
https://doi.org/10.1007/s11042-023-14597-6

Affective social anthropomorphic intelligent system

Md. Adyelullahil Mamun1 ·Hasnat Md. Abdullah1 ·Md. Golam Rabiul Alam1 ·
MuhammadMehedi Hassan2 ·Md. Zia Uddin3

Abstract
Human conversational styles are measured by the sense of humor, personality, and tone
of voice. These characteristics have become essential for conversational intelligent vir-
tual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs)
are failed to interpret the affective semantics of human voices. This research proposes an
anthropomorphic intelligent system that can hold a proper human-like conversation with
emotion and personality. A voice style transfer method is also proposed to map the attributes
of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by
converting the temporal audio wave data, which comprises discrete patterns for audio fea-
tures such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is
used to predict seven different affective states from voice. The voice is also fed parallelly
to the deep-speech, an RNN model that generates the text transcription from the spec-
trogram. Then the transcripted text is transferred to the multi-domain conversation agent
using blended skill talk, transformer-based retrieve-and-generate generation strategy, and
beam-search decoding, and an appropriate textual response is generated. The system learns
an invertible mapping of data to a latent space that can be manipulated and generates a
Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and
style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram.
The outcomes of the studies we conducted on individual models were auspicious. Further-
more, users who interacted with the system provided positive feedback, demonstrating the
system’s effectiveness.

Keywords IVA · NLP · SER · Emotion · Audio-emotion · Personal-assistant

1 Introduction

Intelligent Virtual Assistant (IVA) is an artificial intelligence-enabled advanced voice assis-
tant that emulates a human and delivers personalized responses through cognitive computing
and analytics. These emotion-aware conversational virtual assistants have a plethora of
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applications. A fine-tuned system may be employed in a variety of imaginative new ways,
including voice assistants, customer service agents, robotics, therapy, animation, e-learning,
or games. M. Elena et al. demonstrate, in their paper [40], the usage of intelligent virtual
assistants that work as salespeople in a virtual shop, increasing customer loyalty, and satis-
faction while also being accessible to the disabled. Another field that can be benefited from
this technology is interactive systems for industrial assembly. The paper [6] titled “Voice-
based Augmented Reality Interactive System for Car’s Components Assembly” gives us
a glimpse of the future voice-based AR interactive system for industrial application. This
paper argues that aural language is the most intuitive tool for interaction. In their work, the
authors suggest a 3D automobile assembly and disassembly system that manipulates objects
using voice instructions, allowing for a simple and uncomplicated interface between the
user and the system. From IBM Shoebox to Google Assistant, IVA technology has come a
long way. Despite the best effort, IVA still falls short in many areas that are innate to human
interaction, especially emotions and empathy. Strives are being made to clear the boundary
between humans and IVA.

Most contrasting characteristics with humans are: not getting the full context of the
speech, lackings in recognition of the emotions of the speaker, and no presence of person-
ality. Current IVA can hold short conversations like asking, “what is the weather?”, “do I
have meetings?”, “send an email”, etc. Unfortunately, it is not yet possible to hold a mean-
ingful, deep conversation. We will dissect three major limitations of current generation IVA:
context, emotion, and personality.

Firstly, current IVA technology disregards context, voice tone, etc. It cannot understand
if a question is serious, sarcasm, or a joke. An infamous incident took place in 2012, a
man 1 killed his friend and allegedly asked “SIRI” (a commercial IVA developed by Apple)
where to hide the body. SIRI answered, not getting the full context, and surely enough,
the murderer followed the instruction. However, after the incident, Apple, Siri’s maker,
disabled this conversation, and now Siri only responds with an apology. To add to that, these
sophisticated virtual agents do not know anything about languages. When we say “Alexa (a
commercial IVA developed by Amazon), what is the weather today,” her voice-recognition
model converts speech to text based on models of digitized sounds. The reason why we get
desired results is that the sentence “what is the weather today” has words like “weather” and
“what,” which are classified as known intent for weather report searching. If we ask, “Alexa,
I do not want to know about the weather today,” the response will not be an expected one.

Secondly, emotion is another region in which IVA lacks greatly. As humans are driven by
emotion, there is a huge communication gap when communicating with IVA. This becomes
more serious when it turns into a mental health issue. For some time now, all public-facing
commercial IVA has been hard-coded to detect some trigger word. For example, if a user
says, “I want to kill myself,” to IVA, it will show a suicide helpline and prompt them to
get help. But, if we rephrase the sentence in a different way, like “I don’t want to wake up
tomorrow,” IVA will not show help; it will try to cancel tomorrow’s schedule or do a simple
search. This happens because the tone of voice is a big indicator of emotion. Without an
emotional context, that sentence can mean many things, from killing oneself to sleeping on
the weekend morning. An emotionally aware IVA can help a lot of people who are suffering
from mental health issues.

Lastly, current generation IVA does not have a personality. It is easier for humans to
relate and connect with others if they have similar personalities [39]. All of the current IVA
has two significant challenges to meet: How to transmit both effective and personalized
qualities in the form of a consistent and realistic speech when embedded in a computational
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framework [41]. The IVA needs to adapt its speech to different interaction types that users
might use [33]. The benefit of having a personality in an IVA is that it can continue a proper
conversation with human beings. The character of IVAs must be natural and believable and
must reflect moods, personality, and expressions [48]. That is why an added personality will
make a significant change in how we interact with the IVAs now, which will give us the
feeling of having a companion.

The issues mentioned above are extremely complex, and there is no single simple solu-
tion to them. Researchers are attempting to devise solutions that address those deficiencies.
IVAs from the current generation can be improved in various ways. Nevertheless, our
research’s contribution is more specific. We have developed a novel, emotion-aware IVA
that can transfer any person’s voice style given, we feed the person’s sufficient audio voice.

The key contributions to this research include:

• A social anthropomorphic intelligent system has been proposed that can classify proper
emotions With Parallel 2D CNN and Transformer-encoders.

• A context retrieval technique is proposed that transcribes the voice to text using
DeepSpeech while also generating appropriate emotional conversation responses with
Blender from both classified emotion and transcribed text.

• Finally a voice synthesizer model is proposed that generates proper affective audio
responses with personality traits like tones/cues in the synthesized voice with trans-
ferred style, using Flowtron.

2 Literature review

Speech Emotion Recognition is not a new research interest. We can find a conference paper
[12] dated back to 1996, which tries to incorporate emotion with speech using statistical
pattern recognition. Even though research interest in software emotion recognition has not
changed for decades, its methodology certainly did.

The traditional approach to recognizing emotion from speech comprises Modeling,
Annotation, Audio Features, and Textual Features [5, 17, 55, 63]. According to L. Dev-
illers et al., the most crucial thing after a model is to collect the appropriate emotional audio
dataset that is well labeled and suitable for a model that focuses on emotion representa-
tion [15]. As B. W. Schuller et al. explain in their article [54], the Observer Rating may
be an appropriate label in automated emotion detection since it focuses on what emotion
the speaker conveyed to the dataset rather than what emotion the speaker felt. Many prior
research employed acting or targeted elicitation to avoid rating annotations.

