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Abstract
An artificial neural network (ANN) is a computational system that is designed to replicate
and process the behavior of the human brain using neuron nodes. ANNs are made up of
thousands of processing neurons with input and output modules that self-learn and
compute data to offer the best results. The hardware realization of the massive neuron
system is a difficult task. The research article emphasizes the design and realization of
multiple input perceptron chips in Xilinx integrated system environment (ISE) 14.7
software. The proposed single-layer ANN architecture is scalable and accepts variable
64 inputs. The design is distributed in eight parallel blocks of ANN in which one block
consists of eight neurons. The performance of the chip is analyzed based on the hardware
utilization, memory, combinational delay, and different processing elements with targeted
hardware Virtex-5 field-programmable gate array (FPGA). The chip simulation is per-
formed in Modelsim 10.0 software. Artificial intelligence has a wide range of applica-
tions, and cutting-edge computing technology has a vast market. Hardware processors
that are fast, affordable, and suited for ANN applications and accelerators are being
developed by the industries. The novelty of the work is that it provides a parallel and
scalable design platform on FPGA for fast switching, which is the current need in the
forthcoming neuromorphic hardware.

Keywords ANN architecture . Single layer ANN . Virtex-5 FPGA

1 Introduction

Neurons are the cells in the nervous system that carry information to the other cells in the nerve
and communicate with each other in distinctive ways. The neurons [10] are the elementary
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functioning unit in the brain. The nerve cell or the neurons communicate [47] with each other
using a dedicated connection called synapses. The neurons are categorized into three types
based on their functionality, which are sensory neurons, motor neurons, and interneurons. The
sensory neurons [1] send the signals to the brain or the spinal cord. The sensory neurons are
responsible for the response of the different stimuli of the human such as sound, light, or touch
which is affected by the sensory organs by the cells. The motor neurons get the signals to form
the brain and spinal cord [2] to derive the output based on muscle contractions to glandular
output. The interneurons are connecting multiple neurons with the brain region or the spinal
cord. The connections of these neurons form a circuit called a neural circuit. The neurons
comprise a cell body called soma, dendrites, and an axon [21]. The soma is typically compact.
The dendrites and axons are the filaments that extrude from them. The dendrites can extend
freely from the soma maybe a hundred micrometers. The axon hillock is the swelling point at
which the axon leaves soma, which can go for 1 m in human beings or larger in other species.
The axon terminals pass [57] the signals to synapses and the other cells in the body. It may be
that the neurons do not have axons or dendrites in the case of the undifferentiated cells.
Typically, neurons are having a cell body, dendrites, and an axon. The cell body comprises the
cytoplasm and the nucleus. The axon prolongs from the cell body and regularly provides
growth to minor outlets or branches before termination at nerve points. Dendrites cover the
neuron cell body and accept the signals from other neurons. The main contact points are
synapses responsible for the communication among neurons, which may connect one dendrite
to another dendrite, one axon to another axon. The dendrites [50] are covered with synapses
formed by the ends of axons from other neurons. In general nature, the neurons are electrically
excitable and maintain the voltage gradients within their membranes. Therefore, the signaling
mechanism is electrical and partly chemical.

The general-purpose hardware is based on the arithmetic blocks for simple in-memory
calculations. Serial processing does not provide fast and sufficient performance for deep
learning applications. The ANN architectures are based on parallel computation and opera-
tions. Ordinary chips cannot support a large number of highly and simultaneous operations for
neuron processing. The AI-based hardware chip includes different chips that enable parallel
processing. The main motivation for using the ANN and AI-based hardware accelerators is to
get higher bandwidth memory chips and faster computation in comparison to general-purpose
hardware.

Digital tools and simulators are appropriate and applied for discovering the measurable
behavior of neural networks. Silicon neuron systems [7] are a mix of analog and digital signals
that may be used to analyze behavior using VLSI integrated circuits, and simulate electro-
physiological behavior for actual neuron processing at various levels of abstraction. The most
recent FPGAs can handle a huge number of physical memory and logic gates [22], allowing
large-scale neural networks to be implemented on hardware and at a reasonable cost. The
current level of simulation and synthesis technology is that research laboratories can easily
afford FPGAs. The hardware synthesis method allows researchers to work on parallel brain
cell structures. Digital models will be used for cell-based controls, and digital stem coding
techniques will be used to facilitate communication across the medium across vast distances.
Subsequently, it is well known that the neurons can be used to module ANN of the earlier
generations by equating mean firing rates of processing neurons and hardware for proficient,
scalable, and low-power implementations [6] of single-layer feed-forward networks.

