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Abstract

The spherical fuzzy set (SFS) model is one of the newly developed extensions of fuzzy
sets (FS) for the purpose of dealing with uncertainty or vagueness in decision making. The
aim of this paper is to define new exponential and Einstein exponential operational laws
for spherical fuzzy sets and their corresponding aggregation operators. We introduce the
operational laws for exponential and Einstein exponential SFSs in which the base values
are crisp numbers and the exponents (weights) are spherical fuzzy numbers. Some of the
properties and characteristics of the proposed operations are then discussed. Based on these
operational laws, some new aggregation operators for the SFS model, namely Spherical
Fuzzy Weighted Exponential Averaging (SFWEA) and Spherical Fuzzy Einstein Weighted
Exponential Averaging (SFEWEA) operators are introduced. Finally, a decision-making
algorithm based on these newly introduced aggregation operators is proposed and applied
to a multi-criteria decision making (MCDM) problem related to ranking different types of
psychotherapy.

Keywords Spherical fuzzy set - Exponential operational laws - Einstein exponential
operational laws - Aggregate operator - Decision making

1 Introduction

The concept of fuzzy set theory [40] was developed by Zadeh in 1965 by assigning mem-
bership grade values to each elements of the set in the interval [0, 1] and it is utilized
for describing situations where results are imprecise. This traditional fuzzy set has been
applied in several fields like decision making, clustering analysis, pattern recognition and
medical diagnosis. Unfortunately, this traditional fuzzy set theory deals only with positive
membership degree of elements. To overcome this limitation, Atanassov introduced neg-
ative membership or non-membership degree function to cover the gaps in the fuzzy set
theory and the resulting set is called intuitionistic fuzzy set [12]. Therefore, the notion of
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IES theory is an extension of FS theory. Atanassov handled both the degree of membership
(¢ 1) and non-membership (1 7) where the sum of both values is less than or equal to one
(63 + ¥z < 1). In some cases, the decision maker’s may provide their preference values
like £ 7 = 0.7 and ¥ 7 = 0.6, then clearly it violates the condition of intuitionistic fuzzy
set as the sum of these values is more than 1. Therefore to deal with such issues, Yager
developed the concept of Pythagorean fuzzy set [37] with the condition that £% + W,ZZ <1
Definitely, the PFSs handle uncertainties more effectively than IFSs and hence Pythagorean
fuzzy set theory became more important and interesting research area. Many aggregation
operators have been introduced by Yager and Abbasov [38] to handle MCDM problems in
pythagorean fuzzy environment. Neutrosophic set [36] is yet another important generaliza-
tion of classical fuzzy set and it is further extended to neutrosophic cubic sets [27]. From
the literature, it is evident that many contributions have been made on neutrosophic sets
(NSs) and neutrosophic cubic sets (NCSs) with their aggregation operators. The theory of
NCSs have been discussed by Alia et al. [7] and applied in pattern recognition. Also, Je [39]
developed operations and aggregation operations for NCSs. Ajay et al. [2] utilized NCSs
to multi criteria decision making (MCDM) with the help of geometric Bonferroni mean
operators. More recently, Atta et al. [13] utilized the notion of NSs in an advanced image
steganography based on exploiting modification direction.

The concept of spherical fuzzy set (SFS) and its accompanying theory was introduced
by Gundogdu et al. [22], and this model is one of the new extensions of fuzzy set theory,
which is characterized by triple membership structure that consists of a membership, non-
membership and hesitancy function, and their sum of squares is equal to or less than one.
The SFS model has the ability to handle uncertainty, imprecision and vagueness in a more
efficient way compared to PFSs. A recent review of some of the latest literature shows
an increasing trend in studies concerning SESs. Ashraf et al. [8] developed sequences of
aggregation operators in a spherical fuzzy environment, Ashraf et al. [10] introduced a grey
method (GRA) based on the novel concept of spherical linguistic fuzzy Choquet integrals,
while the logarithmic operator for SFSs have been developed and applied to decision sup-
port systems by Jin et al. [26]. Rafiq et al. [31] proposed a cosine similarity measure for the
SFS model to enable decision-making in the context of vague and imprecise data, whereas
Ashraf et al. [11] introduced a group decision making method for the spherical fuzzy envi-
ronment and applied this in solving a multi-criteria group decision-making (MCGDM)
problem. Gundogdu et al. [24] extended the well-known VIKOR method for the SFS model
and applied this to a MCDM problem in a spherical fuzzy environment. Acharjya and Rathi
[1] proposed an integrated decision-making method which integrates the fuzzy rough set
and genetic algorithm models and applied this in a MCDM problem related to smart agri-
culture, Sharaff et al. [33, 34] studied a fuzzy-based text summarization extraction method,
and proposed a document classification method using fuzzy clustering approach in [33] and
[34], respectively. Gou et al. [20] defined the exponential operational laws for IFSs and
introduced several new aggregation operators for the IFS model, while Garg [18] introduced
new exponential operational laws for the PFS model and aggregation operators based on
these newly defined exponential operational laws to better handle the uncertainties, impre-
ciseness and vagueness of information. Furthermore, exponential operational laws of PFSs
have been used to form projection models for decision making in Borg et al. [16], while
Haque et al. [25] applied the concept of exponential operational laws to generalized SFSs.