Because of the limits of the old approach, scientists and researchers are turning to more
recent techniques like Deep Learning. However, some of the conventional SER’s intrinsic
limitations remain in the new methodology. Before we begin, we must first explore the
SER challenges and how scholars attempted to address them. We will encounter three key
challenges.

First and foremost, a holistic speaker model is required for accurate emotional identifi-
cation, taking into consideration vocal characteristics such as tone, pitch, loudness, speech
speed, and voice condition. The acoustic environment, exhaustion, drunkenness, hoarse
voice due to a cold, age of the speaker, accent, and a variety of other circumstances can
all have an influence on the speaker’s tone. In their study, B. Aazam, A. Dariush, and H.
Mahdi show that a speaker’s age can be predicted with reduced mean absolute error using
audio speeches [1]. This demonstrates that a speaker’s age influences the type of speech
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spectrogram he or she creates. Deviation of certain states and traits has been proven to
affect model performance [20, 44]. To overcome this problem, several DNN techniques
have been proposed. Glorot et al., in their research [20], demonstrated that Stacked Denois-
ing Auto-Encoders could extract audio features without labeled data or human supervision.
With the aid of a simple rectifier unit, this is achievable. Furthermore, their method greatly
enhanced generalization over the baseline. Similarly, Deng et al., in their study [13], deal
with the scenario where training and test corpora come from separate datasets. To decrease
the disparity and extract common features created by multiple states, such as speakers, envi-
ronment, and language, they suggested a “shared hidden-layer autoencoder” approach. The
results of the experiments revealed that it outperformed other domain adaptation models.
S. Mohammad and B. Azam presented [38] a minimum vector of features for identifying
the state of emotion in a speech in their study. The proposed vector is highly optimized for
minimizing computing resources. To create fourteen feature vector components, the model
integrates prosodic and frequency characteristics such as MFCC, energy, and fundamental
frequency. The author’s subsequent work [53] combines the previously described optimized
feature vector with the Hidden Markov model, which not only streamlines the technique but
also improves performance and overall accuracy. Because real-time applications necessitate
speed and constraint processing, such an optimized technique might be employed in a mul-
timodal system to recognize the speaker’s mood in real-time and synthesize the answer. By
minimizing the feature vector and making the resulting audio-feature spectrogram image
more distinct, we may be able to improve the prediction accuracy of CNN-based model.

Secondly, an emotion recognition system’s success depends on effective data collection.
Since its inception, there has been a scarcity of audio speech data that has been accu-
rately categorized with the emotional states expressed by the audio speech. In the recent
past, attempts have been made to collect or create audio speech data and identify it accu-
rately [20, 44, 63]. Weakly supervised and semi-supervised techniques have been devised
to address this data scarcity. After training a model, semi-supervised learning algorithms
[14, 34] could correctly label the rest of the dataset. According to S. Mohammad and B.
Azam, when a computer program is attempting to identify the emotional state of speech,
the meaning of the words has less of an influence on the detection of the emotional state
[36]. As a result, the statements uttered in the audio voice must be neutral in order for the
classifier model to be free of bias from emotive phrases. The statements included in one
of our datasets (RAVDESS) were of equal syllable length, and the word frequencies and
familiarities were matched using the MRC psycholinguistic database. In addition, another
dataset named “TESS” employed emotionally neutral words to build its dataset. In differ-
ent emotional states, 200 target words were uttered with the line “Say the word ,” with
the target word in the blank space. As a consequence, the audio speech remarks delivered
were neutral. To keep the data quality up, we just cannot rely on machine-generated labels.
It is better to keep humans somewhat involved in the labeling process. This hand-to-hand
cooperation of human labeling with a machine (Semi-supervised learning) is called Active
Learning. On the other hand, anyone may create linguistically and emotionally matched
speech audio data and compare it to the original reference audio speech to filter out the less
similar ones [54]. In their work, B. Azam, A. Dariush, and N. Sadegh proposed a unique
approach [7] for separating audio data from music for the Persian language, based on pitch
and characteristic-based detection. Music is extracted from the classified vocal and non-
vocal components of the speech using the pitch criterion and the properties of the cepstral
coefficients. The classification technique using the audio features and phase selection is a
radical approach that demonstrates the total superiority of the new method for the accurate
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separation of speech from music. This technology might be used in the future to filter away
background music and just extract the necessary voice audio in scenarios where the user
might be surrounded by music.

Generative adversarial networks are also used to generate audio speech and contrast it
to the original reference audio. Two neural networks are used to accomplish this. The first
neural network attempts to create speech in the form of audio. Simultaneously, the second
neural network evaluates the difference and determines which sample is original and which
is created [9]. Furthermore, transfer learning can help to reduce the disparity between pro-
duced and original utterances. Transferring sentiment from text to image has been achieved
via transfer learning [69]. In SER, we feel a similar strategy may be applied. Recently, A.
H. M. Seyyed, B. Azam and R. K. Mohammad introduced TRCLA, a method to address a
new challenge in Transfer Learning: negative transfer. The approach is a cellular learning
automata-based (CLA) transductive learning algorithm [57]. In the case of negative transfer
(NT), two additional decision criteria: merit, and attitude parameters are presented to CLA.
These changes led to improved performance, outcomes, accuracy, and convergence rate for
Transfer learning. TRCLA’s thresholding mechanism is the NT’s limiting step. Using trans-
fer learning, this efficiency can be applied to voice emotion recognition. In their paper,
Google introduced one of the most current advances in the field of transfer learning. The
suggested system includes a speaker encoder network, a seq-to-seq synthesis network based
on Tacotron 2, and an autoregressiveWavenet-based vocoder network. The authors removed
batch normalization from their Tacotron’s text encoder and chose instance normalization
instead. They employed a decoder-enabled neural network to eliminate Tacotrons’ key fea-
tures, which comprise two layers termed Prenet and Postnet. In the Singing Voice Synthesis
Paper, an attention mechanism based on “tanh” was applied [42]. Researchers employed
a speech synthesis model called Flowtron to synthesize spoken audio samples. The mean
opinion score shows that the produced samples were quite comparable to the reference
audios. The value was similar to that of other cutting-edge voice synthesis models.