Human brain activity can be observed in both the local and delocal domains. The activities
are linked to several functions such as vision and hearing, which are linked to specific brain
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regions. When a brain injury or accident occurs, the behavior of the brain neurons changes.
The brain is a miniature network environment in which each portion has its own set of neural
connections that are segregated from one another and confections. The local response is
merged into a global understanding that causes the entire brain activity to become distressed.
Machine learning and ANN-based intelligent methods have been proposed in the medical and
health care industry to enhance security and train the models to improve patient treatment,
diagnostics, rights, prevention, autonomy, and equality [55]. The research was offered based
on deep learning-based Mobile Net V2 and long short-term memory (LSTM) to automate the
process of identifying and classification [27] skin diseases. Oversampling techniques [32] can
be used to determine cervical cancer based on feature extraction and spatial clustering. The
synthetic minority over-sampling is used for hypertension, disease identification [31], and
predictions based on the random forest machine learning method. The Wrapper filter [41] was
used for disease classification and features selection. Neural networks have been applied for
the CT images of the human liver for accurate diagnosis [56] of the disease related to the liver.

ANNs have several advantages that make them ideal for solving specific scenarios and
difficulties. ANN systems can learn and model non-linear functions as well as construct
complicated associations, which is critical for real-world solutions and associates between
non-linear and complex function inputs and outputs. The sense inputs and outputs cause the
neural networks to alter or learn. ANN is a term that refers to several deep learning technol-
ogies that fall under the umbrella of artificial intelligence [18]. These technologies are mostly
used in commercial applications to handle pattern recognition and sophisticated signal pro-
cessing difficulties. For addressing nonlinear excitation functions, the development and
realization of a single neural network require computing logic such as adders, multipliers,
and a complex function evaluator [40]. The precision of the computational blocks is the most
significant quality in the digital implementation of a single neural network [45]. It is acquired
by determining their word length, which aids in the selection of a higher resolution. The
fulfillment of the function necessitates appropriate mathematical matching, as the better
resolution may result in higher system costs. As a result, implementing a single neural network
in hardware will necessitate the multiplier, addition, and excitation function realization blocks
[49]. The testing of the advanced neural networks and machine learning algorithms will
require an advanced level of FPGA and simulation tools. The FPGA provides the platform
in which high performance can be achieved using data processing blocks. The most powerful
and mature neuro-chips are digital neural ASICs. High computational precision, great depend-
ability, and high programmability are all advantages of digital technology. Furthermore,
advanced design tools for digital full and semi-custom design are accessible. The weights of
synaptic connections can be stored on or off the chip. The trade-off between speed and size
determines this decision.

The organization of the article is as follows: section 2 presents the related work, section 3
presents the structure of the single-layer neural network, and section 4 presents the design of
the logarithmic multi-neuron system. The results & discussions are presented in section 5,
followed by conclusions in section 5.

2 Related work

Neural networks (ANN) have been used widely for developments in a broad spectrum of
perception, classification, association, control, and biomedical applications. The ANN
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hardware implementation was done on FPGA in the digital domain to miniaturization of
component manufacturing technology. A high-speed ANN architecture was implemented on
the Xilinx FPGA chip for random number generators and further used for data encryption over
the network. The perceptron model of the multi-bit [4] input neuron was implemented in
130 nm technology. The model was proposed for the low power consumption baes on 4
neurons per layer. The multilayer perceptron architectures are for complex decision regions
[33] and activation functions play an important role. The three-layer model first is the input
layer, the second layer is the perceptron or hidden layer, and the third output layer. A
feedforward network was used for the selection of concrete beams [30]. The metaheuristics
approach [44] was used to realize the feed-forward ANN. The ANN engine was implemented
on FPGA based on the parallel processing [14] the blocks and hardware parameters were
analyzed. The backpropagation multilayer perceptron (MLP) was proposed to design based on
a very large scale of integration (VLSI) parameters and FPGA [13] using a very high speed
integrated circuit (VHSIC) - hardware description language (VHDL) to amylase the chip
performance. The Spiking neural network (SNN) [23] was designed for targeting 64 K neurons
on FPGA for hardware accelerator. The performance of the neural network was enhanced
using the concept of parallelization [15] applied in both the time and space domains. The
design was having 3/2, 7/3, 15/4, and 31/5 inputs/outputs. The design was implemented Altera
EP3C16F484- Cyclon III FPGA on Quartus II software using VHDL.

