR) created an extension
of Faster R-CNN called Mask R-CNN [12]. For a given image, Mask R-CNN, in addition to the
class label and bounding box coordinates for each object, returns the object mask as well.

These algorithms were followed by other detection models that increase the speed at the
expense of the quality of the proposals. Among the most outstanding algorithms are “You Only
Look Once” (YOLO) [23] and SSD (Single Shot Multibox Detector) proposed by Liu et al.
[18]. YOLO differs greatly from the algorithms seen before as it uses a single convolutional
network that predicts the bounding boxes and the class probabilities for these boxes in a single
pass. YOLO is a very fast algorithm that reaches speeds of up to 45 FPS (frames per second) but
with the limitation to find small objects in images. Finally, in SSD the image only passes
through the neural network once and it is composed of a first convolutional network followed
by different convolutional layers that, at different scales, can predict the coordinates of the
object and the class to which it belongs. SSD reaches speeds of up to 59 FPS.

As Faster R-CNN is considered the reference model for object detection thanks to the
accuracy and robustness of its predictions, in this work, we have used Mask R-CNN, an
evolution of Faster R-CNN, which is able to perform an image segmentation providing a pixel-
wise mask for each object in the image.

2.3 Object detectors configuration

The objective of this work is to measure the accuracy of our object detector in the segmen-
tation of each olive in the image according to the different attributes and IDs mentioned in
Section 2.1. For this purpose, we have used an implementation of Mask R-CNN on Python 3,
Keras and TensorFlow [1]. This implementation is based on Feature Pyramid Networks (FPN)
[17]. To adapt the model to a particular problem we must specify the values of certain

Table 1 Different topologies for estimating the performance of detectors versus run time

TOPOLOGY IMAGE_MIN_DIM IMAGE_MAX_DIM RPN_ANCHORS_SCALES

DIM6 128 192 15 17 20 23 25
DIM5 256 320 20 25 30 35 40
DIM4 384 448 30 35 40 45 50
DIM3 576 640 40 50 60 70 80
DIM2 768 832 40 55 70 85 100
DIM1 960 1024 55 75 95 105 125
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parameters in a configuration file. These parameters refer, for example, to the number of
classes (NUM_CLASSES), aspect ratio (RPN_ANCHOR_RATIOS) and size
(RPN_ANCHOR_SCALES) of the anchors, dimensions of the input image
(IMAGE_MIN_DIM and IMAGE_MAX_DIM), convolutional network model that performs
the feature extraction (BACKBONE), etc.

In all the experiments we have used a ResNet-50 [11] as BACKBONE and a
RPN_ANCHOR_RATIOS of 1:1 because the bounding boxes containing the objects to detect
are approximately square.

As the goal is to deploy the object detector in a low-cost system and Mask R-CNN
algorithm is very time consuming, especially if the dimension of the input image is very
large, we have analysed the performance of the system based on this dimension. The
dimension is set in the configuration file through parameters IMAGE_MIN_DIM and
IMAGE_MAX_DIM. We have used the “square” resizing mode. In this mode, images
are scaled up such that the small side is equal to IMAGE_MIN_DIM but ensuring that
the scaling does not make the long side greater than IMAGE_MAX_DIM. Then, the
image is padded with zeros to make it a square so multiple images can be put in one
batch. In this implementation of Mask R-CNN, image dimension must be divisible by
2 . [6 ] On the o the r hand , we have se t the d imens ion of the anchors
(RPN_ANCHOR_SCALES: length of square anchor side in pixels) based on the values
of the dimensions of the input image. Consequently, we have completed simulations with
the six topologies described in Table 1.

To train our model, we have applied transfer learning strategy [27]. It basically consists of
assuming that a previously trained network, usually with many prototypes, can be used as a
starting point to tackle another problem for which fewer patterns are available. So, we have
used pre-trained weights for a Microsoft COCO dataset [16]. In the training process, we have
only trained the last layers of the model, in particular the layers named mrcnn_class_logits,
mrcnn_mask, rpn_model, mrcnn_bbox and mrcnn_bbox_fc. In the training process we used
the early stopping technique and after the training we tried to improve the model by fine-tuning
the weights. This was done by training all the layers of the network with a learning rate equal
to one tenth of the original one and then re-training only the last layers, but this did not bring
any significant improvement”. The training of the models has been done on a GTX 1080 Ti
GPU card with 8GB of RAM.