Finally, the Naturalness of Generated Speech Emotion is of concern. Emotion genera-
tion remains a challenge due to its ambiguity and inherent complexity. Although very little
has been done in this area, there are a few studies that attempt to address the issue. While
contrasting two voice synthesis methods: Unit selection (data-based approach) and Statis-
tical parametric (process-based approach), S. Mohammad and B. Azam addresses the gap
between the naturalness factor of synthesized speech [37]. In human-machine communica-
tion, such as speech, statistical models represent the distribution of parameter values. The
statistical parameters are predicted using a robust statistical model, usually HMM (hidden
Markov model). In their research [32], Lee et al. present an end-to-end mode voice syn-
thesizer using context vector and residual connection at recurrent neural networks that can
construct emotion given emotion labels. Another noteworthy paper [4] is by Akuzawa et
al., who employ VoiceLoop, an autoregressive SS model, in conjunction with Variational
Autoencoder (VAE) to overcome the absence of global characteristics of speech limitation.
When compared to VoiceLoop without label and control speech expression, this upgraded
technique produces higher quality speech. Despite all efforts, voice generation is far from
being natural due to the intrinsic intricacy and non-linear structure of emotion. In terms
of producing samples that are more intelligible to humans, generative adversarial networks
have shown potential [11, 66].

However, we want to illustrate the importance of the Generative Adversarial Network
(GAN) in the SER field. Numerous GAN versions have been developed by different
researchers and have proven effective in many real-life settings since the commencement of
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GAN [21] in 2014 by Goodfellow et al. There have not been as many, but some attempts
have been made to integrate GAN with audio synthesis and generation. In their study
[47], Pascual et al. suggest a generative adversarial framework with an end-to-end speech
enhancement method, which is a viable alternative to the existing methodology that operates
in the spectral domain and utilizes some higher-level features. The model’s encoder-decoder
fully-convolutional structure allows it to work quickly on denoising waveform chunks.
VoiceGAN [19] is a unique neural network model for speeches that can create human-like
vocal audios. Instead of focusing on what the speaker is saying, it trains to replicate the tar-
get speaker’s vocal characteristics and create mel-spectrograms. The spectrograms are then
translated into the time domain for voice audios using the Griffin-Lim technique. WaveNet
[43], proposed by Oord et al., turns mel-spectrograms into time-domain audio waves that
humans hear as speeches. In the publication Parallel WaveGAN [68], they suggested a tech-
nique for producing audio waves using the generative adversarial network method. WaveNet
is trained in this approach such that current mel-spectrograms are independent of past time
slices. In addition, adversarial losses are reduced as a result of the training. One of Google’s
studies in the field of text to voice models presented “Tacotron” [67], which synthesizes
speech directly from characters. This is an end-to-end generating text-to-speech model.
Furthermore, in another publication [68], Google researchers present a system that uses a
recurrent neural network to predict the next feature based on prior features and context, as
well as generate Mel-spectrograms with regard to character embeddings. Using vocoder, a
modified wavenet [58], these Mel-spectrograms are transformed into a time-domain wave-
form. The combination of these two processes produces high-quality audio speech from text
transcriptions and is referred to as “Tacotron 2.” Recently, MelGAN [31] overcomes earlier
model limitations by making architectural improvements and simplifying training method-
ologies. This model does not predict Mel-spectrograms based on prior Mel-spectrograms
and uses a convolutional technique, which results in fewer parameters than other competing
fully connected neural networks models. One of the most significant benefits of this model
over rival models is its quick training speed.

In the recent past, we have seen a new model architecture that has yielded outstanding
performance in the field of speech emotion recognition by utilizing a convolutional neural
network approach with a long short-term recurrent neural network added at the last layer
[63]. On the other hand, researchers presented Glow [29], which employs an invertible 1
x 1 convolution to produce a rudimentary form of generative flow. Using this convolution,
they have improved the “log-likelihood” of any data on established benchmarks. It will also
be employed in speech-generation models such as WaveGlow [51], which will create high-
quality speech from Mel-spectrograms. WaveGlow generates high-quality audio waves by
combining WaveNet [43] and Glow [29] model architectures.

Conversational agent development has experienced a massive shift in paradigm latterly.
Google introduced Meena [2], an open-domain chatbot powered by a massive 2.6B param-
eter neural network model, in early 2020. The research suggests a technique to demonstrate
human-level logic by increasing the likelihood of the next token based on massive amounts
of conversational data gathered from social media. In a newly released study [18] by Face-
book AI, they demonstrated different versions of conversational bots with many parameters.
These models include the characteristics of a real human-like dialogue, such as having a
personality, providing adequate time to the writer, having knowledge as well as empathy,
raising various topics to maintain a healthy conversation, and so on.

The SER system’s reliability may be evaluated by reading papers in which academics
discuss recent challenges in the associated domain. However, a shortage of correctly labeled
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data, as well as different views of the same labeled data, are posing challenges to achieving
the requisite accuracy in the speech emotion detection domain.

3 Dataset description

We used multiple datasets to get well-rounded data for our models. Some of the data were
created professionally, and some were crowdsourced. We were careful not to introduce any
bias in our model, so we tried to balance every data with an equivalent counterpart. For
example, SAVEE had only male actors, so to compensate, we have added a TESS dataset
that contains only female actors. To ensure we get an accurate representation of the real
world, we have added the CREMA-D dataset, which is very diverse and contains audio with
different accents and quality. We have added a summary of the datasets we have used below.

3.1 RAVDESS

RAVDESS [35] is the short form of “Ryerson Audio-Visual Database of Emotional Speech
and Song.” Although the full dataset contains speech and song, audio, and video, we will
be only using the speech audio-only files (16bit, 48kHz .wav) for our purpose. This speech
audio dataset consists of 1440 files (60 Trials x 24 Actors), which were done by professional
actors (12 female and 12 male) vocalizing two lexically similar statements in a North Amer-
ican accent. The speech dataset includes neutral, calm, happy, sad, angry, fearful, surprise,
and disgust expressions with two levels (normal, strong) of emotional intensity.

3.2 SAVEE

The full meaning of SAVEE [61] is Surrey Audio-Visual Expressed Emotion. This dataset
has high-quality audio of only male voices. There are four native English male speakers
who are from the University of Surrey. The use of this male-only dataset will create biases
in the models that will be trained. That is why it is advised to use this dataset with other
datasets with more female (in our case, we used TESS) speakers. There are seven emotional
categories of data in this dataset: anger, disgust, fear, happiness, sadness, surprise, and neu-
tral. The age of the male voices was from 27 to 31 years. The text material consists of 15
TIMIT sentences for each emotion. For one emotion, there are three common, two emotion-
specific, and ten generic sentences that were different for each emotion and phonetically
balanced. The three common and 12 emotion-specific sentences were recorded as neural to
give 30 neutral sentences. In Total, there are 120 utterances per speaker.