Akram et al. [4] studied the concept of spherical fuzzy graphs and introduced some
results on the symmetric difference, rejection, degree and total degrees for spherical fuzzy
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graphs, while Ashraf et al. [9] established a new integrated approach based on the well-
known MCDM methods of Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and Complex Proportional Assessment of Alternatives (COPRAS)
methods, and applied this to a MCGDM problem related to emergency response to the
COVID-19 pandemic. Quek et al. [30] developed new operational laws for the T-SFS model
and introduced two types of Einstein aggregation operators for this models, and subse-
quently applied these to a multi-attribute multi-perception decision-making problem related
to the degree of pollution in five major cities in China. Aydogdu and Gul [14] proposed
a novel entropy measure for the SFS model and compared the performance of this mea-
sure with other existing measures in literature, while Shishavan et al. [35] introduced the
Jaccard, exponential and square root cosine similarity measures in a spherical fuzzy envi-
ronment and applied these measures to MCDM problems related to medical diagnosis and
supplier selection. Ali et al. [6] introduced the novel concept of complex T-SFSs and their
operational laws and went on to introduce two new aggregation operators for this model,
whereas Garg et al. [19] proposed the concept of power aggregation operators for the T-
SFS model and introduced a MCDM algorithm based on these aggregation operators. Liu
et al. [28] on the other hand, defined the concept of linguistic T-spherical fuzzy numbers
and proposed a weighted aggregation operator and two new MCDM algorithms for this con-
cept, while Guleria and Bajaj [21] introduced the T-spherical fuzzy soft set model and its
aggregation operators.

In terms of the application of the SFS-based models in MCDM methods, Sharaf and
Khalil [32] extended the well-known MCDM method of Tomada de Decisao Interactive e
Multicriterio (TODIM) to the spherical fuzzy environment to enable the hesitation degree
of the decision-makers to be expressed independently while Mathew et al. [29] proposed a
new decision-making framework that combines the well-known analytic hierarchy process
(AHP) and TOPSIS methods in a spherical fuzzy environment. Gundogdu and Kahraman
[23] introduced the concept of interval-valued SFSs (IV-SFS) and defined some important
accompanying concepts for this model such as the score and accuracy functions, and the
arithmetic and geometric mean operators. The authors also went on to propose an IV-SFS
based TOPSIS method and applied this to solve a MCDM problem related to the selection of
3D printers. Barukab et al. [15] established an enhanced TOPSIS-based method for the SFS
model for the handling of MCGDM problems and defined a generalized distance measure
for SFSs based on spherical fuzzy entropy to compute the unknown weights of the criteria,
whereas Farrokhizadeh et al. [17] expanded the original maximizing deviation method to
the spherical fuzzy environment using single-valued and interval-valued SFSs to determine
the weights of the criteria. Akram et al. [3] proposed four new aggregation operators for the
complex SFS model and used these to extend the multi-criteria optimization and compro-
mise solution (VIKOR) method to the complex spherical fuzzy environment, whereas Ali
et al. [5] introduced a TOPSIS method based on the complex SFS model as well as two
types of Bonferroni mean aggregation operators for the complex SFS model.

Motivated by the fast progressing studies related to the theory of SFSs as expounded
above, the main objective of this paper is to define exponential and Einstein exponential
operational laws for the SFS model which would yield results in the extended closed interval
of one and two as well as to develop exponential and Einstein exponential spherical fuzzy
aggregation operators.

The remaining part of the paper is organized as follows. Section 2 provides an overview
of the important background knowledge pertaining to the SFS model and their operations,
all of which are needed to facilitate the introduction of the new concepts of exponential
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operational laws and aggregation operators in the subsequent sections. The exponential
operational laws for the SFS model, and the corresponding operations and properties are
introduced in Section 3. This is followed by the introduction of new exponential spherical
fuzzy aggregation operators. The Einstein exponential operation laws for the SFS model,
their corresponding operations and properties, as well as the Einstein exponential spher-
ical fuzzy aggregation operators are defined in Section 4. A MCDM algorithm based on
the newly introduced spherical fuzzy aggregation operators is presented in Section 5. In
Section 6, the applicability and utility of the newly introduced spherical fuzzy aggregation
operators is demonstrated through the application of these operators in a MCDM problem
related to the ranking of different types of psychotherapy that are available for the emotional
problems faced by youngsters. To validate the proposed MCDM method, a comparative
analysis is presented in Section 7 in which the results obtained using our proposed method
is compared with the results obtained using fuzzy-based MCDM methods in the existing
literature. Concluding remarks are presented in Section 8, followed by acknowledgements
and the list of references.

2 Preliminaries
In this section, we discuss some of the basic concepts of fuzzy sets.

Definition 1 [40] A fuzzy set F is defined on a universe of discourse U as the form:
F={lez)It e U}

where £ (%) : U — [0, 1]. Here & #(i) denotes membership function to each x.

Definition 2 [12] An IFS Ais defined as a set of ordered pairs over a universal set U given
by

A= {{x. (20, y3(). ) Ix € U}

where £ 7(x) : U — [0, 1], ¥ 7(x) : U — [0, 1] and satisfy the condition & 7(x)+V 7(x) <
1 for each element x € U. Here the membership and non-membership functions are denoted
as £ 7(x) and ¥ 3(x) respectively.

Definition 3 [22] Let ,Zs be a spherical fuzzy set in the universe of discourse U be defined
by

A = (v (62, @) vz, 0,75, @) v e U] 1)
where§ 7 (x) : U — [0, 1], 7 (x) : U = [0, 1], 75 (x) : U — [0, 1]and 0 < S%‘(x) +
H%V(X) + ﬂ%v(X) < 1 for each x, the values & 7 (x), ¥ 7 (x), 7 3 (x) are membership,

non-membership and hesitancy function of x in A respectively.