In general, hardware systems for deep neural network (DNN) inference [52] suffer from a
lack of on-chip memory, compelling access to additional memory-only processors. It was
recommended to employ nonvolatile scalable memory that can scale up to a 64-chip illusion
system. The hardware neural network models have been used for dataflow [60] and weight
access patterns of neurons, in which recurrent neural networks (RNNs) and probabilistic
graphical models are used for compute-in-memory (CIM) designs that can be implemented
using CMOS technology. The neural network design was implemented on FPGA [58], and the
performance may be measured using hardware metrics like memory, chip area, and size. Such
hardware can be utilized to create hardware embedded chips and internet of things (IoT)
applications. Deep learning approaches [11] have been successfully employed to handle a
variety of artificial intelligence challenges. The FPGA has been utilized to optimize various
reconfigurable computer hardware and software for AI designs. The topologic and hardware
designs are based on multiple neuron processing and scalable computation. The neural
network architecture can be implemented using a processing engine layout [34] for the
hardware performance analysis framework for recognizing bottlenecks in the initial stages of
a convolutional neural network (CNN). This methodology is useful for evaluating various
architectures for embedded chips and associated applications like hardware accelerators. The
ANN was modeled for various logic functions and logic gates [26]. One of the gates utilized
for serval applications and quick modeling is the XOR gate. The 3-input XOR gate hardware
was modeled using ANN to anticipate intelligent learning and numerical methods to improve
forecast accuracy. A novel way was presented for accelerating fully linked feed-forward neural
networks [48] using an FPGA-based accelerator. The program was created to make diverse
implementation activities easier by dividing the architecture into elementary layers, estimating
the available computational hardware resources, and generating high-level C++ descriptions
using high-level synthesis (HLS) tools. The decision tree classifier and neural networks [38]
have been used for the hardware in loop testing in the power window. The machine models
were used to estimate the 93% accuracy of the system in automotive power window hardware.
The neural networks have been used for the diagnosis of different diseases and their realization
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in hardware are helpful for the implementation of optimal hardware. The diagnosis of epilepsy
neurological disorder [54] has been done using the analysis of the electroencephalography
(EEG) signals by embedding the feed-forward multi-layer neural network architecture (MLP
ANN) and FPGA using VHDL in the time-frequency domain. The multiple input neural
networks [29] have been used for forecasting death cases in China due to COVID-19. The
models were applicable to do the study and estimation of COVID-19 cases across the globe.
The neural network inference [61] is limited because of encounters between the high compu-
tation and storage complexity and resource-restricted hardware requirements in different
applications. The current study trends are developing in the direction of neural network
research that is complicated in the acceleration of FPGA-based stages. The architecture of
neural networks can be designed and synthesized on FPGA to estimate the hardware chip
applications, and optical solutions for computing parallelism, data reuse, computing complex-
ity, pruning, and quantization.

The reconfigurable computing architectures [59] play a very important role in real-time
applications. The neural network was implemented in FPGA based on reconfigurable com-
puting. The FPGA implementation has many challenges such as less hardware, memory
utilization, minimum delay and timing parameters, and low power consumption. The VHDL
programming was used to design the hardware chip of the design and on the Xilinx XC
V50hq240 FPGA chip, Zynq FPGA [46] was used to test the behavior of the neural network
chip and throughput optimization. The neural single-input single-output [51] and Multiple-
input multiple-output neural networks were used for forecasting the total number of tourist
arrivals in Spain. ANN acquires many inputs from the unique data set or output of erstwhile
correlated neurons. Each input approaches through a connection, which is called synapses and
which has weight [16]. The scalable ANN chip can be designed that can provide fast response,
low price, less power consumption, and switch to operate with embedded chips and integration
on FPGA.

The ANNs are used in a variety of applications including brain activity, modeling, and
artificial intelligence. When employing HDL language and FPGA-based system retaliation [3],
the number of neurons in an ANN design is limited. The ANN obtains a large number of
inputs from a single data set or the output of previously connected neurons. The inputs are
advanced through a link called synapses, which has a weight attached to it. The realization of
the system may be using multilevel communication networks, convolution neural functions,
single layer architecture, and other neural networks. The scalable ANN chip can be used to
give fast response, cheap cost, and low power consumption, as well as the ability to work with
embedded circuits [9] and FPGA integration. The neural systems and switching operations are
followed by cluster-based models, in which a large number of units are deployed throughout a
specific network to provide original and supplemental services, which can improve commu-
nication. The specialized processors use standardized software, response behavior, essential
data control, and service module for coordination [28]. For logarithmic inputs, ANN modeling
can be done in terms of the power of two. For large-scale network structures in which
multiuser support the network’s functionality, such as 2-input, 4-input, 8-input, 16-input, 32-
input, 64-input, etc. The chip design and FPGA-based system integration and implementation
will offer scalable computing hardware [39] and the platform in which we can extend the user
and computational hardware as the communication system is needed. There is a research gap
in the design and development of the chip that supports the multi-neuron-clustering environ-
ment in which multiple users are communicating in intra-exchange and interexchange envi-
ronments [35].
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The motivation for ANN hardware chip design is the current need for neuromorphic chips in
real-world applications that need optimal hardware and memory. The deep learning-based ANN
architecture is designed to provide optimal performance [17]. The hierarchical astrocyte network
(HANA) design [12] is based on the hierarchical networks-on-chip (NoC) structure by providing
a unique of neurons and astrocytes cells that support information exchanges between astrocyte
cells and addresses the connectivity difficulty. The design was based on scalable computing. By
establishing a modular array of clusters of neurons employing a hierarchical structure of low and
high-level routers using 65 nm CMOS technology, the unique hierarchical NoC architecture was
employed to overcome the scalability issue [63]. An embedded system-based chip [62] was
designed using a cross paradigm neuromorphic chip, to simplify the structure of different neural
networks spike or non-spike forms. Neuro-inspired computing chips [43] are a promising
approach to the development of intelligent computing because they mimic the structure and
operating principles of the biological brain. These neuro-inspired computing chips are superior to
traditional systems. It is predicted to provide benefits in terms of hardware memory, energy
efficiency, and computational power. The objective of the research work is to design andmodel of
single-layer neural network chip for multiple scalable neuron inputs and estimate the hardware
chip performance in terms of memory, delay, and FPGA resources.