3.3 TESS

TESS [49] is the short form of the Toronto Emotional Speech Set. This dataset consists of
the voices of two actresses aged 26 and 64. As a whole, there are a set of 200 target words
that were spoken in this dataset. The audio recordings resemble each of the seven emotions:
anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral. There are 2800 audio
files of the wav format in which the two actresses uttered 200 target words with respective
emotions. It is recommended to use this dataset with male-only datasets to avoid biases in
the generated model.
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3.4 CREMA-D

CREMA-D [10] stands for “Crowd-sourced Emotional Multimodal Actors Dataset.” This
is a dataset of 7442 audio clips from 48 male and 43 female actors between the age of 20
and 74. The actors come from different races and ethnicities like African American, Asian,
Caucasian, Hispanic, and Unspecified. This is the most diverse dataset of all the datasets
we have included in this paper. The actors are assigned to speak from a selection of 12
sentences using one of six emotion categories. The emotion categories were Anger, Disgust,
Fear, Happy, Neutral, and Sad. They had four levels of intensity (Low, Medium, High, and
Unspecified). The participants rated the emotion and emotion levels judging from audio-
only, video-only, and audiovisual presentations. The process was crowdsourced, and a total
of 2443 participants each rated 90 unique clips consisting of 30 audio, 30 visual, and 30
audio-visuals. 95% of the clips have more than seven ratings.

3.5 Indic TTS

Indic TTS [27] is a project that uses a consortium of a high-quality corpus for building
text to speech synthesis systems for 13 major Indian languages [8], which includes Bengali
too. The dataset includes audio speeches along with text transcriptions. For each primary
language, there is a male and a female speaker who utter the lines from various domains
such as newspapers, fiction, science, etc. Moreover, audio speeches are recorded in a quiet
and echo-less environment. The sampling rate of the recorded audio signals is 48KHz. The
recorded audio data uttering English sentences in Bengali accent and Hindi accent of both
males and females is 15.23 hours and 15.75 hours. This speech corpus [8] is intended to cre-
ate various speech synthesis systems in the Indian language and English, where the systems
will work better for the Indian accent.

3.6 LJ speech

LJ speech [26] is a dataset created by Keith Ito and Linda Johnson. This is an entirely public
domain dataset. One speaker who is Linda Johnson herself uttered 13100 short audio clips
from 7 non-fiction books. The total length of audio clips is almost 24 hours. English tran-
scription is created for each audio clip. Also, the audio clips are not fixed in length, varying
from 1 second to 10 seconds. The dataset authors manually matched text transcription to the
audio, and a QA was passed to prove that the transcripted words correctly matched with the
audio speeches.

3.7 Libri TTS

LibriTTS [70] is an extensive dataset totaling 585 hours of audio speeches of the English
language. This multi-speaker English Corpus is created for building Text-to-Speech models
and further research in this field. The audio signals sampling rate is 24kHz for this dataset.
This dataset is generated from another corpus called LibriSpeech [45], changing the orig-
inal dataset’s different characteristics. The changes include changing the sampling rate to
24kHz, adding contextual information, excluding background noises, and including original
and normalized texts in the dataset.
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4 Features & augmentation

4.1 Features

Different data cleaning procedures like noise removal, making the audios of equal lengths,
and equally padded with silence at the beginning and end of the audio clips have been
done with our datasets. We need the correct data and a good representation of our data for
classification and predictive models, which we call features. We have identified multiple
features of our audio data that we used to feed different models to experiment and get
better results.

4.1.1 Short-Time Fourier Transform (STFT)

Short-Time Fourier Transform (STFT) is the baseline of all the features that we are going
to discuss. STFT divides the audio waves into different equal segments, which are short and
overlapping. After that, the Fourier transform of each segment is used to generate power
spectrograms. The goal of making power spectrograms is to identify resonant frequencies in
the waveforms. The advantage we get from doing an STFT is that it identifies the changes
in the audio signals in time series data.

4.1.2 Mel-spectrogram

The Mel-spectrogram is a Mel-scale representation of frequencies created by fast Fourier
transformation. The audio wave signals are converted from the time domain to the fre-
quency domain by a short-time Fourier transform using short and overlapping segments
over the audio signals, and this is called the spectrogram. The spectrogram’s frequency
axis is then converted into a log scale as we humans have a minimal range of recognition
of frequencies and amplitudes. Also, the color dimension is converted to decibels. Finally,
the frequency axis is mapped on the non-linear Mel Scale to generate a Mel-spectrogram.
Mel-spectrograms are simplified analog representations of the power spectrograms in the
Mel-frequency scale. This is another feature that can be used in different classification
models (Fig. 1).

4.1.3 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-frequency cepstral coefficients identify the changes in the pitch of audio signals. It
is a mathematical function to transform power spectrograms of an audio signal generated
by STFT into a small number of coefficients, representing the power of that audio signal
in the frequency domain. There are some mathematical procedures that are done one after
another for this transformation. First, STFT is used to generate audio power spectrums.
Then, frequency bins are generated by applying triangular, overlapping window functions
to the power spectrograms and taking the sum of each window’s energy. After that, the
frequencies of the audio signal’s power spectrograms are mapped in the Mel Scale (Fig. 2).

This mapping helps to finalize the number and position of window functions and the
width of the frequency bins. The reason for using Mel Scale is that humans hear the audio
pitches based on frequency ratios, and it is a non-linear pitch scale that represents the audio
pitches in “mels” of audio in terms of its frequency. Window functions and frequency bins
altogether are called mel filterbanks. Then, the log of the sum of audio signals power spec-
trogram, also known as cepstrum, is taken for each filterbank. Finally, for each filterbank,
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Fig. 1 Mel-Spectrogram (Sad, Angry)

discrete cosine transform (DCT) is applied to the log of the sum of the power spectrograms
to decorrelate them since there are correlations between filterbank energies. The benefit
of using a discrete cosine transform is that it generates coefficients so that the audio sig-
nal is fairly represented by only the top few coefficients. So, the amplitudes of the discrete
cosine transform of the log of the sum of the filterbank powers with respect to time are mel-
frequency cepstral coefficients. MFCC paves us the way to deconvolutionize audio signals
to identify resonant frequencies.

4.1.4 Delta

Delta is the derivative of coefficients. In other words, Delta gives us an overview of the
changes in coefficients (Fig. 3). It helps us to identify the audio speeches better. With respect
to time, the Delta of MFCC will represent a better understanding of the dynamics of power

Fig. 2 Mel-Frequency cepstral coefficients
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Fig. 3 Delta

spectrums of audio signals. We will be using MFCC with the Delta of MFC coefficients
combinedly as a feature for our models.

4.2 Augmentation

4.2.1 Add noise

Adding noise to the audio signal data can help the machine learning models to generalize
the function better. For audio emotion recognition models, adding noise to the dataset can
give the model an edge for better accuracy. This is how a typical audio speech sample
looks before and after adding noise such as Additive White Gaussian Noise with a sample
audio speech:

4.2.2 Signal Loss

Recording audio can suffer from loss of signals in the natural environment due to different
hardware and latency issues. Most of the audio datasets are created in a noise-free envi-
ronment for the clarity of the data. The machine learning models need to perform better in
natural environments too. That is why the dataset it is training on should resemble char-
acteristics of the natural environment. Hence, signal loss is applied to audio signals for
augmentation (Fig. 4).