Definition 4 [22] The score function and accuracy function of spherical fuzzy sets are

~ 2 2
defined respectively as S (.AS (x)) = (ij (x) — T3, (x)) - (Iﬁ'js (x) — T3, (x)) and
A(Aw) =85 0 +vx 0 +75 ()
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Definition 5 [22] The basic operations of spherical fuzzy numbers are as defined below.

AoB ={[ 0m+eE -85 @EF 0, ¥z @E W,

\/(1—s§3(x>)n§1(x)+( — &% () 7d () - 7% (O7d <x>} @)

A @B ={e5,085 @, Uk 0+ 9% 0 — ¥ @V ),

\/(1—¢§S(x>)n§1<x)+( — v} @) 73 (0 = 7% 07d <x>} 3

MF{ (- W) v, \/(1—s§:<x>)k—( ~g -y ) },A>0

“

] L (R (Ol BN

(6))

3 Exponential operational laws of SFSs

Here, this section defines new exponential operational laws of SFSs and their operations.

Definition 6 Let U be the universe of discourse, and Es = (“g‘gx, w[‘i’ 71'5S> be a spherical

fuzzy number (SFN), then the exponential operation of Es is defined as

)\‘ﬁx —

<A@M1—x2‘/’ﬁs,¢1—x2”5s>;xe 0, 1)
<(i)\/1Eés’\/1_(i)zwgs’\/l_(i)zngs>;)\z1 (6)

Theorem 1 For any SFN Es, the value of APs is an SFN in the extended interval [1,2].

Proof Let Ef; = <$Es’ 1//155, ngs> be an SFN, where Eﬁx’ ng and g belong to [0, 1] with the
condition that 0 < Eé + 1//% + 71% <1

[1—¢2 — —
Case(i): Let A € (0, 1), then the values of A o \/ 1 — 225 and \/ 1 — A% lie in
Z —\2 —\2
[0, 1] statisfying the condition that 1 < ( =55 ) <\/1 21#,95) + (\/l - Aznﬂ:) <2

Case(ii): When A > 1 and 0 < % < 1 and it is obvious that A?s is also an SEN.

Hence, based on the two cases, it follows that the values of )\ES are SFNs in the extended
interval [1, 2]. O
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Example 1 Let E}; = (0.73,0.28,0.32) be an SFN and A = 0.42, then )Jgf =
0.42(0.73,0.28,032)

0.42(0.73,0.28.0.32> — <0.4_2/\/1—0A7'3»27 \/1 _ 0.422><O.28’ \/1 _ 0.422><0.32>

= (0.5527, 0.6203, 0.6527)

. NP 1)(073,028,032)
If . = 4, it follows that (X) - (z)

1 (0.73,0.28,0.32) 1 «/1—0.732 1 2x0.28 1 2x0.32
Z — Z 1—(= 1= =
) OO RO

= (0.3877,0.7348, 0.7669)

Further, we enumerate some of the basic operations on APs.

Definition 7 Let ES, and ES2 be two spherical fuzzy numbers. Then the basic exponential
operational laws are as given below:

~ ~ 2 [1-£2 2 [1-£2 — -
Ao @b = < 1— (1 -1 ‘*‘1) (1 — A f‘z) \/(1 — 32V ) (1 _ﬁ%;z),

2 [1-£2 2 [1-£2 N 2 [1-£2 _ 2 [1-£2
(1 —a Bs ) (1 —a ﬂsz) _ ()\’2”&1 —a Bsy )"277133.2 — Bsy

- ~ [1-&2 + [1-£2 ~ ~
M @b = [<)L Bsy Py 1= Azwﬁsl Azd’ﬁsz ,
\/Azwal 207, (1 S, )\2;15”) (1 205, _k2n&2>>}
3 2 /1-£2 2 21<§2 P 2 /1-82 K
cabs — 1_( Y ,5;) 1= ‘/’,«g _<)L”ﬂv_)L /3x)
K
=K - K K K
[1#]" - <(A (s Y)) ’\/1 () ’\/<}L2\//;§) ) > VK=o,

Theorem 2 Let B;l = (‘;‘Exl , 1//5” , ”5s1> and B;z = <$Ey2, wE_‘Q, ”Esz> be spherical fuzzy
numbers (SFNs) and ). € (0, 1). Then the following holds:

=

@) AP @i = @b
(i) AP @ AP = AP @ APn

Theorem 3 Let Es,— = (55&_ , wﬁs- , n§:.>for i = 1,2,3 be three spherical fuzzy numbers
(SFNs) and ) € (0, 1). Then the following holds:

(1) (AESI (&) A_Esz) &) )\EW — kgsl [ ()\‘Esz ® AE‘3>
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(11) (}LEsl () )\_Esz) ® )LEAg — )\‘ESI ® ()\j‘{v ® )L&?)

Proof The proof of Theorems 2 and 3 are straightforward from Definition 3. O

Theorem 4 Let Esl = <$B}l , WE.YI , 7t5”> and ESZ = (SE\_Z, wgz, ”EQ) be spherical fuzzy
numbers (SFNs), IC, IC1, Ko > O Then be three real numbers, and A 1, 22 € (0, 1), then
Then the following holds:

@) K@Pr@rPe) = KaPr) @ KGP2);
(i) (M @)k = a0k e )k
(i) A% @ Kanfr = () 4+ Kp)afo;
(v) (PR PR = PRtk

W) D)1 @ ()Pt = (hag)Per.