3 Structure of single-layer neural network

In a general way, the model of the neural network [5] is depicted in Fig. 1. The model accepts
the ‘n’ number of neuron inputs. Let us consider that the inputs are X1, X2, X3……Xn. These
inputs are processed with their corresponding weights as W1, W2, W3…...Wn and ‘b’ is the
bias input. The nonlinear execution function is f(x). The neuron processing is expressed with
the help of the Eq. (1).

y ¼ f xð Þ ð1Þ

Fig. 1 ANN Structure [25]
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x ¼ ∑
n

i¼1
xiwi þ Bias bð Þ ð2Þ

The Wi is mentioned as the weights for the ith connections and b is the bias inputs. The
behavior of the function f(x) is a nonlinear excitation function. The most popular excitation
function used is expressed as.

For linear function,

f xð Þ ¼ x ð3Þ
For log sigmoid function,

f xð Þ ¼ 1

1þ e−x
ð4Þ

For tan sigmoid function,

f xð Þ ¼ ex−e−x

ex þ e−x
ð5Þ

Figure 2 presents the ANN structure of 8 neuron inputs with their weight coefficients, the Eq.
(1) is expressed as

Fig. 2 ANN with 8 inputs and weights

28219Multimedia Tools and Applications (2023) 82:28213–28234



y ¼ ∑
8

i¼1
X iWi þ bð Þ ð6Þ

The output is expressed as

y ¼ X 1W1 þ X 2W2 þ X 3W3 þ X 4W4 þ X 5W5 þ X 6W6 þ X 7W7 þ X 8W8 þ bð Þ ð7Þ
The hardware realization of the network needs 8 multipliers and 8 adders as shown in Table 1.
The multipliers are presented as M1, M2…M8.

y ¼ M1 þM2 þM 3 þM4 þM 5 þM6 þM7 þM 8 þ bð Þ ð8Þ

4 Design of Logarithmic Multi Neuron System

The scalable design of the logarithmic single layer multi-neuron system [8, 53] is shown in
Fig. 3. The design has 64 neurons inputs X1, X2, X3, X4 …….X64 with corresponding input
weights as W1, W2, W3, W4………… W64. The functionality of the 64 inputs ANN can be
understood with the help of parallel working of 8 blocks of 8-point ANN. The individual block
accepts the 8 neuron points with their weights. The parallel execution of all the modules
provides faster operation. The suggested operation is expended in terms of logarithmic
execution in terms of the power of 2. It is a scalable architecture that can be progressed in
the power of 2. The operation of the 64 inputs ANN can be understood with the help of
Table 2. The weighted sum is obtained with the processing of 64-point ANN with a bias to
provide final outputs. The scalable architecture is assigned with the module address “000”,
“001”, “010”, “011”, “100”, “101”, “110”, and “111” against the sequential processing of 8-
point ANN architecture. The design is scalable can be extended to a larger extent and solve the
ANN problems at a large scale.

The finite state machine (FSM) concept is used to create the ANN architecture. The state
memory is used to save the current state of the machine, which requires ‘N’ flip-flops. A single
clock signal is used to synchronize all of the flip-flops. The state vector is used to hold the state
memory in the state machine as depicted in Fig. 4. The state machine processes state-0, state-1,
state-2, state-3, state-4, state-5, state-6, and state-7 using the address inputs “000”, “001”,
“010”, “011”, “100”, “101”, “110”, and “111”. One hot encoding approach is one in which
one state is realized depending on its selection input and one output is derived all at once. The
neurons X1 to X8 are multiplied with weights W1 toW8 and added with bias input-1 to produce

Table 1 Multipliers and adders

Multiplier-1 (X1 x W1)=M1 Adder (M1+M2+M3+M4+M5+M6

+M7+M8)+Bias
Step Function f(x) Output (Y)