35069Multimedia Tools and Applications (2023) 82:35059–35090



Fig. 4 Noise Augmentation

4.2.3 Change volume

Generally, well-curated audio speech datasets maintain a steady level of volume. The people
who create audio datasets are given proper rest to lessen their fatigue from long hours of
audio sessions to maintain the same level of tone throughout the recording sessions. On a
real-life environment, people do not talk like we trained actors with the systems. Sometimes
they talk loudly. If the machine learning system is not robust to the loudness of the speech or
environment, it can perform inaccurately. That is why for augmentation, we seldom change
the volume of some data just for the machine learning model’s generalization purpose.

4.2.4 Spectrogram augmentation

Google has introduced a new augmentation method called SpecAugment [46] for automatic
speech recognition. Conventional augmentation procedures are done over the audio signals.
Google’s SpecAugmentation applies the augmentation process on the spectrogram of the
audio which is an image representation of the signal (Fig. 5). This method does not cause
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Fig. 5 Spectrogram augmentation

any additional computational cost or data like other augmentation methods. After creating
the spectrograms, SpecAugment distorts the spectrograms in the horizontal and vertical axis
which are respectivelyMel-frequency channels and time steps. This augmentation technique
gives the neural network models generalization above the loss of information in the speech
signals.

5 Methodology

As shown in Fig. 6, speech audio signals are taken as input from the user, which can be
any command or conversational speech. The system analyzes the audio signals and extracts
various useful features like Mel-spectrogram, Mel-frequency cepstral coefficients (MFCC),
and Delta of coefficients. These features work as a direct input to different models of our
systems, which generates expected results.

After that, the system uses the Parallel CNN and Transformer-Encoders [71] model tak-
ing Mel-spectrograms as features to classify the audio signal’s seven emotional states of the
user’s speech, i.e., anger, happiness, disgust, sadness. The emotional state will help further
models to get the context of the speech.

Then, the spectrograms of speech audios are fed into an RNN-based speech-to-text model
DeepSpeech [22], to generate an English text transcript. The default DeepSpeech model
does not produce expected transcription well for the southeast Asian accent for the English
language. We get the word error rate (WER) of 0.44. That is why we tuned the DeepSpeech
model on a consortium of a high-quality corpus of 13 major Indian languages [8], which
achieved a WER of 0.18.

At this moment, our system knows the “emotional state” of the user’s speech and a
transcription of what the user says to the system. These two attributes will be used by a
multi-domain conversational agent [18] to generate contextual reply text for the user. The
reply texts of the conversational agents will further be used for text-to-speech models.

Furthermore, After getting reply texts from the conversational agent, the system will feed
them into Flowtron [64] which will not only generate Mel-spectrograms for speech synthe-
sis from the text but also control different aspects of speech synthesis such as pitch, tone,
speech rate, and accent. This will make the synthesized speech as human likely as possible.
Also, emotional states can be added with these synthesized voices by transferring styles of
given data. For example, if we want to generate an angry state of the synthesized voice,
we will give angry emotional audio clips to the trained model function, and it will manip-
ulate the synthesized speech to generate an angry version. Mel-spectrograms generated by
Flowtron will be used by another model called WaveGlow [51] to generate speech audio
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signals. Thus, the user will hear conversational agents’ replies with a proper human-like
voice along with human-like emotional states poured into the synthesized voice.

5.1 Model specification

5.1.1 2D parallel CNN and transformer-encoders

To take advantage of CNN’s (Fig. 7) image classification and feature representation capac-
ity, we need to represent our extracted audio features like MFCC, and the Mel Spectrogram
graph as an image. Each value of the MFCC/Mel Spectrogram is the amplitude of the
audio at a given Mel frequency range at a given time. Transformers (Fig. 8) are particu-
larly good at predicting future frames/data. Since this is time-series information, we can
use the Transformer to find the temporal relationship between pitch change and predict the
future frequency distribution of particular emotions. This approach is the successor to the
LSTM-RNN model that we tried earlier in our experiment. We use the Mel spectrogram as
our experimental feature for this model. Like all previous ones, this classification has seven
emotional groups and four emotional datasets. Not all data is distributed proportionally. We
need to divide them into train, test, and validation data while preserving proportionality.

Utilizing the wisdom of previous CNN papers’ findings, the proposed model was devel-
oped [71]. Conv, Pool, Conv, Pool, FC layer pattern was implemented in the architecture
of LeNet. AlexNet presents the idea of increasing the sophistication of features by channel
expansion using stacked CNNs. Parallelization was inspired by GoogLeNet [62] and Incep-
tion, which lets us diversify the features we learn from the data. The idea of using a smaller
size kernel comes from VGGNet, which replaces AlexNets (11 x 11), stride 5 with (3 x 3)
kernel, and gains significant improvement over it.

CNNwith 2D Conv layers is the de facto methodology for image processing. For our case
(Fig. 9), we have to imagine the Mel-Spectrogram plot as a single channel black and white
image. There are two primary reasons for using two stacked filters: feature sophistication
and efficiency. If we stack three layers of (3 x 3) kernels, in the second stack, the kernel
will see a (5 x 5) view, and the third stack will see a (7 x 7) view of the original input.
On the other hand, If we used a single (7 x 7) layer, it would have performed only a linear
transformation. Moreover, we have been able to minimize excessive computation by using
a stacked kernel. If we take the channel as constant, then for (3 x 3) kernel, we will have
27C2 parameters, whereas (7 x 7) kernel will have 49C2 parameters. In summary, using
smaller stacked kernels, we are getting more intricate features and making the model more
efficient. The sequential expansion of filter complexity and reduction in feature maps will
give us the best hierarchical features with the lowest possible computation cost.

The motivation for the transformer encoder is to learn the temporal features and hope
that it will be able to learn the frequency distribution of different emotions according to the
global structure of the Mel-spectrogram of each emotion. RNN-LSTM was a possible can-
didate for this job, but it would have learned to predict the frequency changes according to
time steps. The nature of the Transformer allows it to look at multiple different timestamps
using a multi-head self-attention layer, which will, in turn, let us predict the next. As the
transformers are very good at generating sequential data, the author expected it to perform
well by looking at the entire sequence of frequencies, not just one timestamp. Max-Pooling
the input Mel-Spectrogram map to the Transformer dramatically reduces the complexity
and number of parameters.
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Fig. 6 The block diagram of proposed affective social anthropomorphic intelligent system
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Fig. 7 CNN architecture

Initially, the “Adam” optimizer was used because it usually works decently out of the
box. But due to the fact that better performance is achievable by the good old SGD, the
author changed the optimizer later with the highest momentum leading to convergence and
acceptably long training time.