Proof For two spherical fuzzy numbers Esl and ES2 by Definition 3, we get

- [1—-£2 N — - [1-£2 = —\
- <)L Bsy i \/1 _ Az‘pﬂxl , \/1 _ Aznﬂxl >’ AP — <)¥ Py , \/1 _ Azwﬂxz , \/1 _ )\2”;‘5;2>

and hence by using the exponential operational laws given in definition 4, we get

~ ~ 2 [1-£2 2 [1-£2 — —
W @aba — < 1 (1 N m,) (1 AR \/(1 2, ) (1 7Azwﬁ32)’
) [i—e2 [i—e2 fi—e2
(1 _)Lz /1 5,95,) (1 _)\2 1 éﬁsz) B (Az,% _)Lz 1 sﬁll) ()\27‘[5:2 _)Lz 1 Sﬂ52)>

W @ = =<Aﬁ+ﬁ V1= 22E 32
\/AZVIE"I )szlﬁ"z _ (1 _ )defgs_] _ )»2”5“'1) (1 _ }\21/%2 _ )\2”5\'2 )>}
(i) For a real number C > 0, we have
Ko @abay = <J - (1 - ,\ZM) : (1 N ) K, \/(1 s )’C (1 e )'C,
T
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S (R R o TR R

= ICAE‘I fey IC)LE"Z

(i) For two spherical fuzzy numbers Esl and ESZ, and a real number /C > 0, we have

K

(i @) = MAJ ‘(fil))’c (AJ ](Ef%fz)) , \/1 (2" (25) "
S )" (1 m ) () g

(iii)  For a spherical fuzzy number Esl = <§/§s1 , 1//551 e >, and real numbers K1, Ky > 0,

Ky
~ ~ 2 [1-82 K

Kb @ kb = l< 1_(1_“ f’“) (=)

2 [1-£2 i 2 [1-£2 K
(1 A Bs) ) _ (12”5‘1 _a Bs) ) >®

Ko Ka K2
2 [1-82 _\K 2 [1-£2 _ 2 [1-£2

<J1—(1—A ”’1) , ,/(1—,\2"’&') ZJ(I_A ’*") —(,\z”fm —aV """) >’

_ I<J1(lkzm)m+m’ (I,AZWEYI)K'+KZ,

e Ki+K2 5 a2 Ki+K2
(1 — 75/7;, ) _ (}\27{‘;‘1 _a 755;. ) >

= (K1 + K AP
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(iv) For a SFN EY] = <§Es1 , wﬁsl SR, >, and real numbers Ky, Ky > 0.

and hence

(v) Fora SFN Esl = (SEYI , wgﬂ s nﬁy} > and real numbers A1, A > 0,

~ ~ 1_(52 ) 2 2
P e () = <(A1)V . ,\/1 SPC \/1 - M”ﬂw>
® <(A2)V (%) : \/1 _a'h \/1 T >
a6 G ().
\/klwﬁ” 22 (1 o thﬂ) (1 IS )>}

= (\a)Pa

O

Theorem 5 Let ﬂs = <§5 wﬁ g, ) be an SFN, and Ay, Ay > 0. When A1 > Ao, we can
obtain ()P > )P for a1, 2o € (0, 1) and ()P < 0a)Ps for ag, 2 > 1.
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Proof Tf A1 > Ay and A, A2 € (0, 1), then by the exponential operational laws of SFN, we
have

P = <(M)m,\/l—klwés,\/l—klﬂéy>
()P = <(A2)m V1o i k2ﬂ§v>

The score values of ()\1)5‘ and ()\z)g‘ is denoted respectively as S ((Al)g‘) and § (()»2)’5‘)
are defined by

/ 2 2
S0P = | G (%) -vV1 —M”A%s - (\/1 _MW%X —\/1 _)Ll”%s) 7

— 2 2
S((}»z)g“) =1 (2) li(g‘%) —V1- Azﬂéx - (\/1 - Az'/’f%.\- — \/1 — Az”f?.\-) 8)

The membership values of ES € [0, 1] which means that the degree of membership <§55 ),
the degree of non membership (WEY) and the degree of hesistancy (n Ex) values lie in [0, 1].

1— (€2 1—(€2 2 2 2
Since A1 > Az, (1) (¢2) > ()V <f’s), 1= < 1= and1 =25 <
2

1— Aznﬁx, and hence S(()\l)g") > S((Az)g"). The following two cases arise:
M ISP > $((1)%), then )P > ()P

~ ~ 1—(£2 1-(£2 2 2
G 16.SG0F) = SRy, then a8 = V') 10 vE 21

and
2 2 ~ ~
1 — "% = 1— %, which implies that H((»)*) = H((*2)?*) and hence
P = ()P,
Thus, by combining these two cases, we get (A])ES > (kz)gf . Suppose Ay, A2 > 1 and
A > Ap, weget(0 < ﬁ < i < 1. Similarly we can obtain (Al)ﬁS < (Az)ﬁ". O

3.1 Exponential aggregation operator for SFNs
Definition 8 Let Es,- = <.§5x‘, V3. s ngy) be a collection of SFNs and A;, (i = 1,2,...,3)

be a collection of real numbers, then SFWEA : S — S, called the spherical fuzzy
weighted exponential averaging operator, is given by

SFWEA </\'~3“" DY A,ﬁ) =gl g ot ©)

i i

where S is the collection of SFNs and Es,- are the exponential weights of A;, (i =
1,2,...,n).
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Theorem 6 Let Es,- = <§/§J‘ , I/IES. , ngy) be a collection of SFNs. The aggregated value by
using the SFWEA operator is also an SFN in the extended interval [1, 2], where

<H:ll)" 1_ 11)"

295, 25, 2mg,,
\/]‘H‘IA. T, (1—xi e ) A € (0, 1);

SFWEA (Byy. By Bs,) =

and /gs,- are the exponential weights of A;, (i = 1,2,...,n).