Multiplier-2 (X2 x W2)=M2

Multiplier-3 (X3 x W3)=M3

Multiplier-4 (X4 x W4)=M4

Multiplier-5 (X5 x W5)=M5

Multiplier-6 (X6 x W6)=M6

Multiplier-7 (X7 x W7)=M7

Multiplier-8 (X8 x W8)=M8
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the neuron output Y1 in state-0 (000). The neurons X9 to X16 are multiplied with weights W9 to
W16 and coupled with bias input-2 to produce the neuron output Y2 in state-1 (001). The
neurons X17 to X24 are multiplied with weights W17 to W24 and added with bias input-3 in
state-2 (010) to produce the neuron output Y3. The neurons X25 to X32 are multiplied with
weights W25 to W32 and added with bias input-4 in state-3(011) to produce the neuron output
Y4. The neurons X33 to X40 are multiplied with weights W33 to W40 and added with bias input-
5 in state-4 (100), yielding the neuron output Y5. The neurons X41 to X48 are multiplied with
weights W41 to W48 and added with bias input-6 to produce the neuron output Y6 in state-5
(101). The neurons X49 to X56 are multiplied with weights W49 to W56 and added with bias
input-7 to produce the neuron output Y7 in state-6 (110). The neurons X57 to X64 are multiplied
with weights W57 to W64 and added with bias input-8 to produce the neuron output Y8 in state-
7 (111).

Fig. 3 Multiple input ANN (64-point) architecture

Table 2 Realization of 64-point ANN

Selection_logic Execution

000 8-Point ANN (X1W1+X2W2+X3W3+X4W4+ X5W5+ X6W6+ X7W7+ S8W8)+Bias
001 8-Point ANN (X9W9+X10W10+X11W11+X12W12+X13W13+X14W14+X15W15+X16W16)+Bias
010 8-Point ANN (X17W17+X18W18+X19W19+X20W20+X21W21+ X22W22+X23W23+X24W24)+Bias
011 8-Point ANN (X25W25+X26W26+X27W27+X28W28+X29W29+X30W30+X31W31+X32W32)+Bias
100 8-Point ANN (X33W33+X34W34+X35W35+X36W36+X37W37+X38W38+X39W39+X40W40)+Bias
101 8-Point ANN (X41W41+X42W42+X43W43+X44W44+X45W45+X46W46+X47W47+X48W48)+Bias
110 8-Point ANN (X49W49+X50W50+X51W51+X52W52+X53W53+X54W54+X55W55+X56W56)+Bias
111 8-Point ANN (X57W57+X58W58+X59W59+X60W60+X61W61+X62W62+X63W63+X64W64)+Bias
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5 Results and discussions

The hardware chip of the 8-point ANN and 64-point ANN is designed using VHDL coding in
Xilinx ISE 14.7. Figure 5 presents the register transfer level (RTL) block diagram for the 8-
point to 64-point ANN chip. The RTL depicts all inputs and outputs of the designed chip.

X1 < 7:0 > to X64 < 7:0 > presents the inputs (8-bit) of 64 neuron inputs ANN
architecture with std_logic_vector data type. W1 < 7:0 > to W64 < 7:0 > presents the
weight inputs (8-bit) corresponding to neuron inputs X1 to X64 of std_logic_vector data type.
B_i < 15:0 > is the bias input treated as the perceptron of the ANN architecture of 16-bit with
std_logic_vector data type. X_A < 15:0 > It is the activation function output ANN architec-
ture with the 16-bit size of std_logic_vector data type. Y < 15:0 > It is the actual output with
weighted sum and bias input, processed with an activation function of 16-bit of
std_logic_vector data type.

Modelsim simulation of 8 input ANN in binary and integer is shown in Figs. 6 and 7
respectively. Table 3 lists the test cases used for the functional simulation of the designed ANN
chip. Modelsim simulation of 64 input ANN in binary and integer is shown in Figs. 8 and 9.
Table 4 lists the test cases used for the functional simulation of the designed ANN-64 with test
case-1 to test case-8.

The percentage of hardware that is used by the device is given by the device utilization
report [37] for the implementation of the chip. The report is taken directly from the Xilinx
software as the device utilization report. The report presents the number of adders, multipliers,
slices, 4 input lookup tables (LUT) [36], input/output blocks (IOB), total memory usage (kB),
combinational delay (ns) that includes path delay and routing delay. The Xilinx device
summary for ANN-8, ANN-16, ANN-24, ANN-32, ANN-40 ANN-48, ANN-66, and ANN-
64 is given in Table 5. The target device is Virtex-5 FPGAwith device xc5vlx20t-2-ff323 used
for simulation and synthesis [24]. Figure 10 presents the hardware utilization curve for ANN-8
to ANN-64 hardware chips.

Fig. 4 FSM for 64 input ANN Processing
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In the simulation of ANN-64, the hardware and memory usage depends on the utilizations
of multipliers and adders. The detail of these units is reported directly by the software and
change with the number of neurons and weight inputs. The hardware utilization will increase

Fig. 5 RTL of ANN
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with the increase in cluster inputs of the ANN chip. The simulation results show that the
number of multipliers, adders, slices, LUTs, memory is increasing as the number of neurons
are increasing in the multi-input ANN design. The reason for this is that the adders and
multipliers blocks increase the number of gates and concurrent logic modules, which takes up
more memory and resources on the FPGA.