Fig. 8 Transformer-encoder
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Fig. 9 2D prallel CNN-transformer-encoder

5.1.2 DeepSpeech: end-to-end RNN

At Silicon Valley AI Lab, Baidu researchers have made a well-optimized end-to-end RNN
speech training system (Fig. 10) called “Deep Speech” with novel data synthesis techniques
to obtain ample amounts of varied data for training achieving a 19.1% error rate on noisy
speech dataset produced by them [22]. The system takes spectrograms of speech audios
and generates the text transcription in English. The training set that is arranged for this
system is, X = {(x(1), y(1)), (x(2), y(2)), ...}where x is a single utterance and y is denoted
as a label. A single utterance x(i) is a collective of vectors of audio features in a time-
series of length T (i), x

(i)
t ; t = 1, 2, ..., T (i). The objective of the RNN is to convert an input

sequence x into a character probability sequence for the text transcription ŷt = P(ct |x); ct ∈
{a, ...z, space, blank, apostrophe} [22]. The RNN model comprises five hidden layers.
The units of the hidden layer are denoted as h(l); l represents each layer. Among the hidden
layers, the first three layers are non-recurrent. The fourth layer is a bi-directional recurrent
layer [56]. The fifth hidden layer unites both forward and backward units of bi-directional
recurrent layers. At first, the first layer takes spectrogram frame xt ; t = eachtimeslice as
well as a context of C frames. For each time step t , the second and third non-recurrent layers
work by taking independent data. The computational function of the first three layers is:

h
(l)
t = g(W(l)h(l−1) + b(l)); (1)

W(l) = weight, b(l) = bias, l = currentlayer (2)

where g(x) = min{max{0, x}, 20} is a rectified-liner (ReLu) activation [3] function. After
that, the fourth bi-directional layer is created by two hidden units: forward recurrence h(f )

and backward recurrence h(b). The computational function of both units is:

h
(f )
t = g(W(4)h

(3)
t + W

(f )
r h

(f )

t−1 + b(4)) (3)
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Fig. 10 Structure of DeepSpeech’s RNN model and notation

h
(b)
t = g(W(4)h

(3)
t + W(b)

r h
(b)
t−1 + b(4)) (4)

In the case of forwarding recurrence, for each utterance i, h(f ) is computed sequentially
t = 1 to t = T (i). On the other hand, for backward recurrence h(b) is computed sequentially
in reverse order, t = T (i) to t = 1. Both forward and backward hidden layers are combined
and fed into the fifth layer. The computational function of the fifth layer, which is not
recurrent, is:

g(W(5)h
(4)
t + b(5));h

(4)
t = h

(f )
t + h

(b)
t (5)

Finally, the output layer predicts the character probabilities with the help of the standard
SoftMax function [22]:

h
(6)
t,k = ŷt,k ≡ P(ct = k|x) = expW

(6)
k h

(5)
t + b

(6)
k

∑
j expW

(6)
j h

(5)
t + b

(6)
j

(6)

W(6) = kthcolumnof weightmatrix, b
(6)
k = kthbias (7)

5.1.3 Multi-domain conversational agent

To have a neutral conversation, an agent must have several skills, such as being engaging,
knowledgeable, and empathetic, while sticking to the personality. Many prior approaches
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Fig. 11 The Poly-Encoder Transformer architecture for retrieval

sought to acquire these abilities in isolation, but the actual human-like conversation goal
was not accomplished. A team of Facebook researchers showed that these skills could be
taught to a broad number of models if we provide adequate training data and generation
strategy. Recently published, Blended Skill Talk [60] (BST) offers conversational context
and training data that can be used to train multi-domain human-like conversational agents.
The generation algorithm is also an indispensable part of the process. A model with the
same accuracy but with a different generation algorithm can produce a completely different
result. The authors also noted that the length of utterance plays a significant role in human
judgment, whether it is engaging or not. According to the experiment, a too-short utterance
can make the human judge perceive the bot as dull and uninterested. On the other hand,
too-long utterances make the judge feel the bot is not listening and is distracted. Despite
the previous report of beam searching being inferior to sampling [2, 24] the study shows
that by tweaking the minimum beam length, control over the dull versus spicy response
generation can be achieved. In this study, three types of architecture were used: Retriever,
Generative, and retrieve-and-refine models. All of which were derived from the Transformer
model (Fig. 11).

The Retriever model works by scoring the set of possible responses and outputting
the highest probable one, given we have conversation history as input. The researchers
used poly-encoder architecture [25] to encode global features of the context using several
representations attended to by each potential candidate response [52]. The final attention
mechanism allows us to achieve better performance over a single global vector representa-
tion. It generates context embedding and dot product it with each response candidate. The
embeddings are created in two steps. Firstly, the model gets the candidate embedding using
a transformer-based encoder and an aggregator function that takes the classifier embedding
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output or the token’s mean. After that model encodes the context using another transformer
and performs an “m” attention block. Each attention uses the Transformer output as keys
and values, and the learned ci code is unique for each attention. On top of this embedding,
another attention is calculated. The key and values are the output from the other attention.

T ransf ormeroutput, T (x) = (h1, ..., hN) (8)

yi
ctxt =

∑

j

w
ci

j hj (9)

(w
ci

1 , ..., wci

N ) = sof tmax(ci .h1, ..., ci .hN) (10)

yctxt =
∑

i

wiy
i
xtxt (11)

(w1, ..., wm) = sof tmax(ycandi
.y1

c txt, ..., ycandi
.ym

c txt (12)

One of the most significant benefits of poly-encoders is that it gives a state-of-the-
art performance on some dialogue tasks compared to other retrieval methods on ConvAI2
competition tasks based on human evaluation.

The generator approach is similar to the seq2seq model proposed in the Transformer [65]
paper, but the main difference is that it is a lot bigger. For comparison, Google’s Meena [2]
has 2.7B parameters, whereas the blender model has 90M, 2.7B, 9.4B parameter versions.

Lastly, there is the retrieve and refine the approach. It mixes the previously mentioned
two models. The retrieval model’s output goes as an input of the generative model using a
unique separator token. Utilizing this method, the authors tried to mitigate the known short-
comings like knowledge hallucination, disability to read new and external knowledge, dull
and repetitive answers. They worked with two types of retrieval models: dialogue retriever
and knowledge retriever. Dialogue retriever uses dialogue history to generate a response.
Knowledge retriever gets its information from a large knowledge base. In this scenario, a
transformer is trained to determine whether a knowledge retriever should be used (Fig. 12).

For decoding, Beam Search, Top-K-sampling, and sample-and-rank-sampling strategies
were used. There are many different algorithms to decode the final output sequence as our
model gives a probability distribution over the vocabulary. We need to select one word at a

Fig. 12 The retrieve and refine architecture
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time until we reach the end of the statement. We can use greedy algorithms to choose the
best word each time, but the final result may not be the overall best probable sentence. To
mitigate this, we predict beam size (possible sentences). At each step, we predict the next
beam size token for each sentence and select the one with the most probable beam size. We
stop if we reach the end character (complete “n” sentences) or after t steps. Next comes the
Top-K sampling algorithm. Here, at each step, the word “i” is chosen by sampling the model
distribution from the “k” most likely candidates. Along with the decoding process, some
additional constraints were tested. Minimum length forced the model to produce a result
with a defined length. Another one was a predictive retriever model, which predicts the
sentence’s length and limits the generation to that length. The last one was beam blocking,
where the model was forced not to generate any trigram, a group of 3 words, in the next
utterance if that is in the input or utterance itself.