Proof We prove the above aggregation operator SFW E A (Esl , EQ, R Esn) by mathemat-
ical induction on n. Let A; € (0, 1). Since By, is SFN for each i, 0 < égs_ R wﬁ:. L 1

andg-; +w2 +n~ <1

Step 1:  When n=2, we can see that

are SFNs. Then

B,

SFWEA (Byy. By) =201 ® xﬂ”

1- sZ ‘/1— s% N N
ﬁAl tfxz 2‘///5: 2‘///5:
<A1 Ay YA Y PR P

/ﬁws.,., 2V (1 i A?nz;;]) (1 I >>}
2 1—<s£ > 2 2 2
2, Vi W, TRy
= <1‘[x[ J HA : J]_[ —]‘[( —a =

is also an SEN in the extended interval [1,2].
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Step 2:  Assume that the aggregation operator SFWE A (Esl , Esz, cee Esn) holds for n =

K. Then

SFWEA (Bsy, sy - Bix)

- <ﬁ A ) J STIn J ﬁx,w” - ﬁ (1 VR >>
i=1 i=1 i=1 i=1

and the aggregated value is an SFN.

Step 3: Whenn = K + 1, we have

ﬂS)CH

By . ®Aﬁ% @1

B

SFWEA By By - Bo) = A @ 45

[, [ e e )

i=1 i=1

< J1- mﬂ \/ S ﬁ;,@rl \/ﬁgxsxm - (1 _Ajcma.m, ~ KZ%’C“»
+1 +1 +1

At

K+1 17(52> K+1 K+1 _ K+1 _ _
v 29z, 2. 21,
<HA , Jl—]‘[xﬂ", J]_[Aiﬂ*—]_[(l—,\iﬁ‘—xiﬂ'

i=1 i=1

whose aggregated value is alos an SFN in the extended [1, 2]. Therefore, (9) holds.

On the other hand, When A; > 1,and 0 < /\1—1 < 1, we can also get

SFWEA (Bs,. By - Box) = <

and the aggregated value is SFN in the extended interval [1, 2]. Hence the proof. O

4 Einstein exponential operational laws of SFSs

In this section, we introduce the Einstein exponential operational laws of sphericalfor the
SFS model alongwith some of its properties.
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~ 1—£2. — —\ ~
Definition 9 Let A% = <M EAJ‘, V1224 1 - AZ”A:) and ABs

/1—-£2 — -
<A °8, , \/ 1 - AMBS, \/ 1-— )\2”55> be two families of exponential spherical fuzzy num-

bers, for all A € (0, 1), where ./Ts = (“;‘A, w;s, n;s>, ES = <§B}’ 1//31, ngs> are spherical
fuzzy numbers. Then the basic Einstein exponential operational laws of spherical fuzzy
operators are as given below:

g2 _£2. — _
)».ZA . )LBNJ < 5 =67, +Am \/1_}L21//AS.\/1_12¢BX
£ = S - __
1+<,\ 1-5%3.).( 1-55}) 1+(1_m).(1_m
V1374 1378, > o
1+(1_ 1274 ,(1_m)
W' 185,
1A @e 1B < ' VI—aA 4 V1 -
£ = = , — _—
1+<14ﬁ>,(17,\ ‘—5%‘) 1+(\/17,\2WA5).<\/1,A%5)

12)

V1274 41275 >
1+(\/1—A2”K;).(\/1—Az”5s)

K K
1-£2 1-£2
|:1+A EA.‘] ,[1,A EAx] 2[ 17A2w;‘~y]’c

e <LHW]K+[I_AW]’“ A [T

— K
2[ 1 — 274 >
K (13)
[2—\/1—/\2%] +[\/1 /\2’%]
[Aj:})c_ < 2[ 125,22(3 _ [H—W]:—P— 1 )\2‘/’«?\\]
[2—\/1—521] +[\/1—é§d [1+ 1 A”A] +[1— 1—A2WA\]
|:1+ 1 — A7 A, K,[], 17)L2n;(x])c
,C> (14)
[1+ 1 — 274 +[l—m]

Theorem 7 Let )»ES, }»Exl and AESZ be a family of three exponential spherical fuzzy num-
bers of Bs = (é‘gs, Vg, n,§$>, Bsi = <%‘gsl Vg, 71@}) and B, = (é‘gsz, Vg, ngq)
respectively, K1, Ky, K3 > 0 be three real numbers, and ). € (0, 1), then we have the
following:

@) P g APe = 3o @g 2P i
(i) K.eGPr @gafe) = Ko@) @g Ke(WP2);
(i) Kr.eOP) @g Ko.eWP) = (K1 + Kp).e W),
V) (K1.K2).erbs = K.g(Ka.edP).
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Proof The proof is similar to the proof of Theorem (4), and therefore is omitted. O
4.1 Einstein exponential aggregation operator for SFNs
In this part, a new Einstein exponential aggregation operator with spherical fuzzy infor-

mation is developed namely Spherical Fuzzy Einstein Weighted Exponential Averaging
Operator is developed to aggregate spherical fuzzy information.