Fig. 6 Modelsim simulation of 8 input ANN in binary

Fig. 7 Modelsim simulation of 8 input ANN in integer
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The report predicts that the number of multipliers and 16-bit adders are increasing with the
number of neurons inputs. The predicting of mean squared error (MSE), mean absolute
percentage error (MAPE), root mean squared error (RMSE) is done for the FPGA hardware
resources [25, 42] based on the training and validation sample neurons with different cluster
inputs of ANN design. In the training (X1 to X40) are considered and (X41 to X64) for
validation. The values are determined using the equations [19, 20].

MSE ¼ 1

n
∑
n

i¼1
yi−byi
�

�

�

�

�

�

2
ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
yi−byi
�

�

�

�

�

�

2
s

ð10Þ

MAPE ¼ 1

n
∑
n

i¼1

yi−byi
�

�

�

�

�

�

yi
:100% ð11Þ

yi is the actual value and byi is the predicted value for ‘n’ number of predications. Based on
linear regression model and 200 estimations for 64 number of neurons the value of MSE =
0.00500, RMSE = 0.07071, and MAPE = − 0.003906%.

The efficiency of the hardware simulation depends on the resources utilization such as logic
gates, input/output block, combinational logic, memory, and delay. For the complex nonlinear
application, multilayer perceptron architecture is beneficial in comparison to single-layer
multiple input ANN. On the other hand, it is simple to build up and train a single layer

Table 3 Test cases for the simulation waveform

Pins Detail Test case-1 Test case-2 Test case-3

Integer Binary Integer Binary Integer Binary

X1<7:0> Input 2 00000010 1 00000001 4 00000100
X2<7:0> Input 3 00000011 2 00000010 4 00000100
X3<7:0> Input 4 00000100 3 00000011 6 00000110
X4<7:0> Input 5 00000101 3 00000011 8 00001000
X5<7:0> Input 6 00000110 4 00000100 3 00000011
X6<7:0> Input 7 00000111 4 00000100 5 00000100
X7<7:0> Input 8 00001000 5 00000101 7 00000111
X8<7:0> Input 9 00001001 5 00000101 9 00001001
W1<7:0> Input 1 00000001 3 00000011 2 00000010
W2<7:0> Input 2 00000010 1 00000001 2 00000010
W3<7:0> Input 3 00000011 2 00000010 3 00000011
W4<7:0> Input 2 00000010 4 00000100 3 00000011
W5<7:0> Input 2 00000010 5 00000101 4 00000100
W6<7:0> Input 1 00000001 4 00000100 5 00000101
W7<7:0> Input 1 00000001 3 00000011 5 00000101
W8<7:0> Input 2 00000010 1 00000001 4 00000100
B_i<15:0> Input 150 0000000010010110 250 0000000011111010 300 0000000100101100
Y<15:0> output 225 0000000011100001 329 0000000101001001 466 0000000111010010
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Fig. 8 Modelsim simulation of 64 input ANN in binary and integer (inputs)
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perceptron. The neural network model can be explicitly linked to statistical models, allowing it
to share the covariance Gaussian density function. The realization of the MLP will provide
more delay in comparison to single-layer multiple input ANN. Figure 11 shows the hardware
efficiency with targeted FPGA- Virtex-5 for simulation and synthesis of the binary data. The
efficiency variations are noticed with the different test cases in which 8 neurons are processed
at a time and parallel processing modular design-based approach is followed to realize the 64
input ANN. The single-layer ANN hardware is used to solve simple problems and parallel
processing provides fast computation time. In terms of hardware efficiency, the single-layer
will provide faster response and computation time in comparison to MLP. The MLP requires
more delay to compute the logic as it is processed by different hidden layers. The output

Fig. 9 Modelsim simulation of 64 input ANN in binary (weights and outputs)
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Table 4 Test cases for the simulation waveform ANN-64 point

Pin Direction Binary Integer Pin Direction Binary Integer

Test Case-1
X1<7:0> Input 00000001 1 W1<7:0> Input 00001000 8
X2<7:0> Input 00000010 2 W2<7:0> Input 00001000 8
X3<7:0> Input 00000011 3 W3<7:0> Input 00001000 8
X4<7:0> Input 00000100 4 W4<7:0> Input 00001000 8
X5<7:0> Input 00000101 5 W5<7:0> Input 00001000 8
X6<7:0> Input 00000110 6 W6<7:0> Input 00001000 8
X7<7:0> Input 0000011 7 W7<7:0> Input 00001000 8
X8<7:0> Input 00001000 8 W8<7:0> Input 00001000 8
Sel<2:0> Input 000
b_i1<15:0> Input 0000000001111000 120
Y1<15:0> output 0000001100110000 408