2.4 Metrics used for evaluation

Once our object detector has been trained, in the inference phase, the object detector identifies
several regions of interest (ROIs) with a level of confidence (score) for each of them. Many of

Table 2 Results of the objects detectors with different topologies over the attribute ‘object’

TOPOLOGY Time (s) TP FP FN Precision RECALL F1-score mAP

DIM6 0.14 893 8 28 0.991 0.970 0.980 0.971
DIM5 0.19 915 2 6 0.998 0.993 0.996 0.994
DIM4 0.31 918 2 3 0.998 0.997 0.997 0.997
DIM3 0.54 917 0 4 1 0.996 0.998 0.996
DIM2 0.86 919 0 2 1 0.998 0.999 0.998
DIM1 1.25 916 0 5 1 0.995 0.997 0.995
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Fig. 4 Detected objects from one of the images of the test set with the DIM2 topology of the Table 2

Fig. 5 Histogram with the sizes in pixels of the olive fruits in the image shown in Fig. 4
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these candidates overlap, being representative of the same object and must be filtered by a
Non-maximum Suppression algorithm (NMS). An NMS algorithm, based on the calculation of
the Intersection-over-Unions (IoUs) and the value of a IoU NMS threshold
(DETECTION_NMS_THRESHOLD = 0.3), selects the non-overlapping candidates with
highest confidence level. The formal definition of IoU for two candidates of areas R1 and
R2 is given by Eq. 1. Then, regions with a confidence level below a detection threshold
(DETECTION_MIN_CONFIDENCE =0.7) are discarded. Now, with the final regions and
with the ground truth of the images we must calculate metrics to evaluate the system
performance over the test set. In this work, we have calculated four different metrics: precision,
recall, F1-score and Average Precision (AP).

IoU R1;R2ð Þ ¼ R1∩R2j j
R1∪R2j j ð1Þ

To conclude that a candidate generated by our system has located an olive fruit, we must use
an overlap metric with respect to the reference marks. This metric is, again, the IoU that is used
to measure the accuracy of a detection candidate. Now the regions R1 and R2 of the Eq. 1 are
both the area of the candidate and the area of a ground-truth mark, respectively. The “IoU
detection threshold”may be different from that used by the NMS algorithm. In this case, being
1 the value reached when a candidate perfectly overlaps with the ground truth bounding box, a
minimum value of 0.5 is usually considered a good object detection [6]. Consequently, a
detection will be a true positive (TP) when its IoU with the reference mark exceeds the
established IoU detection threshold. If a candidate does not reach a minimum overlap with any
ground-truth mark it will be considered a false positive (FP). And finally, each non-localized
olive fruit will be considered a false negative (FN). Using these markers, the usual metrics of

Table 3 Results of the objects detectors with different topologies over the attribute ‘colour’

TOPOLOGY Time (s) TP Notmatch FP FN mF1 mAP

DIM6 0.14 768 66 9 87 0.865 0.909
DIM5 0.24 845 63 2 13 0.925 0.987
DIM4 0.33 861 52 0 8 0.939 0.992
DIM3 0.54 858 50 0 13 0.939 0.987
DIM2 0.87 862 41 0 18 0.947 0.982
DIM1 1.23 860 38 0 23 0.944 0.977

Table 4 Confusion matrix of the DIM4 topology detector of the Table 3

DIM4 Predicted label

Green Semi-ripe Ripe FN Recall

True Label Green 729 23 0 3 0.966
Semi-ripe 21 72 4 4 0.713
Ripe 0 4 60 1 0.923
FP 0 0 0
Precision 0.972 0.727 0.938
F1-score 0.969 0.72 0.93
mF1 0.9388
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precision, recall and F1-score are defined in Eqs. 2 and 3 [15]. Precision informs about the
ability of a classifier to identify relevant objects. Recall, on the other hand, measures the ability
of the model to find all relevant cases. And finally, F1-score informs whether a model has been
adjusted to favour precision over recall or vice versa. This parameter reaches a maximum value
of 1 and decreases with decreasing precision or sensitivity.