Definition 10 Let Aﬂ" ,(i=1,2,...,n) be a family of exponential of SFNs with respect
to ﬂs, = <§ﬂs lﬁ'ﬂj g, > where A; are real numbers. Let K; = (K1, Ko ..., Ky)T be the
weighting vector of kﬂ‘ (i=1,2,...,n),such that K; € [0, 1] and >/ K; = 1; then, a

SFEWEA operator of n is a mapping SFEWEA ()\5* ) — Aﬁ‘ and
SFEWEA (A’f” DL Af“"’) KieX™ @ Kp.enf? 0 .. e Kierbr (15)

Theorem 8 Let A?Si (i =1,2,...,n) be a family of exponential of SFNs with respect to

ES[ = <§B}., 1//55 LT ), then the aggregated value by using the SFEWEA operator is also
an SFN in the extended interval [1, 2], and

f1-£2 1 52
<1‘[" ](1+x ﬂ") -1 l(1 -2, ﬂj’)

SFEWEA (Af‘” b Af“’) =

— K; —— ’Ci>; A € (0, 1).
[Tz (2— 1-4; ﬁ:i) +nlill( 1=4; ﬂsi)

(16)

where IC; = (K1, Ka ..., Ku)T is the weighting vector ofgs, = (“g‘gs_ Vg TR > such that
Kiel0.1], (i =1.2,...n)and YI_ Ki = 1.

Proof We will prove (14) by mathematical induction. It is obviously true that (14) holds for
n = 1. Now assume that (14) holds forn = §, i.e.,
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SFEWEA (A‘f” DL Af“ﬁ) -

2y !
211, ( 1=%; g )
e K; T c >s }‘-i € (O, 1)
I (2— 1=2 P ) +T ( 1=2; P )
Ki Ki
= =
Let ai = [l |1+% ). &0 = T [t=2 :

Ars
Il
=
1§
S
[
|
>
=~
<
=
Ss—
a
)
I
—
~ O
5
S
—_
|
>
=~
=
SNS—
a
o
Il

5. A 3, b 2 2d
SFEWEA(A?‘,A?Z,...,ABﬂE):<a1 Lo >
ai+by er+c1 fit+d

Thenif n = § + 1, we have

SFEWEA ()‘,1351 , )‘}2%2’ cee )‘fﬁ]) Ki.e (kf”) Be - Be Ks.¢ <A5ﬁ%> e Ksyi-¢ (Afﬁ‘)

SFEWEA (Af“'l b )»fs“) ®e Ksyi.e (Afﬁ‘)

Kis+1 2 Ks+1

- E"&H - ESHI
by = =25, , ¢ =

7 Ks+1 2y, Ks+1 2 Ks+1
L= dy = [1—hg ™ . e 2—y/1—2g "

5+1 ’

Bs a—by  2c; 2d,
’C . A o = ’ ’ 5
5+15< o+l ) <a2+b2 e+ f2+d2>

@ Springer



41782 Multimedia Tools and Applications (2023) 82:41767-41790

thus, by the Einstein operational law, we have

SFEWEA <A’f" AP, ...,xfjff‘) = SFEWEA (A’f“ A ﬁ“) B¢ Ko e O
_ <a1 — by 2¢y 2d; > <a2 — by 2co 2d, >
T \ar+bi et fi+d ¢ ar+by ertcor’ Hr+do

B <a1a27b1b2 2c1¢2 2d1d> >
ajay +biby" ejex +cicr’ fifa+dida

— K K<
AN /"%,
| prasl BEVS NN st 1*)“\ '

oz
< o+ ! v Eﬂdz
T2 1) 1-2)

=y
ﬁ )
~ ~ ~ 5+| ( wﬂV, )
SFEWEA <x‘f"1 , Af"Z, e Afjﬁ;') =
! (2 ﬁsi ) +1! ( I )

i |
! (2 f‘f,) +Ha+1( f‘a,) >

Hence, (14) is true for n = § + 1. Therefore, (14) holds for all n, which completes the proof
of the theorem. O

A €(0,1).

13554-1

Similarly, we can easily get the SFEWEA (Af” , Azﬁsz, D W

) operator, when the

value of A; > 1,and 0 < % < 1 and also the aggregated value is SF'N in the extended
interval [1, 2].

5 Decision-making algorithm based on the proposed
aggregation operators

In this section, we propose an MCDM approach based on the proposed operators, which
involves the following steps:

Step 1: Consider a decision-making problem in which there are n alternatives
A (i=1,2,...,n)and mNattributgs BL(j = l,~2, ..., m) whose spherical fuzzy
weight vector values are Bs; = (ﬂ;l,ﬂm, .. ﬂvm> (j=1,2,...,m) such that
By, = (555,» VE, T, Jo<¢g Vg, 7, < land0 <82 +w2 gl
Then the given alternatives are evaluated under a set of attrlbutes by experts
and they give their preference values under the fuzzy information denoted by
rij{i=1,2,...,n)(j=1,2,...,m)and 0 < A;; < L. Generally, the attributes
are of two types; the first one being the benefit type (B1) and the other one the
cost type (Ba). If the attributes of the MCDM are of the same type, then the pref-
erence values do not need normalization. If the attributes are of different type, we
can use the following formula to convert the benefit type preference values into
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cost type.