Test Case-2
X9<7:0> Input 00001001 9 W9<7:0> Input 00000111 7
X10<7:0> Input 00001010 10 W10<7:0> Input 00000111 7
X11<7:0> Input 00001011 11 W11<7:0> Input 00000111 7
X12<7:0> Input 00001100 12 W12<7:0> Input 00000111 7
X13<7:0> Input 00001101 13 W13<7:0> Input 00000111 7
X14<7:0> Input 00001110 14 W14<7:0> Input 00000111 7
X15<7:0> Input 00001111 15 W15<7:0> Input 00000111 7
X16<7:0> Input 00010000 16 W16<7:0> Input 00000111 7
Sel<2:0> Input 001
b_i2<15:0> Input 0000000000100010 130
Y2<15:0> output 0000001100111110 830

Test Case-3
X17<7:0> Input 00010001 17 W17<7:0> Input 00000110 6
X18<7:0> Input 00010010 18 W18<7:0> Input 00000110 6
X19<7:0> Input 00010011 19 W19<7:0> Input 00000110 6
X20<7:0> Input 00010100 20 W20<7:0> Input 00000110 6
X21<7:0> Input 00010101 21 W21<7:0> Input 00000110 6
X22<7:0> Input 00010110 22 W22<7:0> Input 00000110 6
X23<7:0> Input 00010111 23 W23<7:0> Input 00000110 6
X24<7:0> Input 00011000 24 W24<7:0> Input 00000110 6
Sel<2:0> Input 010
b_i3<15:0> Input 0000000010001100 140
Y3<15:0> output 0000010001100100 1124

Test Case-4
X25<7:0> Input 00011001 25 W25<7:0> Input 00000101 5
X26<7:0> Input 00011010 26 W26<7:0> Input 00000101 5
X27<7:0> Input 00011011 27 W27<7:0> Input 00000101 5
X28<7:0> Input 00011100 28 W28<7:0> Input 00000101 5
X29<7:0> Input 00011101 29 W29<7:0> Input 00000101 5
X30<7:0> Input 00011110 30 W30<7:0> Input 00000101 5
X31<7:0> Input 00011111 31 W31<7:0> Input 00000101 5
X32<7:0> Input 00100000 32 W32<7:0> Input 00000101 5
Sel <2:0> Input 011
b_i4<15:0> Input 0000000010010110 150
Y4<15:0> output 0000010100001010 1290

Test Case-5
X33<7:0> Input 00100001 33 W33<7:0> Input 00000100 4
X34<7:0> Input 00100010 34 W34<7:0> Input 00000100 4
X35<7:0> Input 00100011 35 W35<7:0> Input 00000100 4
X36<7:0> Input 00100100 36 W36<7:0> Input 00000100 4
X37<7:0> Input 00100101 37 W37<7:0> Input 00000100 4
X38<7:0> Input 00100110 38 W38<7:0> Input 00000100 4
X39<7:0> Input 00100111 39 W39<7:0> Input 00000100 4
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Table 4 (continued)

Pin Direction Binary Integer Pin Direction Binary Integer

X40<7:0> Input 00101000 40 W40<7:0> Input 00000100 4
Sel <2:0> Input 100
b_i5<15:0> Input 0000000010100000 160
Y5<15:0> output 0000010100110000 1328

Test Case-6
X41<7:0> Input 00101001 41 W41<7:0> Input 00000011 3
X42<7:0> Input 00101010 42 W42<7:0> Input 00000011 3
X43<7:0> Input 00101011 43 W43<7:0> Input 00000011 3
X44<7:0> Input 00101100 44 W44<7:0> Input 00000011 3
X45<7:0> Input 00101101 45 W45<7:0> Input 00000011 3
X46<7:0> Input 00101110 46 W46<7:0> Input 00000011 3
X47<7:0> Input 00101111 47 W47<7:0> Input 00000011 3
X48<7:0> Input 00110000 48 W48<7:0> Input 00000011 3
Sel <2:0> Input 101
b_i6<15:0> Input 0000000010101010 170
Y6<15:0> output 0000010011010110 1238

Test Case-7
X49<7:0> Input 00110001 W49<7:0> Input 00000010 2
X50<7:0> Input 00110010 W50<7:0> Input 00000010 2
X51<7:0> Input 00110011 W51<7:0> Input 00000010 2
X52<7:0> Input 00110100 W52<7:0> Input 00000010 2
X53<7:0> Input 00110101 W53<7:0> Input 00000010 2
X54<7:0> Input 00110110 W54<7:0> Input 00000010 2
X55<7:0> Input 00110111 W55<7:0> Input 00000010 2
X56<7:0> Input 00111000 W56<7:0> Input 00000010 2
Sel <2:0> Input 110
b_i7<15:0> Input 0000000010110100 180
Y6<15:0> output 0000001111111100 1020