5.1.4 Autoregressive flow-based generative network for TTS synthesis

Text is required for Mel-spectrogram synthesis, which will have non-textual information
such as tone, accent, and pitch. Also, non-textual information needs to follow the style of
the given audio data. If we give the model some audio data of a particular emotion, such
as anger, surprise, etc., the synthesized Mel-spectrogram should copy the style we refer
to as “Style Transfer.” NVIDIA researchers have introduced a model called “Flowtron,”
which does exactly the same thing as mentioned above. Flowtron does this by maximizing
the probability of training data. Flowtron learns an invertible mapping of data to a latent
space that can be manipulated to control many aspects of speech synthesis [64], including
pitch, accent, speech rate, tone, etc. It generates a Mel-spectrogram frame based on previous
Mel-spectrogram frames.

The whole sequence of frames is p(X) = ∏
p(xt |x1:t−1).Two types of distributions,

p(z), are used to be sampled by the neural network, which is used as a generative model in
the flowtron. The first distribution is a zero-mean spherical Gaussian, z ∼ N(z; 0, I ). The
other one is a mixture of spherical Gaussian with fixed or learnable parameters.

z ∼
∑

k

φ̂kN

(

z; μ̂k,
∑̂

k

)

(13)

The samples are transformed into p(x) from p(z) by going through “affine transforma-
tions,” which are invertible and parameterized transformation. We know that flowtron uses
an invertible neural network. Invertible neural networks are constructed using coupling lay-
ers [28, 29], in this case, affine coupling layer [16]. For each input xt−1 a scale, s , and a
bias is produced. This scale and bias affine transforms the next input xt :

(logst , bt ) = NN(x1:t−1, text, speaker) (14)

x′
t = st � xt + bt (15)

Here, NN() denotes any autoregressive causal transformation. A zero vector is concate-
nated with other inputs of NN() to implement this. The NN() needs not to be invertible, but
the affine coupling layer preserves the whole network’s invertibility. In the autoregressive
structure, every t-th variable z′

t depends on its previous timesteps from the star z1:t−1 : [30].
z′
t = fk(z1:t−1) (16)
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Fig. 13 Flowtron Network. Text and speaker embeddings are channel-wise concatenated. A 0-values vector
is concatenated with x in the time dimension

Flowtron is maximizing the data’s log-likelihood by utilizing the parameterized affine
transformation and the autoregressive structure mentioned above. These are possible by
using the change of variables:

logpθ (x) = logpθ (z) +
k∑

i=1

log | det(j (f −1
i (x)))| (17)

z = f −1
k ◦ f −1

k−1 ◦ ...f −1
0 (x) (18)

Mel-spectrograms are converted as vectors and run through several affine coupling lay-
ers conditioned on the text and fixed dummy speaker embedding. Each affine coupling
layer is called the “flow.” Finally, the processed vectors are forwarded to pass through the
neural network. Randomly sampled z values from Gaussian Mixture or spherical Gaussian
with fixed or flowtron predicted parameters are run through the trained neural network to
infer. The inferred Mel-spectrograms are decoded into waveforms using a single pre-trained
WaveGlow [51] model trained on a single speaker (Fig. 13).

6 Performance evaluation

6.1 Performancemeasurements metrics

6.1.1 Word Error Rate (WER)

The word error rate is based on the Levenshtein distance [50]. It is computed by the mini-
mum number of operations, i.e., insertion, deletion, substitution, to be performed to generate
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a text hypothesis that is similar to the reference text data. The computational function of
WER is:

WER = 1

N∗
ref

K∑

k=1

min
r

dL(refk,r , hypk) (19)

here dL(refk,r , hypk) is the Levenshtein distance from hypk to refk,r .

6.1.2 F1- score

F1 score is the weighted average of Precision and Recall. Therefore, this score takes both
false positives and false negatives into account. It is used to balance precision and recall. F1
score is better than accuracy in cases where class distribution is uneven. So, for our case,
we took the F1 score as our measurement metric.

6.1.3 Mean opinion score

Mean opinion score (MOS) is a measure used in the video, audio, and audiovisual, rep-
resenting the overall quality of a stimulus or system. It is the arithmetic mean over all
individual “values on a predefined scale that a subject assigns to his opinion of the per-
formance of a system quality.” Such ratings are usually gathered in a subjective quality
evaluation test, but they can also be algorithmically estimated. It is expressed as a single
rational number, typically in the range 1–5, where 1 is the lowest perceived quality, and 5
is the highest perceived quality. This metric is calculated using the arithmetic mean over a
single rating performed by humans.

MOS =
∑N

n=1 Rn

N
(20)

Here, R is the rating given for the clip, and N is the number of participants. We will
compare two of our models using this metric to determine which one is better and also
provide a real demonstration.

6.2 Model implementation

6.2.1 Sequential 1D CNN

We started our emotion classifier from scratch. To get the feel of the MFCC feature, we used
the mean value of the feature to determine the class of the emotion using a 1D Convolutional
Neural Network. The approach was too naive and was not able to produce a good result. We
removed the gender class (reducing it to 7 from 14) to make it more predictable, but the best
result we could produce is 50.28% accuracy with 100 Epoch, RMSprop as an optimizer, and
MFCC value of 13 (Fig. 14, Tables 1 and 2).

After seeing the result, we came to the conclusion that it would not be a very smart idea
to spend on this approach, so we moved onto the next method.

6.2.2 Sequential 2D CNN

Then we used the MFCC values to create an image and use Convolutional Neural Network
to classify the image. By classifying the image, we were able to classify the emotion as
well. The first trial gave us a somewhat hopeful result, so we went further with it. We tried
different parameters and tried to tweak the model. The initial accuracy was 67.08%. Using
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Fig. 14 Best 1D-CNN loss graph

only the augmented data seemed to reduce the accuracy even more. When we added aug-
mented data and real data together and trained the model with it, we got the best result.
MFCC coefficient also plays a decent role in increasing accuracy as it increases the resolu-
tion of the feature. The number of epochs also positively influences the accuracy result to a
certain degree. After that, we get diminishing returns. For 100 epochs, we got an accuracy
of 72.26%. After that, we increased the epochs value by 50%, making it 150, but the result
accuracy was increased by 0.01% (Fig. 15 and Table 3).