.= VM g€ B
YA JEeB

Then, the decision matrix is presented based on the preference values.

Al A2 ool Alm

D= Ao A e Aom

Anl An2 o Anm

Step 2: Utilize the aggregation operators such as SFWEA and SFEWEA to aggre-
gate the different preference values of each alternative into collective values
a; {(i=1,2,...,n).

Step 3: Compute the score values of aggregated SFNs a; (i = 1,2, ..., n) using Eq.(7)
and rank the alternatives according to their score values.

The above mentioned approach will be demonstrated using a real life numerical example in
Section 6.

6 lllustrative example

Youngsters who face a lot of emotional problems go for counselling and treatment. There-
fore, for decision-making problem, the decision maker (counsellor) has chosen different
types of psychotherapy for treatment and he listed them as alternatives as follows:

A~ Cognitive Behavioral Therapy

Aj;- Dialectical Behaviour Therapy
Aj- Exposure Therapy

Ay- Interpersonal Therapy

As- Psychodynamic Psychotherapy
Ag- Therapy Pets

Here the aim of this analysis is to find the best suitable psychotherapy for youngsters based
on the problems they face. For this, we have considered seven major problems and listed
them as following attributes:

B - Erosion of national pride/Identity
B;- Poverty

B3- Educational disparity

By~ Obesity

Bs- Materialism

Be- Violence in schools

B7- Drug/Alcohol Abuse

The exponential spherical fuzzy weights of these seven attributes are expressed as SFNs
B, = (j=12....7: (B1=(0.1,0.9,0.1)), (B>,=(0.9,0.1,0.1)), (B3=(0.8,0.2,0.2)),
(B4=(0.4,0.6,0.4)), (B5s=(0.2,0.8,0.2)), (Bs=(0.6,0.4, 0.4)), (B7=(0.5,0.5,0.5)) on
the basis of the preference of the decision-makers. Also, let I = (0.05,0.25,0.2,
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0.1,0.1,0.15,0.1, 0.1, 0.15, 0.15)7 be the single valued weight vector to factors that are asso-
ciated with the attributes. The following steps have been executed to get the most
recommended alternative(s):

Step 1: The experts’ opinions are expressed in the form of a decision matrix D =
[A,- j] 67 whose elements indicate the evaluation values of all the alternatives
A; (1,2, ..., 6) against each attribute 3; (1, 2, ..., 7) under fuzzy environment.

07 0.7 0.7 0505 0.6 06
04 04 04 0.70.6 0.6 0.7
0.8 0.7 0.7 04 0.5 0.6 0.6
09 09 09 060.80.80.8
0.8 04 0.2 0.60.60.70.7

0.06 0.05 0.05 0.7 0.1 0.7 0.2 |,
x7

Step 2: Using the aggregation operator SFWEA given in (10) to aggregate the different
preference values of each factor, we obtain the following:

ai = SFWEA By, Boys -+ Bsyc)
a; = (0.055585, 0.987763, 0.156011)
= (0.033179, 0.992547, 0.122215)
a3 = (0.051742, 0.988096, 0.152444)
as = (0.280116, 0.896102, 0.482993)
= { )
= { )

a

0.042852, 0.981404, 0.192536
0.000039, 0.999999, 0.034176

as

ae

Step 3: The score values of these aggregated SFNs a; (i = 1, 2, ..., n) in the extended
interval [1, 2] are calculated using Eq.(7) and these are as given below:

S(ay) = —0.6817, S(az) = —0.7496, S(a3) = —0.6882,
S(as) = —0.1295, S(as) = —0.5999, S(as) = —0.9316.

The alternatives are ranked based on the highest score values and the rank order is
S(as) > S(as) > S(ay) > S(az) > S(az) > S(ag) : As > As > A > A3 > Ay > Ag.

Similarly, the SFEWEA operator (16) are used to find the score values and the values are
represented as follows:

S(ar) = 0.3245, S(az) = 0.2543, S(a3) = 0.3237, S(as) = 0.5325, S(as) = 0.2490,
S(ag) = 0.0897.

The rank order is

S(asg) > S(ar) > S(az) > S(az) > S(as) > S(ag) : As > A1 > A3 > Ay > As > Ag
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7 Comparative analysis

In this section, the results obtained through the proposed model is compared with the exist-
ing fuzzy models such as fuzzy TOPSIS, Weighted Sum Model (WSM) and Weighted
Product Model (WPM). In order to find the results using these existing models, we have

used the following Matlab codes:

Xval=length(X(:,1));

1
2 Y = zeros([Xval,length(W)]);

3 %% Step 1. calculating the normalized matrix
4 for j=1l:length (W)

5 for i=1:Xval

6 Y(i,3)=X(1,3)/sgrt(sum((X(:,3)."2)));

7 end

8 end

9 Normalized Matrix = num2str([Y])

10 %% Step 2. calculating the weighted mormalized matrix
11 for j=1:length (W)

12 for i=1:Xval

13 Yw(i,j)=Y(i,3).*W(3F);
14 end

15 end

16 Weighted Normalized Matrix = num2str ([Yw])
17 %% Step 3. calculating the positive and negative best
18 for j=1:1length (W)

19 if Weriteria(l,j)== 0

20 Vp(l,3j)= min(Yw(:,3));
21 vn(l,j)= max(Yw(:,3));
22 else

23 Vp(1l,j)= max(Yw(:,J ;
24 vn(l,j)= min(Yw(:,3));
25 end

26 end

27 Positive best = num2str([Vp])

23 Negative best = num2str([Vn])

29 %% Step 4. Euclidean distance from Ideal Best and Worst
30 for j=1:length (W)