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

ð2Þ

F1−score ¼ 2
Precision x Recall
Precisionþ Recall

ð3Þ

On the other hand, in multi-class object detection problems where, in addition to locating the
object, it is necessary to associate it with its corresponding class, these values are calculated for
each of the classes from the confusion matrix. Thus, precision for class Ci is calculated as the
number of correctly predicted Ci out of all predicted Ci and recall for class Ci is the number of
correctly predicted Ci out of the number of actual Ci. For unbalanced test sets, these parameters
are calculated for each category and weighed against the number of items in each category.

Finally, the area under the precision-recall curve (AP) can be used as a single metric to
summarize the performance of the object detection model. For a given IoU detection threshold,
a model with high precision at all recall levels will have a high AP score. In a multi-class
object detection task the mean Average Precision is used (mAP), where individual AP is
averaged over all classes.

Fig. 6 Masks of the objects detected for the image in Fig. 4 with the network with the DIM4 topology of the
Table 3

Fig. 7 Some prototypes for the “damaged” class
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3 Results

3.1 Localization of olive fruits and estimation of their size

The objective of this experiment has been to segment each olive fruit in the image and from the
mask obtained for each object in order to estimate its size according to the number of pixels
occupied by the mask. In this case we used the attribute “object” and its unique ID “olive”. In the
literature this problem is called object localization problem since all objects belong to the same class.

Table 2 shows the execution time per image, on a GTX 1080 Ti GPU card, and the
detection results (metrics defined in Section 2.3) on test images for the different topologies. In
that case the images of the test set contain 921 olive fruits and the values of the F1-score and
the mAP are very good for the first five topologies. The one with the best results is the DIM2
topology with a F1-score value of 0.999, a mAP value of 0.998 and an execution time of 0.86 s
per image.

In Fig. 4 we can observe an image of the test set and the masks of the objects predicted by
the detector with the DIM2 topology. In this case, the number of FNs and FPs are zero and all
the 86 olives fruits are correctly detected.

In Fig. 5 we can see a histogram with the dimensions, in pixels, of the olive fruits in the
image of Fig. 4. From this histogram we can calculate the average size of the olives, which is
one of the fundamental parameters to be extracted during the “escandallo”.

3.2 Detection of olive fruits maturity

For this experiment we have used the attribute “ripeness” which contains three IDs: “green”,
“semi-ripe” and “ripe”. In this case, we have four classes including the “background” (no

Table 5 Results of the objects detectors with different topologies over the attribute ‘quality’

TOPOLOGY Time (s) TP Notmatch FP FN mF1 mAP

DIM6 0.13 492 264 10 165 0.581 0.826
DIM5 0.18 570 177 2 174 0.677 0.813
DIM4 0.31 571 155 1 195 0.693 0.792
DIM3 0.60 711 177 1 33 0.785 0.967
DIM2 0.81 691 107 0 123 0.798 0.869
DIM1 1.74 733 144 0 44 0.815 0.952

Table 6 Confusion matrix of the network with the DIM3 topology of the Table 5

DIM3 Predicted label

Damaged Green Semi-ripe Ripe FN Recall

True Label Damaged 372 68 10 0 11 0.807
Green 62 206 7 0 16 0.708
Semi-ripe 11 9 73 7 4 0.702
Ripe 0 0 3 60 2 0.923
FP 1 0 0 0
Precision 0.834 0.728 0.785 0.896
F1-score 0.820 0.718 0.741 0.909
mF1 0.785
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object of interest) class. It is an object detection problem, as objects must be localized and
correctly associated with their corresponding class. Now, 921 olive fruits in the images of the
test set are distributed as 755 greens, 101 semi-ripes and 65 ripes. In Table 3 classification
results reached by the detectors with the different topologies are shown. We can observe a new
column in the table named “notmatch” that counts those objects correctly localized but not
associated to their corresponding class. Furthermore, the F1-score and AP values have been
calculated for each of the classes and weighed against the number of items in each class
obtaining the values of the mF1 (mean F1) and mAP (mean AP).