6.2.3 CNN-LSTM

We also tried the CNN-LSTM model. We only ran this model on a RAVDESS dataset with
log mel spectrogram as a feature, but the result it produced was indeed promising, but from

Table 1 Best 1D-CNN F1 score matrix

Precision Recall F1-Score Support

Angry 0.61 0.66 0.63 489

Disgust 0.41 0.52 0.46 478

Fear 0.41 0.37 0.39 460

Happy 0.56 0.41 0.47 498

Neutral 0.42 0.54 0.47 453

Sad 0.54 0.47 0.50 496

Surprised 0.89 0.65 0.75 167

Accuracy — 0.50 3041

Macro avg 0.55 0.52 0.53 3041

Weighted avg 0.52 0.50 0.50 3041
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Table 2 Comparison of 1D models

Epoch Class Accuracy Augmentation

100 14 42.98% no

100 14 49.02% no

100 7 50.28% no

Fig. 15 Best 2D-CNN loss graph

Table 3 Comparison of 2D CNN models

Epoch Class Accuracy Parameters Augmentation

100 7 67.08% mean(n mfcc =30) no

50 7 67.58% mean(n mfcc =30) no

35 7 69.58% mean(n mfcc =30) no

100 7 69.42% mean(n mfcc =30) yes

50 7 66.95% mean(n mfcc =30) yes

35 7 68.07% mean(n mfcc =30) yes

100 7 68.33% mean(n mfcc =50) no

50 7 68.79% mean(n mfcc =50) no

35 7 69.45% mean(n mfcc =50) no

100 7 72.26% mean(n mfcc =30) yes

50 7 70.84% mean(n mfcc =30) yes

35 7 69.79% mean(n mfcc =30) yes

150 7 72.27% mean(n mfcc =30) yes

35083Multimedia Tools and Applications (2023) 82:35059–35090



Fig. 16 CNN-LSTM loss graph

model loss graphs, we can get the idea that this model is not stable. The first time we ran
the model, we got an accuracy of 59.02%, but after running the model again, the accuracy
jumped to 72.91%.We ran the experiment several times but could not make the model stable
enough for our use. Thus, we abandoned the method (Fig. 16 and Table 4).

6.2.4 XResnet models (transfer learning)

xResnet50 [23] is one of the most popular architectures in computer vision research. We
tried to experiment with xResnet50 and xResnet18, which are relatively small in size but
good in terms of training speed and accuracy. We used both heavy and light augmentation
for the experiment and observed the performance. The augmentation includes removing
silence, the addition of white noise, signal loss, changing volume, resizing and using dif-
ferent spectrogram-augmentation [46], which modifies the spectrogram to gain robustness
against the deformation of spectrograms in the time direction. For features, we have cho-
sen MFCC images with delta, and Mel-Spectrogram with parameters optimized for voice
speeches to experiment with. We did not get any significant accuracy improvement from

Table 4 CNN-LSTM accuracy result

Epoch Optimizer Class Accuracy Augmentation

100 SGD 8 72.91% yes
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Table 5 Accuracy comparison of various xResNet models

Model Feature Accuracy Epoch Augmentation

xresnet50 MFCC + Delta 0.6986 25 RemoveSilence, AddNoise, SignalLoss, ChangeVolume, resize

xresnet18 MFCC + Delta 0.7018 25 AddNoise, resize

xresnet50 Mel Voice 0.7150 15 AddNoise, resize

xresnet50 Mel Voice 0.6809 15 RemoveSilence(Trim), MaskTime(size=4), Mask-
Freq(size=10), Resize

these experiments. We also found that applying heavy augmentation decreases the accuracy
of the models (Table 5).

6.2.5 VGG19 (transfer learning)

VGG19 [59] is another version of the VGG model with 19 layers, including 16 convolution
layers, three fully connected layers along with five max-pooling layers, and one SoftMax
layer. This model is a relatively older and simple model, but still, it is an effective one.
That motivated us to experiment with this model. The reason behind our experimentation
with VGG19 is that it is just another decent classification architecture for images that works
well despite being very simple and transfer learning is possible with this architecture. Just
like xresnet models, we used MFCC and delta features for VGG19. We also augmented
the datasets by removing silence, resizing the images, changing volume, adding noise, and
signal loss. However, the model did not perform up to the mark for the datasets that we
used (Table 6).

6.2.6 Parallel 2D CNNwith transformer-encoder

Parallel 2D CNN has a sequential expansion of filter complexity. It reduces feature maps
gradually, which gives us high-quality features with better computational performance.
Moreover, the transformer encoder learns the frequency distribution of different emotional
categories by focusing on the temporal features. Mel-spectrograms of the audio signals have
been used as a feature for this model. We have added Gaussian white noise to the data as a
procedure of augmentation. We have got noticeable accuracy for the respective dataset that
we used for this model (Table 7).

6.2.7 DeepSpeech tuning

We have used the DeepSpeech [22] model for the generation of English transcripts from
speech audio clips. However, the baseline model did not come up with a promising

Table 6 Accuracy comparison of VGG19 models

Feature Accuracy Epoch Augmentation

MFCC + Delta 0.707237 15 RemoveSilence(Trim), AddNoise, SignalLoss, ChangeVolume, resize

MFCC + Delta 0.685033 15 AddNoise, resize
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Table 7 Accuracy of Parallel 2D CNN with Transformer Encoder model

Feature Accuracy Epoch Augmentation

Mel Spectrogram 0.8667 400 AddGausianWhiteNoise

output for input data given by us. We assumed that it might happen for our accent as we are
from the southeast Asian region and not native English speakers. That’s why we tuned the
DeepSpeech model with the Indic TTS [27] project. We had to clean the articles from the
datasets and prepared them in a structure that is suitable for the deep speech model. As per
our assumption, the tuned model gave a much better result. Better accuracy is possible if we
train it with more datasets and for a longer time (Table 8).

7 Conclusion & future work

The proposed anthropomorphic intelligence system yielded promising results from the
chained models on which we performed our research. We have tried several techniques
to bridge the human-IVA communication gap. Several hurdles have arisen throughout the
model’s implementation. NLP is a rapidly growing field; keeping up with the latest and best
technologies is quite difficult. We sought to include the most outstanding and most current
innovations in these domains to get the greatest possible outcome for our system. Various
style data were added to Flowtron’s pre-trained models to tune further and enhance our
models. The open-domain conversational model performed as expected. We were also quite
pleased with the accuracy of the Speech-to-Text model that we customized for our region.
Overall, the system we built functioned far better than we anticipated. Unfortunately, there
are still many undiscovered avenues. We observed that there are no publicly available emo-
tion style datasets. We want to generate an emotional style dataset that will be used for
audio style transfer. We also believe that the Parallel 2D CNN Transformer-Encoder model
can be improved by tweaking its 2D CNN models. We want to explore transfer learning
and the benefits of reducing negative transfer in speech emotion recognition. In the future,
we also want to be able to recognize and eliminate numerous background voices in the
input environment. Similarly, while the user’s audio is being delivered, countless other audi-
tory distractions, such as music, may be present in the background. In these instances, we
would want to extract audio data from the environment utilizing some of the approaches
described in the literature review, such as pitch-based audio data separation from music and
characteristic-based detection [7].

Table 8 DeepSpeech accuracy improvement

Metric Trained Model DeepSpeech Model

Word Error Rate 0.18 0.44
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