31 for i=1:Xval

32 Sp(i,3)=((Yw(i,3)-Vvp(3))."2);
33 Sn(i,j)=((Yw(i,j)-vn(j))."2);
34 end

35 end

36 for i=1:Xval

37 Splus (i) =sgrt (sum(Sp (i, :)));

38 Snegative (i) =sgrt (sum(Sn(i, :)));
39 end

40 %% Step 5. calculating the performance score
41 P=zeros(Xval,l);
42 for i=1:Xval

43 P(i)=Snegative (i) /(Splus (i) +Snegative(i)) ;
4 end
4s Performance_Score = num2str([P])

Algorithm 1 Fuzzy TOPSIS method.
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Note: Using the above mentioned matlab code the following results are arrived. Here,
we have taken the following inputs from the illustrative problem; X = D = [A,- j] 6x7 18

the decision Matrix; W = K =

(0.05,0.25,0.2,0.1,0.1,0.15,0.15)7 is the single valued

weights of the criteria.

Step 2.  The weighted normalized matrix is calculated
0.0211 0.1204 0.0992 0.0344 0.0366 0.0548 0.0583
0.0121 0.0688 0.0567 0.0482 0.0439 0.0548 0.0681
NWM — 0.0241 0.1204 0.0992 0.0275 0.0366 0.0548 0.0583
~ | 0.0272 0.1548 0.1275 0.0413 0.0585 0.0730 0.0778
0.0241 0.0688 0.0283 0.0413 0.0439 0.0639 0.0681
0.0018 0.0086 0.0071 0.0482 0.0073 0.0639 0.0194 |, -
Step 3.  The positive and negative best values are obtained
Positiveipes; = (0.027168, 0.1548, 0.12752, 0.04819, 0.058502, 0.07303,
0.077784)
Negative_p.s; = (0.0018112, 0.0086003, 0.0070844, 0.027537, 0.0073127,
0.054772,0.019446)
Step 5.  Finally, the performance score values of the alternatives are given as follows;

Performance Score = (0.72543, 0.46842, 0.71977, 0.96789, 0.41014, 0.098582)

Xval=length(X(:,1));
for i=1:Xval

if Wecriteria (l j

for j= 1l:length (W)
)==0

Y (i,3)=min(X(:,3)) /X (1
else

Y(i,3)=X(1i,3)/max(X(:,3));

end
end
end
for i=1:Xval

PWSM(i,1)=sum(Y (i, :).*W);
PWPM(1,1)=prod(Y(i,:)."W);

end

Preference_Score of Weighted Sum Model

= num2str ( [PWSM])

Preference Score of Weighted Product Model= num2str ( [PWPM])

Algorithm 2 Weighted Sum Model (WSM) and Weighted Product Model (WPM).

The preference score of the alternatives using the WSM and WPM models are as given

below:

a

WSM = 0.74782, 0.64097, 0.73909, 0.98571, 0.62321, 0.30958

WPM = 0.74631, 0.6081, 0.73473, 0.9847, 0.55229, 0.15382
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The graph of ranking order
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Fig. 1 Score values using the proposed aggregation operators

7.1 Sensitivity analysis

The results obtained from the proposed spherical fuzzy aggregation operators and the exist-
ing well known fuzzy MCDM models are shown in Table 1, and we find that the alternative
Ay is recommended as the best choice.

From Table 1, we can see that the ranking order based on the SFWEA Operator alone
slightly differs from the other methods due to its nature. The SFEWEA operator deals
with spherical fuzzy numbers in addition to the weights of attributes. So the score values
have been arrived in positive numbers using the SFEWEA operator, whereas without con-
sidering the weights of the attributes the SFWEA operator yields negative values. These
are presented as a graphical representation in Fig. 1 for a better understanding of the
proposed models. This analysis deliberates the validity of the methods and the proposed
operators.

Table 1 Rank of the proposed methods

Methods Ranking order

SFWEA operator Ay > As > Ay > Az > Ay > Ag
SFEWEA operator Ay > A1 > A3> Ay > As > Ag
TOPSIS method Ay > A > Az > Ay > As > Ag
WSM method Ay > A1 > A3 > Ay > As > Ag
WPM method Ay > A > A3 > Ay > As > Ag
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8 Conclusions

The main contributions of this paper can be summarized as follows:

1. The exponential and Einstein exponential operational lawsfor the SFS modelare
defined, and their properties are discussed in detail. The main finding in exponential
operational laws of SFSs is that when we have spherical fuzzy number with the condi-
tion 0 < 5,21, (x) + W,ZZ, (x) + ”,2’5, (x) < 1, then the exponential operation on spherical
fuzzy numbers yield values in the extended interval [1, 2] with the condition that

—\2 2 2
15()» _sﬂs) +( 1—2A +( 1—x2”ﬁs> <2.

2. New aggregation operators such as the SFWEA and SFEWEA are introduced in a
spherical fuzzy environment and examined for their properties. Finally,the applicability
and utility of the proposed aggregation operators were demonstrated using a real life
application.

In future, more aggregation operators such as Einstein geometric aggregation operator,
Bonferroni mean aggregation operator, and Yager ordered weighted average (OWA) aggre-
gation operatoris plan tobe developed using the exponential operational lawsand Einstein
exponential operational laws for the SFS models.
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