In this case, the DIM4 topology offers the best value of mAP, a good value of mF1 and an
execution time four times smaller than DIM1 topology. In Table 4 the confusion matrix and
the, Precision, Recall, FPs, FNs and F1-score for each class of the network with the DIM4
topology are shown.

Figure 6 shows the pixel-wise masks of the objects detected in the image shown in Fig. 4 by
the network with the DIM4 topology of Table 3. Objects have been coloured according to the
class to which they belong: green for the “green” olives, red for the “ripes” and blue for the
“semi-ripes”.

3.3 Detection of defects in olive fruits

For this experiment, we have used the attribute “quality” with the IDs “damaged”, “green”,”
semi-ripe” and “ripe” defined with the VIA software. In addition to detecting the state of
maturity of the olive fruits, we also intend to determine the percentage of green fruits that are
damaged by different causes like diseases, pest or damage caused in the harvesting process. In
this case, of the 921 olive fruits contained in the images of the test set, 461 have been
categorized as damaged, 291 as green, 104 as semi-ripe and, finally, 65 as ripe. In Fig. 7,
we can see several samples of green olive prototypes for the “damaged” class.

The results of the object classifiers with the different topologies can be seen in Table 5. In
Table 6 we show the confusion matrix of the network with the DIM3 topology which is the
best in terms of mAP and shows an execution time three times smaller than DIM1 topology.

Figure 8 shows the pixel-wise masks of the objects detected in the image shown in Fig. 4 by
the network with the DIM3 topology of the Table 5. Objects have been coloured according to
the class to which they belong: yellow for the “damaged” olives, green for the “green”, red for
the “ripes” and blue for the “semi-ripes”.

Fig. 8 Masks of the objects detected for the image in Fig. 4 with the network with the DIM3 topology of the
Table 5
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4 Discussion and conclusions

In this paper we have presented a system capable of localizing, with excellent accuracy, olive
fruits in an image.

First, in Section 3.1, we have observed that 919 of 921 objects presented in the
test set have been correctly extracted by the detector with the DIM2 topology
(99.8%). From the results, we can deduce that the task of extracting the olives of
an image, counting them, and inferring their sizes is practically solved even without
strictly controlled environmental conditions.

Second, in addition to detecting the objects, when we have tried to classify them
into different categories according to their state of maturity or quality of the fruit, the
results have been less accurate. There are two reasons for the observed deterioration
in the results: 1) the slight increase in false negatives and 2) the cases of confusion
between neighbouring classes. However, values of mAP are close to 1, 0.992, for the
network with the DIM4 topology of Table 3 and 0.967 for the network with the
DIM3 topology of the Table 5. If we estimate the number of olive fruits localized and
classified correctly by dividing the elements of the diagonal of the confusion matrix
of Tables 4 and 6 by the number of olive fruits (921) we obtain success rates of
93.5% and 77.9%, respectively. It should be noted that, especially in the detection of
damaged olives, the worsening of the results was to be expected. This is because in
the prototype selection phase, it is sometimes difficult to select the threshold that
separates a green olive from a semi-ripe olive, or to what extent a very small, or
almost imperceptible defect means that an olive is considered damaged or not.

In future research, we will try and avoid the deterioration of detection results due to
misclassifications. This would involve exploring the use of the object detector only for the
localization of individual objects in the images followed by a convolutional network trained to
individually classify each of the objects into the established classes. Furthemore, especially in
the case of detection of defects in olives, some salient based method [13] will be tested for
improving the accuracy of detection.

Furthermore, as we can see in Fig. 5, the size of the located objects is expressed in pixels. It
is true that the size (area) of the olives could be easily deduced by considering the number of
pixels extracted from the masks, the distance at which the photograph is taken and the
parameters of the camera. However, traditionally, and possibly to facilitate the process of
scanning, this size is expressed in weight (number of fruits per kilogram as described in the
introduction). So, a correlation should be made between the number of pixels and the real sizes
of the olives defined in the standards. To make this correlation we must wait for the next
harvesting campaign.

Finally, the implementation of the system in a Raspberry Pi 4 model B 8G shows an
execution times of approximately 40 seconds per image. We will adapt the algorithm to run on
specific boards for machine learning and deep learning such as Jetson Nano and Intel
Movidius Neural Compute Stick and thus achieve improvements in execution times.
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