Test Case-8
X57<7:0> Input 00111001 W57<7:0> Input 00000001 1
X58<7:0> Input 00111010 W58<7:0> Input 00000001 1
X59<7:0> Input 00111011 W59<7:0> Input 00000001 1
X60<7:0> Input 00111100 W60<7:0> Input 00000001 1
X61<7:0> Input 00111101 W61<7:0> Input 00000001 1
X62<7:0> Input 00111110 W62<7:0> Input 00000001 1
X63<7:0> Input 00111111 W63<7:0> Input 00000001 1
X64<7:0> Input 01000000 W64<7:0> Input 00000001 1
Sel <2:0> Input 111
b_i8<15:0> Input 0000000010111110 190
Y7<15:0> output 0000001010100010 674

Table 5 Xilinx software parameters for ANN-8 point to ANN-64 point

Size/Parameters Multipliers 16- bit Adders Slices LUTs IOB Delay(ns) Memory (kB)

ANN-8 8 8 379 648 147 37.091 116,736
ANN-16 16 16 726 1280 275 37.091 124,480
ANN-24 24 24 1073 1928 403 37.091 130,048
ANN-32 32 32 1420 2560 531 37.091 137,280
ANN-40 40 40 1766 3208 659 37.091 143,424
ANN-48 48 48 2113 3840 787 37.091 151,556
ANN-56 56 56 2460 4488 915 37.091 158,724
ANN-64 64 64 2807 5120 1043 37.091 165,892
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function of the ANN hardware chip is the throughput that depends on the length of binary
input, weights, bias input, and hardware and timing parameters. The output layer receives the
inputs from the layers above it, executes the calculations using its neurons, and then computes
the output.

The hardware delay depends on two components of propagation delay are logic delay and
routing delay. The logic delay is a function of the number and kind of logic gates the signal
passes through. Because the FPGA compiler tries to cluster the components of a combinatorial
path as tightly as possible on the FPGA. The routing delay is a function of the length of the
wire path the signal travels, which is often modest. In the simulation, the total path delay is

Fig. 10 Hardware utilization for ANN-8 to ANN-64 hardware chip

Fig. 11 Hardware efficiency with targeted FPGA
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37.091 ns, in which 89.00% delay is from logic and 11.00% from routing that help to maintain
the FPGA efficiency greater than 90.00% in most cases.

6 Conclusions

ANNs are known for their high degree of connectedness and massive data volumes. For the
realization of the single-layer networks, neuron-level parallelism is more effective. The intrinsic
distributed component of ANNs is in both memory and computational logic, suggesting that the
implementation will be done directly in hardware, allowing for significant benefits as network sizes
grow. The hardware chip The scalable chip design of 8 input ANN and 64 input ANN is performed
successfully in Xilinx ISE 14.7. The Modelsim simulation is verified under different test cases and
hardware parameters are extracted from the targeted device of Virtex-5 FPGA. The number of
multipliers/adders for ANN-8, ANN-16, ANN-24, ANN-32, ANN-40, ANN-48, ANN-56 and
ANN-64 are 8, 16, 24, 32, 40, 48, 56, and 64 respectively. The number of slices for ANN-8, ANN-
16, ANN-24,ANN-32,ANN-40, ANN-48,ANN-56, andANN-64 are 379, 726, 1073, 1420, 1766,
2113, 2460, and 2807 respectively. The number of LUTs for ANN-8, ANN-16, ANN-24, ANN-32,
ANN-40, ANN-48, ANN-56, andANN-64 are 648, 1280, 1928, 2560, 3208, 3840, 4488, and 5120
respectively. In the same way, the reported number of IOBs are 147, 275, 403, 531, 657, 787, 915,
and 1043 for ANN-8 to ANN-64 respectively. The combinational path delay is 37.091 ns, common
to all scalable modules. The hardware efficiency of the design is greater than 90.00%with theMSE
= 0.00500 for ANN-64. The hardware usage summary concludes that the ANN chip hardware
utilization is increasing with the ANN cluster size. The memory is also increasing from 116,736 kB
to 165,892 kB. The chip hardware requirements will increase definitely with the number of neuron
inputs. The biggest challenge for the hardware is to develop an embedded chip that can be
compatible to support the specific hardware. The limitation of the work is that the chip design
supports the 64 neurons processing ANN hardware and the chip functionality is verified in Virtex-5
FPGA. Therefore, the device resources utilization and timing parameters will change on another
series of FPGA. The design can be extended further for large-scale ANN using pipelined and
parallel processing that supports maximum hardware resources count and combinational blocks on
the targeted FPGA. In the research work, we have followed the concept of scalable computing and
modular design that can be used to support the design and development of the large-scale
neuromorphic embedded chip. In the future, the research can be focused on the hardware chip
design and synthesis for multilayer neural network architecture.
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